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Abstract

Let R be a Noetherian commutative ring with unit 1 6= 0, and let I be a regular
proper ideal of R. The set P(I) of integrally closed ideals projectively equivalent to I
is linearly ordered by inclusion and discrete. There is naturally associated to I and to
P(I) a numerical semigroup S(I); we have S(I) = IN if and only if every element of
P(I) is the integral closure of a power of the largest element K of P(I). If this holds,
the ideal K and the set P(I) are said to be projectively full. A special case of the
main result in this paper shows that if R contains the rational number field Q, then
there exists a finite free integral extension ring A of R such that P(IA) is projectively
full. If R is an integral domain, then the integral extension A has the property that
P((IA + z∗)/z∗) is projectively full for all minimal prime ideals z∗ in A. Therefore in
the case where R is an integral domain there exists a finite integral extension domain
B = A/z∗ of R such that P(IB) is projectively full.

1 INTRODUCTION.

All rings in this paper are commutative with a unit 1 6= 0. Let I be a regular proper ideal of

the Noetherian ring R (that is, I contains a regular element of R and I 6= R). Recall that

an ideal J in R is projectively equivalent to I in case (Jj)a = (Ii)a for some positive

integers i and j (where Ka denotes the integral closure in R of an ideal K of R). The

concept of projective equivalence of ideals and the study of ideals projectively equivalent to

I was introduced by Samuel in [16] and further developed by Nagata in [8]. Making use of

interesting work of Rees in [13], McAdam, Ratliff, and Sally in [7, Corollary 2.4] prove that

the set P(I) of integrally closed ideals projectively equivalent to I is linearly ordered by

inclusion and is discrete. They also prove that if I and J are projectively equivalent, then

the set Rees I of Rees valuation rings of I is equal to the set Rees J of Rees valuation rings

of J and the values of I and J with respect to these Rees valuation rings are proportional

[7, Proposition 2.10]. We observe in [1] that the converse also holds and further develop the
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connections between projectively equivalent ideals and their Rees valuation rings. For this

purpose, we define in [1] the ideal I to be projectively full if the set P(I) of integrally

closed ideals projectively equivalent to I is precisely the set {(In)a} consisting of the integral

closures of the powers of I. If there exists a projectively full ideal J that is projectively

equivalent to I, we say that P(I) is projectively full. As described in [1], there is naturally

associated to I and to the projective equivalence class of I a numerical semigroup S(I). One

has S(I) = IN, the semigroup of nonnegative integers under addition, if and only if P(I) is

projectively full.

In [7, (3.6)] and in [1, (4.13)] it is noted that P(I) is projectively full for each nonzero

ideal I in a regular local ring of altitude two. On the other hand, in [2] we give an example

of an integrally closed local (Noetherian) domain (L,M) of altitude two such that M (and

hence P(M)) is not projectively full. We mention in the paragraph just before Proposition

4.3 of [2] that a problem we have not been able to solve is whether, for a given nonzero ideal

I of a Noetherian domain R, there always exists a finite integral extension domain A of R

such that P(IA) is projectively full. In [2, Proposition 4.3] we give a “logical candidate”

for A and prove for this A that there exists an ideal H of A such that every J ∈ P(I) has

the property that (JA)a is the integral closure of a power of H. A special case of Theorem

2.4 in the present paper shows that if I is a regular proper ideal in a Noetherian ring R

that contains the rational number field, then there exists a finite integral extension ring A

of R such that P(IA) is projectively full. To obtain in Theorem 2.4 such an extension ring

A of R, the additional requirement needed in the construction given in Proposition 4.3 of

[2] is that certain subsets of the Rees valuation rings of I are unramified with respect to

the extension.

We now give a brief summary of the contents of this paper

In Section 2 we show in Theorem 2.4 that if I = (b1, . . . , bg)R and {(V1,N1), . . . , (Vn,Nn)}

is a nonempty subset of Rees I such that: (a) biVj = IVj (= Nj
ej , say) for i = 1, . . . , g and

j = 1, . . . , n; and, (b) the greatest common divisor c of e1, . . . , en is a unit in R; then A =

R[x1, . . . , xg] (= R[X1, . . . ,Xg]/((X1
c− b1, . . . ,Xg

c− bg))) is a finite free integral extension

ring of R such that its ideal J = (x1, . . . , xg)A is projectively full and projectively equivalent

to I, so P(IA) is projectively full. Also, if R is an integral domain and if z1
∗, . . . , zm∗ are
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the minimal prime ideals in A, then P(IBh) is projectively full for h = 1, . . . ,m, where

Bh = A/zh
∗. Then in Remark 2.6.1 and Remark 2.6.2 it is shown that I has a basis

b1, . . . , bg such that (a) holds if either R is local with an infinite residue field, or n = 1. In

Remark 2.6.4 it is shown that (b) may be replaced with the weaker assumption that c /∈

(N1 ∩R) ∪ · · · ∪ (Nn ∩R). Corollary 2.7 states that if R is a Noetherian ring that contains

the field of rational numbers, then for each regular proper ideal I of R there exists a finite

free integral extension ring A of R such that P(IA) is projectively full. If R is an integral

domain, there exists a finite integral extension domain B = A/z∗ of R such that P(IB) is

projectively full.

In Proposition 3.1 of Section 3 we observe the following: (i) R and A satisfy the Theorem

of Transition as formulated by Nagata in [9, Section 19]; (ii) A/J = R/I, so there is a one-

to-one correspondence between the ideals H in R that contain I and the ideals H ′ in A that

contain J ; (iii) A is Cohen-Macaulay if and only if R is Cohen-Macaulay; and (iv) b1, . . . , bg

is an R-sequence if and only if x1, . . . , xg is an A-sequence. The relation between the ideals

H in P(I) and the ideals (HA)a in P(IA) is considered in Corollary 3.2 and Remark 3.3.

The special case of Theorem 2.4 where R is local and I is an open ideal is considered in

Corollary 3.4.

In Section 4 we concentrate on the case of Theorem 2.4 where n = 1, that is, only one

Rees valuation ring (V,N) of I is considered. In this case, (a) of Theorem 2.4 holds by

Remark 2.6.2. If the integer c such that IV = N c is a unit in V , then it is shown in Lemma

4.2.3 and Corollary 4.3 (together with Proposition 4.1.3) that there exists a valuation ring

(U,M) extending V and a minimal prime ideal z∗ in A such that H is projectively full for

all ideals H in all Noetherian rings B such that A/z∗ ⊆ B ⊆ U and JB ⊆ H ⊆ M ∩B. In

particular, if B is such a ring, then there exists a prime ideal P containing JB such that

JB, P , JBP , and PBP are projectively full.

In Example 5.1.1 of Section 5 it is shown that a regular ideal I of R is projectively

full if the associated graded ring G(R, I) has a minimal divisor p that is its own p-primary

component of (0), while in Example 5.2 it is shown that the projectively full ideal J of

Theorem 2.4 may have an embedded prime divisor P that is the center of a Rees valuation

ring (U,M) such that JU = M . Then some cases where Ja is a prime (resp., radical) ideal
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are considered in Example 5.3 (resp., Example 5.4).

In Example 6.1 of Section 6, we consider the behavior of the projectively full property

between R and R+, where R is a Noetherian domain and R+ is a Noetherian integral

extension domain of R contained in the field of fractions of R. For a nonzero proper ideal

I of R, (i) if IR+ is projectively full, then I is projectively full, but the converse fails, (ii)

there exist examples where P(I) is projectively full and P(IR+) fails to be projectively full,

and examples where, conversely, P(I) fails to be projectively full and P(IR+) is projectively

full. In Example 6.4 we present several examples of Noetherian domains R that are not

integrally closed and have the property that P(I) is projectively full for each nonzero proper

ideal I of R. In Example 6.6 we present a family of examples of Noetherian domains R for

which there exists an integral extension domain B that differs from the integral extension

domain obtained using Theorem 2.4, and has the property that P(IB) is projectively full for

each nonzero proper ideal I of R. In Example 6.8 we present an example of a normal local

domain (R,M) of altitude two such that M is projectively full and the associated graded

ring G(R,M) is not reduced. In Remark 6.9, we present an argument of J. Lipman to show

that if (R,M) is a normal local domain of altitude two that has a rational singularity, then

P(I) is projectively full for each M -primary ideal I of R.

Our notation is as in [9] and [5]. Thus, for example, elements b1, . . . , bg in an ideal I

form a basis of I if they generate I.

2 FINITE FREE EXTENSION RINGS A OF R IN WHICH

P(IA) IS PROJECTIVELY FULL.

Projectively full ideals are introduced in [1, Section 4]. It is observed in [1, (4.13)] that P(I)

is projectively full for every nonzero proper ideal I in a regular local domain of altitude

two; see also [7, (3.6)]. In [2] a number of basic properties of a projectively full ideal are

developed, and then it is asked if, for a given regular proper ideal I in a Noetherian ring

R, there exists a finite integral extension ring A of R such that P(IA) is projectively full.

It follows from Theorem 2.4 that this is frequently the case.

The following two remarks and definition will be useful in the proof of Theorem 2.4.
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Remark 2.1 Let R be a Noetherian ring, let I = (b1, . . . , bg)R be a regular proper ideal of

R, let c be a positive integer, let Rg = R[X1, . . . ,Xg], and let K = (X1
c−b1, . . . ,Xg

c−bg)Rg.

In Theorem 2.4 (and throughout this paper) we let A = R[x1, . . . , xg] (= Rg/K) and J =

(x1, . . . , xg)A, so A is a finite free “root” (integral) extension ring of rank cg of R. Also, for i

= 1, . . . , g it holds that xi
c = bi ∈ IA, and IA ⊆ Jc, so (IA)a = (Jc)a, hence P(IA) = P(J).

Note that for each minimal prime ideal z∗ in A it holds that A/z∗ = Rg/P (where P is a

minimal prime divisor ofK) has the form A/z∗ = (R/(z∗∩R))[x1, . . . , xg], where xi = xi+z
∗

for i = 1, . . . , g. Since xi
c = bi in A, it follows that A/z∗ = (R/(z∗ ∩ R))[b1

1/c
, . . . , bg

1/c
],

where bi = bi+(z∗∩R) (for i = 1, . . . , g), so A/z∗ is generated by c-th roots b1
1/c
, . . . , bg

1/c

of b1, . . . , bg, respectively, in a fixed algebraic closure of the quotient field of R/(z∗ ∩R).

Definition 2.2 Let I be a regular proper ideal in a Noetherian ring R. Then Rees I

denotes the set of Rees valuation rings of I, and if (V,N) ∈ Rees I, then the Rees integer

of I with respect to V is the integer e such that IV = N e.

Remark 2.3 Let I be a regular proper ideal in a Noetherian ringR. If the greatest common

divisor of the Rees integers of I is equal to one, then I is projectively full, by [1, (4.10)].

(The converse is false, by [7, Example 3.4, page 401].) Therefore if there exists an ideal K

∈ P(I) whose Rees integers have greatest common divisor equal to one, then K and P(I)

are projectively full. (If such an ideal K exists, then since the ordered sets of Rees integers

of I and K are proportional, necessarily K is the largest ideal in the linearly ordered set

P(I).)

It is clear that assumption (a) in Theorem 2.4 holds if g = 1 (that is, if I is a regular

principal ideal). Additional comments concerning assumptions (a) and (b) of Theorem 2.4

are given in Remarks 2.6.1 - 2.6.3.

Theorem 2.4 Let I be a regular proper ideal in a Noetherian ring R, let b1, . . . , bg be a

basis of I, let {(V1,N1), . . . , (Vn,Nn)} be a nonempty subset of Rees I, and for j = 1, . . . , n

let ej be the Rees integer of I with respect to Vj . Assume:

(a) biVj = Nj
ej for i = 1, . . . , g and j = 1, . . . , n; and,

(b) the greatest common divisor c of e1, . . . , en is a unit in R.
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Let A = R[x1, . . . , xg] and let J = (x1, . . . , xg)A (see Remark 2.1). Then A is a finite free

integral extension ring of R, IA and J are projectively equivalent, and J is projectively full,

so P(IA) is projectively full.

Proof. If c = 1, then A = R and I and P(I) are projectively full (by Remark 2.3), so the

conclusion holds in this case. Therefore it may be assumed that c > 1.

As noted in Remark 2.1, A is a finite free integral extension ring of R and (IA)a =

(Jc)a, so IA and J are projectively equivalent in A. Therefore it suffices to show that J is

projectively full.

For this, let (U1,M1), . . . , (Uk,Mk) be all the Rees valuation rings of J , and for j =

1, . . . , k let fj be the Rees integer of J with respect to Uj . Then by Remark 2.3 it suffices

to show that the greatest common divisor of f1, . . . , fk is 1.

For this, for j = 1, . . . , n let Dj = Vj[u1,j
1/c, . . . , ug,j

1/c], where u1,j , . . . , ug,j are units

in Vj determined by b1, . . . , bg, and let Vj
∗ = (Dj)q (where q is a minimal prime divisor of

NjDj). Assume it is known that Vj
∗ is a discrete valuation ring such that qVj

∗ = NjVj
∗

and Vj
∗ = Uh for some h ∈ {1, . . . , k}. Then it follows (after resubscripting U1, . . . , Uk, if

necessary) that, for j = 1, . . . , n, JcUj = IUj = (IVj)Uj = Nj
ejUj = Mj

ej , so JUj = Mj
cj ,

where cj is the positive integer such that cjc = ej . However, by hypothesis JUj = Mj
fj ,

so it follows first that fj = cj , and then that the greatest common divisor of f1, . . . , fk is

1 (since k ≥ n and the greatest common divisor of c1, . . . , cn is 1). Therefore it remains to

show that for j = 1, . . . , n: (i) there exists a prime ideal q in Dj = Vj[u1,j
1/c, . . . , ug,j

1/c]

such that Vj
∗ = (Dj)q is a discrete valuation ring whose maximal ideal is generated by Nj ;

and, (ii) Vj
∗ is a Rees valuation ring of J .

To see that (i) holds, fix j ∈ {1, . . . , n}. Then by the construction of Rees valuation

rings (see [1, (2.9)]) there exists a minimal prime divisor zj of zero in R such that R/zj is

a subring of Vj. Let cj be the positive integer defined by cjc = ej (where c is the greatest

common divisor of e1, . . . , en), let πj be a generator of Nj, and for i = 1, . . . , g let bi,j =

bi + zj (so bi,j ∈ R/zj ⊆ Vj, and bi,j = bi if R is an integral domain). Then it follows from

assumption (a) that, for i = 1, . . . , g, there exists a unit ui,j ∈ Vj such that bi,j = ui,jπj
ej

= ui,jπj
cjc. Fix c-th roots b1,j

1/c, . . . , bg,j
1/c, u1,j

1/c, . . . , ug,j
1/c of b1,j , . . . , bg,j , u1,j , . . . , ug,j ,
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respectively, in an algebraic closure of the quotient field of Vj . Then since bi,j = ui,jπj
cjc,

it follows that

(∗) Vj[ui,j
1/c] and Vj [bi,j

1/c] have the same quotient field for i = 1, . . . , g.

Let X1, . . . ,Xg be indeterminates and for i = 1, . . . , g let Yi = Xi
πj
cj . Now the deriva-

tive of fi,j(Yi) = Yi
c − ui,j (with respect to Yi) is fi,j

′(Yi) = cYi
c−1. Also, the roots of

fi,j(Yi) = 0 are ωhui,j
1/c (h = 1, . . . , c, where ω is a primitive c-th root of the unit ele-

ment 1 ∈ Vj), so it follows from [9, (10.17)] that the discriminant Disc(fi,j(Yi)) of fi,j(Yi)

is ±Πc
h=1 fi,j

′(ωhui,j1/c) = ±cc(ω1+···+c)c−1ui,j
c−1 = ±ccui,jc−1. Therefore, since ui,j is a

unit in Vj , and since c is is a unit in Vj (since, by assumption (b), c is a unit in R, so c is

a unit in R/zj ⊆ Vj), it follows that Disc(fi,j(Yi)) = ±ccui,j c−1 is a unit in Vj . Therefore

it follows from [9, (38.9)] that Vj[yi] = Vj [Yi]/(fi,j(Yi)Vj [Yi]) is integrally closed and that

NjVj[yi] = πjVj[yi] is a radical ideal (so for each prime divisor P of NjVj[yi], Vj[yi]P is a

discrete valuation ring whose maximal ideal is NjVj [yi]P ). Now yi
c = ui,j, so it follows that

Vj [yi]P = Vj [ui,j
1/c]P1 for some height one prime ideal P1 in Vj [ui,j

1/c] that contains Nj, so

V1,j = Vj[ui,j
1/c]P1 is a discrete valuation ring and P1V1,j = NjV1,j . (Note that, since Vj [Yi]

is a unique factorization domain, it follows that Vj [ui,j
1/c] = Vj[Yi]/(µi(Yi)Vj [Yi]), where

µi(Yi) is the minimal polynomial of ui,j
1/c over Vj .)

By repeating much of the previous paragraph (first with V1,j and uh,j (with h ∈ {1, . . . , g}

and h 6= j) in place of Vj and ui,j to get V2,j, then with V2,j and um,j (with m ∈ {1, . . . , g}

and m 6= j, h) in place of V1,j and uh,j to get V3,j, etc.), it follows that, for j = 1, . . . , n,

there exists a chain of discrete valuation rings V0,j = Vj ⊆ V1,j = V0,j [u1,j
1/c]P1 ⊆ · · · ⊆

Vg−1,j[ug,j
1/c]Pg = Vg,j such that NjVh,j is the maximal ideal of Vh,j for h = 1, . . . , g. Let

Dj = Vj[u1,j
1/c, . . . , ug,j

1/c], so it follows that Vg,j = (Dj)q for some height one prime ideal

q in Dj and that q(Dj)q = Nj(Dj)q, so (i) holds.

To see that (ii) holds (that is, that Vg,j is a Rees valuation ring of J = (x1, . . . , xg)A),

note that R/zj ⊆ Vj and by construction (see [1, (2.9)]) there exists a height one prime

divisor p of b1,jBj
′ such that Vj = (Bj

′)p and Nj = pVj, where Bj
′ is the integral closure of

Bj = (R/zj)[b2,j/b1,j , . . . , bg,j/b1,j ] in its quotient field (here we use assumption (a) (that IVj

= biVj for j = 1, . . . , n and i = 1, . . . , g)). By integral dependence, there exists a minimal
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prime ideal zj
∗ in A = R[x1, . . . , xg] such that zj

∗∩R = zj ; then A/zj
∗ = (R/z)[x1, . . . , xg]

= (R/z)[b1,j
1/c, . . . , bg,j

1/c] (see Remark 2.1). (Note that if R is an integral domain, then

each minimal prime ideal z∗ in A is a suitable choice for zj
∗.) Then, since R/zj and Vj

have the same quotient field, it follows from (*) that A/zj
∗ and Dj = Vj[u1,j

1/c, . . . , ug,j
1/c]

have the same quotient field. Also, A is a finite free integral extension ring of R and

bi,j/b1,j ∈ Bj is such that bi,j/b1,j = (xi/x1)
c (for i = 1, . . . , g), so it follows that Cj =

(A/zj
∗)[x2/x1,j , . . . , xg,j/x1,j ] is a finite integral extension domain of Bj . Therefore Cj

′ =

Bj
′′ ⊆ Vj

′′, where Cj
′ (resp., Bj

′′, Vj
′′) is the integral closure of Cj (resp., Bj , Vj) in the

quotient field of Cj (which is the quotient field of A/zj
∗ and of Dj). Also, ui,j

1/c ∈ Vj
′′,

since ui,j ∈ Vj , so Dj = Vj [u1,j
1/c, . . . , ug,j

1/c] ⊆ Vj
′′, so Vj

′′ is an integral extension domain

of Dj . Let q be as at the end of the second preceding paragraph, so Vg,j = (Dj)q is a

discrete valuation ring. Therefore it follows that Vg,j = (Vj
′′)q∗ , where q∗ = qVg,j ∩ Vj ′′.

Since q∗ ∩ Bj ′ = (q∗ ∩ Vj) ∩ Bj ′ = Nj ∩ Bj ′ = p (where p is a height one prime divisor of

b1,jBj
′ (by the start of this paragraph)), and since Cj

′ = Bj
′′ ⊆ Vj

′′, it follows that qj =

q∗ ∩ Cj ′ is a prime ideal in Cj
′ such that qj ∩ Bj ′ = p. Therefore qj is a height one prime

divisor of x1Cj
′ = b1,j

1/cCj
′, so (Cj

′)qj = Vg,j is a Rees valuation ring of J (by [1, (2.9)]),

hence (ii) holds.

It is clear from the preceding proof that the ring A = R[x1, . . . , xg] and the ideal J =

(x1, . . . , xg)A are not canonical, in that they depend on the basis b1, . . . , bg chosen for I.

The next two remarks mention several positive things about the extension ring A, the ideal

J , and the proof of Theorem 2.4.

Remark 2.5 (2.5.1) The proof of Theorem 2.4 shows the following: if Vj is a Rees val-

uation ring of I, if ej is the Rees integer of I with respect to Vj, and if c is the greatest

common divisor of e1, . . . , en, then Uj = Vj [u1,j
1/c, . . . , ug,j

1/c]q is a Rees valuation ring of J

= (x1, . . . , xg)R[x1, . . . , xg] (for some height one prime ideal q), the Rees integer of J with

respect to Uj is cj = ej/c, and the greatest common divisor of c1, . . . , cn is equal to one. In

particular, if e1 = · · · = en (for example, if n = 1), then e1 = c and c1 = · · · = cn = 1.

(2.5.2) If R is a Noetherian domain in Theorem 2.4, then it follows from the last paragraph

of the proof of Theorem 2.4 that, for each minimal prime ideal z∗ in A, the ideal (IA +
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z∗)/z∗ in A/z∗ is such that P((IA+ z∗)/z∗) if projectively full (since the proof shows that

(IA+ z∗)/z∗ has n Rees valuation rings whose Rees integers have greatest common divisor

equal to one). Therefore in the case where R is an integral domain there exists a finite

integral extension domain B = A/z∗ of R such that P(IB) is projectively full.

Remark 2.6 (2.6.1) Concerning assumption (a) of Theorem 2.4 that “b1, . . . , bg is a basis

of I such that biVj = IVj for i = 1, . . . , g and j = 1, . . . , n”, if R is a local ring with maximal

ideal M such that R/M is infinite, then there exists such a basis for I for every nonempty

subset {(V1,N1), . . . , (Vn,Nn)} of Rees I.

(2.6.2) Let I be a regular proper ideal in a Noetherian ring R and let (V,N) ∈ Rees I.

Then assumption (a) of Theorem 2.4 holds for I and V : that is, I has a basis (say b1, . . . , bg)

such that biV = IV for i = 1, . . . , g.

(2.6.3) If R as in Theorem 2.4 contains a field F such that either: char (F ) is not a divisor

of c; or, char (F ) = 0; then assumption (b) holds (since the greatest common divisor c of

e1, . . . , eg is in F ). Of course, the larger n is chosen (that is, the more Rees valuation rings

of I that are considered), the more likely it is that assumption (b) holds. On the other

hand, if H is any ideal that is projectively equivalent to I, then by [7, (2.10)] H and I have

the same Rees valuation rings and their corresponding Rees integers are proportional, so

by choosing H as the largest ideal in P(I), the more likely it is that assumption (b) holds

(for the greatest common divisor of the Rees integers of H).

(2.6.4) If c /∈ (N1 ∩R) ∪ · · · ∪ (Nn ∩R), and if assumption (a) of Theorem 2.4 holds for I,

then there exists a finite free integral extension ring A of R and an ideal J in A such that

P(IA) = P(J) is projectively full.

Proof. For (2.6.1), fix a nonempty subset {(V1,N1), . . . , (Vn,Nn)} of Rees I, and for j =

1, . . . , n let Hj = {x ∈ I | xVj ( IVj}. Then it is readily checked that each Hj is an ideal in

R that is properly contained in I. Therefore Hj = (Hj +MI)/(MI) is a proper subspace

(over the field R/M) of I = I/(MI). Since R/M is infinite, it follows that I has a basis

b1, . . . , bg such that no bi is in H1 ∪ · · · ∪Hn. Therefore if b1, . . . , bg are preimages in R of

b1, . . . , bg, then it follows that b1, . . . , bg are a basis of I such that biVj = IVj for i = 1, . . . , g

and j = 1, . . . , n.
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For (2.6.2), let c1, . . . , cg be a basis of I, so IV = ciV for some i ∈ {1, . . . , g}. Resubscript

the ci so that chV = IV for h = 1, . . . , f and chV ( IV for h = f + 1, . . . , g. For h =

1, . . . , f let bh = ch, and for h = f + 1, . . . , g let bh = b1 + ch. Then it is readily checked

that b1, . . . , bg is a basis of I such that biV = IV for i = 1, . . . , g.

For (2.6.4), let S = R[1/c]. If c /∈ (N1 ∩ R) ∪ · · · ∪ (Nn ∩ R), and if assumption (a)

holds for I, then assumptions (a) and (b) hold for IS. Therefore there exists a finite free

integral extension ring B = S[x1, . . . , xg] of S such that J ′ = (x1, . . . , xg)B is projectively

full (by Theorem 2.4, with S and IS in place of R and I). Let A = R[x1, . . . , xg] and

J = (x1, . . . , xg)A, and let K ∈ P(J). Then there exist positive integers n, s such that

(Kn)a = (Js)a, so ((KB)n)a = ((Kn)aB)a = ((Js)aB)a = ((JB)s)a = (J ′s)a, hence n

divides s, as JB = J ′ is projectively full. This implies that K = (Js/n)a. It follows that

P(J) is projectively full, and P(J) = P(IA), by Remark 2.1.

Corollary 2.7 Let R be a Noetherian ring that contains the field Q of rational numbers.

For each regular proper ideal I of R there exists a finite free integral extension ring A of R

such that P(IA) is projectively full. If R is an integral domain, there exists a finite integral

extension domain B = A/z∗ of R such that P(IB) is projectively full.

Proof. Apply Remarks 2.6.2 - 2.6.3, and Remark 2.5.2.

In Corollary 2.8, we show that P(IA+) is projectively full for certain integral overrings

A+ of the ring A constructed in Theorem 2.4. (A related result is considered in Corollary

4.3 and Remark 4.4 below.)

Corollary 2.8 With the notation and assumptions of Theorem 2.4, let A+ be a finite

integral extension ring of A that is contained in the total quotient ring of A. Then P(IA+)

is projectively full.

Proof. The Rees valuation rings of IA (and of J) are the Rees valuation rings of IA+ (and

of JA+), and by integral dependence the Rees integers of IA+ (resp., JA+) with respect to

these valuation rings are the same as for IA (resp., J). Also, IA+ and JA+ are projectively

equivalent (since IA and J are projectively equivalent). The conclusion follows from this
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and Remark 2.3, since the greatest common divisor of these Rees integers of J is equal to

one.

Corollary 2.9 extends Theorem 2.4 to certain finite collections of regular proper ideals

of certain local rings.

Corollary 2.9 Let (R,M) be a local ring and let I1, . . . , Im be regular proper ideals of R.

Assume that Q ⊆ R and that there exist nonempby subsets Ci of Rees Ii such that, for i 6= j

in {1, . . . ,m}, there are no containment relations between the centers in R of the valuation

rings in Ci and the centers in R of the valuation rings in Cj. Then there exists a finite free

local integral extension ring A of R such that P(IiA) is projectively full for i = 1, . . . ,m.

Proof. For i = 1, . . . ,m let Ci = {(Vi,1,Ni,1), . . . , (Vi,ni ,Ni,ni)}, and for h = 1, . . . , ni let

vi,h be the valuation of Vi,h, let Pi,h = Ni,h ∩ R be the center in R of Vi,h, let πi,h ∈ Vi,h
such that Ni,h = πi,hVi,h, let ei,h be the Rees integer of Ii with respect to Vi,h, let ci be the

greatest common divisor of ei,1, . . . , ei,ni , and define ci,h by ci,hci = ei,h.

Fix i ∈ {1, . . . ,m}, let Hi,(i,h) = {x ∈ Ii | vi,h(x) > vi,h(Ii)} (for h = 1, . . . , ni), and

let Hi,(j,h) = Ii ∩ Pj,h (for j 6= i in {1, . . . ,m} and for h ∈ {1, . . . , nj}). Then by the

hypothesis concerning the sets Ci and Cj it follows that each Hi,(j,h) (j = 1, . . . ,m and

h ∈ {1, . . . , nj}) is a proper subset of Ii, so (since R/M is infinite) there exists a basis

bi,1, . . . , bi,gi of Ii such that no bi,k is in any Hi,(j,h). Therefore: (i) for k = 1, . . . , gi and for

h = 1, . . . , ni it holds that bi,kVi,h = IiVi,h (so there exist units uk,h ∈ Vi,h such that bi,k =

uk,hπi,h
ei,h = uk,hπi,h

ci,hci , so (bi,k/πi,h)
1/ci = uk,h

1/ciπi,h
ci,h); and, (ii) for k = 1, . . . , gi, for

j 6= i ∈ {1, . . . ,m}, and for h ∈ {1, . . . , nj} it holds that bi,kVj,h = Vj,h.

Since Q ⊆ R, it follows that assumption (b) of Theorem 2.4 is satisfied for I1 in place

of I, and assumption (a) of Theorem 2.4 is satisfied (for I1 in place of I) by the preceding

paragraph, so let A1 = R[x1,1, . . . , xg1,1] (= Rg1/K1, where Rg1 = R[X1,1, . . . ,Xg1,1] and

K1 = (X1,1
c1 − b1,1, . . . ,Xg1,1

c1 − bg1,1)Rg1), and let J1 = (x1,1, . . . , xg1,1)A1. Then A1 is

a local ring, by Proposition 3.1.5 below, and a finite free integral extension ring of R, by

Theorem 2.4. Also, using (i) in the preceding paragraph it follows from Remark 2.5.1 that

the greatest common divisor of the Rees integers of J1 is equal to one, and Theorem 2.4

shows that P(I1A1) = P(J1) is projectively full. Further, by (ii) of the preceding paragraph,
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each b1,k (k = 1, . . . , g1) is a unit in each Vj,h (j = 2, . . . ,m and h ∈ {1, . . . , nj}), so by

using [9, (38.9)] (as in the proof of Theorem 2.4) it follows that there exists a height one

prime ideal qj,h in Vj,h[u1,1
1/c1 , . . . , u1,g1

1/c1 ] such that Uj,h = Vj,h[u1,1
1/c1 , . . . , u1,g1

1/c1 ]qj,h

is a Rees valuation ring of IjA1 whose maximal ideal is Nj,hUj,h = qj,hUj,h (so the Rees

integer of IjA1 with respect to Uj,h is ej,h (so the greatest common divisor of these Rees

integers of IjA1 is cj)).

It therefore follows from iterating the preceding paragraph (first with A1 and I2A1 in

place of R and I1, etc.) that the conclusion holds.

Before deriving more corollaries of Theorem 2.4, we first observe several properties of

the extension ring A.

3 PROPERTIES OF THE FREE EXTENSION RING A.

In this section we record some of the properties of the finite free integral extension ring A

of Theorem 2.4. Concerning the Theorem of Transition in Proposition 3.1.1, see [9, Section

19]. Also, for Proposition 3.1.3, recall that the altitude of an ideal H is defined to be the

maximum of the heights of the minimal prime divisors of H.

Proposition 3.1 Assume notation as in Theorem 2.4.

(3.1.1) R and A satisfy the Theorem of Transition.

(3.1.2) For each prime ideal p in R and for each prime ideal P of A such that P ∩R = p

it holds that Rp is a subspace of AP .

(3.1.3) For each ideal H in R it holds that: ht(H) = ht(HA); altitude(H) = altitude(HA);

and dim(R/H) = dim(A/(HA)).

(3.1.4) A/J = R/I.

(3.1.5) There exists a one-to-one correspondence between the ideals H ′ in A that contain

J and the ideals H in R that contain I given by H = H ′ ∩ R and H ′ = (J,H)A (so

if H is prime (resp., primary), then (J,H)A is prime (resp., primary), and if ∩ki=1qi is

an irredundant primary decomposition of H, then ∩ki=1(J, qi)A is an irredundant primary

decomposition of (J,H)A). In particular: H and (J,H)A have the same number of minimal

prime divisors; ht((J,H)A) = ht(H); A/((J,H)A) = R/H; and A has exactly k maximal
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ideals containing (J,H)A if H is contained in exactly k maximal ideals of R.

(3.1.6) R is a Cohen-Macaulay ring if and only if A is a Cohen-Macaulay ring.

(3.1.7) b1, . . . , bg is an R-sequence if and only if x1, . . . , xg is an A-sequence.

(3.1.8) If (V1,N1), . . . , (Vn,Nn) are all the Rees valuation rings of I in Theorem 2.4, then

{c1, . . . , cn} are all the Rees integers of J , where cjc = ej for j = 1, . . . , n.

Proof. Since A is a finite free integral extension ring of R, (3.1.1) follows from [9, (19.1)],

so (3.1.2) follows from [9, (19.2)(3)], and (3.1.3) follows from [9, (22.9)].

For (3.1.4), as in Remark 2.1 let Rg = R[X1, . . . ,Xg] and K = (X1
c−b1, . . . ,Xg

c−bg)Rg,

so A = R[x1, . . . , xg] = Rg/K and J = (x1, . . . , xg)A = (X1, . . . ,Xg,K)/K. Therefore A/J

= Rg/((X1, . . . ,Xg,K)Rg) = Rg/((b1, . . . , bg,X1, . . . ,Xg)Rg) = R/I.

(3.1.5) follows immediately from (3.1.4) and (3.1.3).

For (3.1.6), apply [5, Theorem 23.3 and Theorem 17.6].

For (3.1.7), since A is a free R-module, it follows that (H :R G)A = HA :A GA for all

ideals H,G in R, so it follows that b1, . . . , bg are an R-sequence if and only if they are an

A-sequence. Since xi
c = bi for i = 1, . . . , g, it follows that b1, . . . , bg are an A-sequence if

and only if x1, . . . , xg are an A-sequence. Therefore b1, . . . , bg are an R-sequence if and only

if x1, . . . , xg are an A-sequence.

For (3.1.8), let z∗ be a minimal prime ideal in A and let z = z∗ ∩ R, so z is a minimal

prime ideal in R (since A is a finite free integral extension ring of R). Let an overbar denote

residue class modulo z∗ and let F be the quotient field of R, so the quotient field of A is

E = F [b1
1/c
, . . . , bg

1/c
]. Let ω be a primitive c-th root of the unit element 1 in F . Then it

is clear that F [ω] is a Galois extension field of F , so it follows that F [ω, b1
1/c
, . . . , bg

1/c
] is

a Galois extension field of both F and E. Therefore the Rees valuation rings of JA[ω] =

(x1, . . . , xg)A[ω] (and of J = (x1, . . . , xg)A = (b1
1/c
, . . . , bg

1/c
)A (see Remark 2.1)) that lie

over a given Rees valuation ring (say, Vj) of I = (b1, . . . , bg)R (and I = (b1, . . . , bg)R) are

conjugate, so these Rees integers of J are all equal to cj = ej/c, by the fourth paragraph

of the proof of Theorem 2.4. Thus if (V1,N1), . . . , (Vn,Nn) are all the Rees valuation rings

of I, then the Rees integers of J are {c1, . . . , cn}.
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Since IA ⊆ Jc (by Remark 2.1), since Jc ⊆ Jc−1 ⊆ · · · ⊆ J , and since J ∩ R = I (by

Proposition 3.1.4), it follows that if J i = (J i)a for some i ∈ {1, . . . , c}, then I = Ia.

We close this section with two more corollaries of Theorem 2.4. For the first of these,

the integer d in Corollary 3.2.2 is the integer d shown to exist in [7, (2.8) and (2.9)] (and

denoted d(I) in [1, Section 4] and in [2]). It is a common divisor of the Rees integers of I,

and it is the smallest positive integer k such that, for all ideals G ∈ P(I), (Gk)a = (Ii)a for

some positive integer i.

Corollary 3.2 With the notation and assumptions of Theorem 2.4, assume that H is an

ideal in R that is projectively equivalent to I. Then:

(3.2.1) If h, i are positive integers such that (Hh)a = (Ii)a, then (HA)a = (Jci/h)a and

ci/h is a positive integer.

(3.2.2) If e1, . . . , en are all the Rees integers of I in Theorem 2.4, then there exists a positive

integer k such that (Hd)a = (Ik)a, so (HA)a = (Jkd
∗
)a, where d∗ is the positive integer

c/d.

Proof. For (3.2.1), if H is projectively equivalent to I, then by definition there exist

positive integers h, i such that (Hh)a = (Ii)a, and then it follows that (HhA)a = (IiA)a.

By Theorem 2.4, (IiA)a = (Jci)a, so (HA)a = Jci/h (= {x ∈ A | vJ(x) ≥ ci/h}; see [7,

(2.3)]). Also, HA is projectively equivalent to IA, and IA is projectively equivalent to J ,

so HA is projectively equivalent to J . However, J is projectively full, by Theorem 2.4, so

(HA)a = (Jk)a for some positive integer k. It follows that Jci/h = (HA)a = (Jk)a = Jk

(by [7, (2.3)]), so ci/h = k.

For (3.2.2), as noted preceding this corollary, there exists a smallest common divisor d

of the Rees integers e1, . . . , en of I such that for all ideals G that are projectively equivalent

to I it holds that (Gd)a = (Ik)a for some positive integer k. Let k be the integer such that

(Hd)a = (Ik)a, and let c be the greatest common divisor of e1, . . . , en. Then c = dd∗ for

some positive integer d∗, so it follows that (Hc)a = (Hdd∗)a = (Ikd
∗
)a, so (HA)a = (Jkd

∗
)a

by (3.2.1).

Remark 3.3 It is shown in [7, Corollary 2.4] that P(I) is linearly ordered and discrete,

so there exist positive integers c1 < c2 < · · · such that P(I) = {(Ici/d)a | i is a positive
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integer}, where d is as in Corollary 3.2.2. Let d∗ = c/d as in Corollary 3.2.2, so P(I) =

{(Icid∗/c)a | i is a positive integer}. With this in mind, it follows from Corollary 3.2.2 that

(P(I))A = {(Jcid∗)a | i is a positive integer} ⊆ P(IA) (and P(IA) = {(J i)a | i is a positive

integer}, by Theorem 2.4).

Corollary 3.4 With the notation and assumptions of Theorem 2.4, assume that R is a

local ring with maximal ideal M . Then:

(3.4.1) If I is an open ideal in R, then there exists a finite free local integral extension ring

A of R such that P(IA) is projectively full.

(3.4.2) If I = M in (3.4.1), then A = R[x1, . . . , xg] is a finite free local integral extension

ring of R whose maximal ideal N = (x1, . . . , xg)A is projectively full.

(3.4.3) Assume that b1, . . . , bf (f ≤ g) in (3.4.2) are such that X = (b1, . . . , bf )R is a

reduction of M , let A0 = R[x1, . . . , xf ], and let C = (x1, . . . , xf )A0. Then C is a reduc-

tion of the maximal ideal (x1, . . . , xf ,M)A0 = (x1, . . . , xf , bf+1, . . . , bg)A0 of A0, and C is

projectively full.

Proof. For (3.4.1), if R is local, then I = (b1, . . . , bg)R ⊆M , so A = R[x1, . . . , xg] is a local

ring with maximal ideal (M,x1, . . . , xg)A, by Proposition 3.1.5, so the conclusion follows

from Theorem 2.4.

(3.4.2) follows from (3.4.1), since if I = M , then MA = (b1, . . . , bg)A ⊆ (x1, . . . , xg)A,

so it follows that A/((x1, . . . , xg)A) = R/M , hence N = (x1, . . . , xg)A.

For (3.4.3), X and M (= I) have the same Rees valuation rings and Rees integers, since

X is a reduction of M , so C is projectively full by Theorem 2.4. Also, it is clear that C

⊆ (C,M)A0 and that (C,M)A0 = (x1, . . . , xf , bf+1, . . . , bg)A0 is the maximal ideal in A0.

Further, (MA0)a = (XA0)a (since Xa = Ma = M in R) = (Cc)a ⊆ Ca, so MA0 ⊆ Ca.

Therefore (C,M)A0 ⊆ Ca, so Ca = (C,M)A0 (since (C,M)A0 is the maximal ideal in A0),

hence C is a reduction of (C,M)A0.

4 IDEALS WITH A REES INTEGER EQUAL TO ONE.

The last part of Remark 2.5.1 shows that if the number of Rees valuation rings considered

in Theorem 2.4 is one, then the ideal J of Theorem 2.4 has a Rees valuation ring U such
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that the Rees integer of J with respect to U is equal to one. In this section we consider

some consequences of this.

We begin with the following proposition.

Proposition 4.1 Let I be a regular proper ideal in a Noetherian ring R, let R = R[u, tI],

where t is an indeterminate and u = 1/t, and let R′ be the integral closure of R in its total

quotient ring. Then:

(4.1.1) I has a Rees integer equal to one if and only if uR′ has a primary component that

is prime.

(4.1.2) Every Rees integer of I is equal to one if and only if uR′ is a radical ideal.

(4.1.3) If there exists an ideal K in P(I) such that some Rees integer of K is equal to one,

then K and P(I) are projectively full.

Proof. For (4.1.1), it follows from [2, (2.3)] that the Rees valuation rings V of I correspond

to the rings R′p, where p is a (height one) prime divisor of uR′, and the Rees integer e of I

with respect to V is given by uR′p = peR′p. Therefore it follows that I has a Rees integer

equal to one if and only if uR′ has a (height one) prime divisor p such that uR′p = pR′p.

The conclusion readily follows from this.

(4.1.2) follows immediately from (4.1.1).

For (4.1.3), if some Rees integer of K is equal to one, then the greatest common divisor

of the Rees integers of K is equal to one, so K and P(I) are projectively full, by [1, (4.10)].

Concerning Proposition 4.1.1, some properties of a regular ideal I in a Noetherian ring

R such that uR (rather than uR′) has a primary component that is prime are noted in

Examples 5.1.1 and 5.1.2 below.

Lemma 4.2 Let I be a regular proper ideal in a Noetherian ring R and let e1, . . . , en be all

the Rees integers of I. Then:

(4.2.1) ej = 1 for some j ∈ {1, . . . , n} if and only if there exists a minimal prime ideal z

in R such that some Rees integer of (I + z)/z is equal to one. If these hold, then I, P(I),

(I + z)/z, and P((I + z)/z) are projectively full.
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(4.2.2) ej = 1 for some j ∈ {1, . . . , n} if and only if there exists a multiplicatively closed

subset S in R such that some Rees integer of IRS is equal to one. If these hold, then I,

P(I), IRS′, and P(IRS′) are projectively full for all multiplicatively closed subsets S′ of R

such that P ∩ S′ = ∅ (where P = N ∩ R with (V,N) a Rees valuation ring of I such that

IV = N).

(4.2.3) Assume that (V,N) is a Rees valuation ring of I such that the Rees integer of I

with respect to V is equal to one. Let B be a Noetherian domain such that R/z ⊆ B ⊆ V

for some minimal prime ideal z in R (z = (0), if R is an integral domain), and let K be an

ideal in B such that IB ⊆ K ⊆ N ∩B. Then V is a Rees valuation ring of K such that the

Rees integer of K with respect to V is equal to one, so K is projectively full. In particular,

IB is projectively full,

Proof. For (4.2.1), the construction of Rees valuation rings in [1, (2.9)] shows that, for

each minimal prime ideal z in R, each Rees valuation ring of (I + z)/z is a Rees valuation

ring (V,N) of I such that the Rees integer of (I+z)/z with respect to V is the Rees integer

of I with respect to V . The same construction shows that, for each Rees valuation ring

(V,N) of I, there exists a minimal prime ideal z in R such that V is a Rees valuation ring

of (I + z)/z and the Rees integer of (I + z)/z with respect to V is the Rees integer of I

with respect to V . The conclusion clearly follows from this and Proposition 4.1.3.

The proof of (4.2.2) is similar, so it will be omitted.

For (4.2.3), by hypothesis there exists b ∈ I such that bV = IV = N . Therefore b ∈

K ⊆ N = bV , so D = B[K/b] ⊆ V . Also, C = R[I/b] ⊆ D, and N ∩ C ′ is a height one

prime divisor of bC ′ (by [1, (2.9)]). Therefore it follows that N ∩D′ is a height one prime

divisor of bD′, so V is a Rees valuation ring of K (by [1, (2.9)]). Since N = bV ⊆ KV ⊆

N , it follows that the Rees integer of K with respect to V is equal to one. The remaining

conclusions follow from this and Proposition 4.1.3.

Example 5.2 below concerns a special case of Lemma 4.2.3

We remark that the hypothesis “e is a unit in V ” in Corollary 4.3 holds if either: (i) e

is not a multiple of char (Vj/Nj); or, (ii) char (Vj/Nj) = 0.

Corollary 4.3 Let I be a proper nonzero ideal in a Noetherian ring R and assume that R
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has a Rees valuation ring (V,N) such that the Rees integer e of I with respect to V is a unit

of V . Then there exists a finite free integral extension ring A = R[x1, . . . , xg] of R and an

ideal J = (x1, . . . , xg)A in A such that J has a Rees integer equal to one. Therefore there

exists a minimal prime ideal z∗ in A such that if B is a Noetherian domain between A/z∗

and its integral closure (A/z∗)′, then there exists a prime ideal P containing JB such that

each of P , JB, PBP , and JBP has a Rees integer equal to one.

Proof. Remark 2.6.2 shows that assumption (a) of Theorem 2.4 holds for I with respect to

V , and Remark 2.6.4 shows that P(IA) = P(J) is projectively full. It follows from Remark

2.5.1 that J has a Rees valuation ring (U,M) such that the Rees integer of J with respect

to U is equal to one. The final statement follows from this and Lemma 4.2.3.

In Corollary 4.3, P need not be a minimal prime divisor of JB; see Example 5.2 below.

Remark 4.4 It follows immediately from the last part of Corollary 4.3 (and Proposition

3.1.8) that if R is a Noetherian domain, if Rad(I) is a prime ideal, and if there exists only

one prime ideal in the integral closure R′ of R that lies over Rad(I), then PBP has a Rees

integer equal to one for each prime ideal P in B that lies over (J,Rad(I))A.

5 EXAMPLES OF IDEALS WITH SOME REES INTEGER
EQUAL TO ONE.

In Proposition 4.1.3 it was noted that if I is a regular proper ideal in a Noetherian ring R

such that some Rees integer of I is equal to one, then I is projectively full. In this section

we give some examples of such ideals.

Concerning the conclusion of Example 5.1.2, recall that an ideal I is normal in case

each power In of I is integrally closed.

Example 5.1 Let I be a regular ideal in a Noetherian ringR and let G(R, I) = Σi=0
∞ Ii/Ii+1

denote its associated graded ring.

(5.1.1) If G(R, I) has a minimal prime ideal p such that p is its own p-primary component

of (0), then I has a Rees integer equal to one.

(5.1.2) If G(R, I) is reduced, then I is a radical ideal and a normal ideal, and each Rees

integer of I is equal to one.
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Proof. Let R = R[u, tI], where t is an indeterminate and u = 1/t. It is shown in [14] that:

G(R, I) = R/(uR); u is a regular element in R; and, unR∩R = In for all positive integers

n.

For the proof of (5.1.1), observe that uRp = pRp implies that Rp is a discrete valuation

ring. It follows that p′ = pRp ∩R′ is the p′-primary component of uR′, so one of the Rees

integers of I is equal to one by Proposition 4.1.1.

For the proof of (5.1.2), if G(R, I) is a radical ideal, then uR is a radical ideal. Therefore

it follows from [9, (33.11)] that uR′ is a radical ideal, so each Rees integer of I is equal to

one by Proposition 4.1.2. Also, I = uR∩R is a radical ideal. Further, uRq = qRq for each

(minimal) prime divisor q of uR, so each Rq is a discrete valuation ring. It follows that, for

all positive integers n, unR = ∩{unRq ∩R | q ∈ Ass(R/(uR))} (by [9, (12.6)]) and that

each unRq ∩R is integrally closed, so unR = (unR)a, by [11, Lemma 4]. Therefore In =

unR ∩R = (unR)a ∩R = Ina (by [12, Lemma 2.5]) for all positive integers n, so it follows

that I is a normal ideal.

Several specific examples of ideals I as in Example 5.1.2 are given in Example 6.6. We

delay giving these examples till the next section, since they are also examples of a Noetherian

domain R with a proper finite integral extension domain A such that P(IA) is projectively

full for all nonzero ideals I of R, and since they are also closely related to Examples 6.1.4

and 6.1.5.

Example 5.2 Let I be a regular ideal in a Noetherian ring R such that the center q in R

of some Rees valuation ring (V,N) of I is not a minimal prime divisor of I and the Rees

integer e of I with respect to V is a unit of V . Let b1, . . . , bg be a basis of I such that biV

= N e for i = 1, . . . , g (see Remark 2.6.2), let A = R[x1, . . . , xg], let J = (x1, . . . , xg)A be

as in Corollary 4.3, and let (U,M) be the extension of V to a Rees valuation ring of J as

in the proof of Theorem 2.4. Then (J, q)A = M ∩ A, (J, q)A properly contains a minimal

prime divisor of J , and every ideal H between J and (J, q)A has Rees integer equal to one

with respect to U .

Proof. It follows from the hypothesis concerning q and Proposition 3.1.5 that (J, q)A is a

prime ideal that properly contains a minimal prime divisor of J . Therefore the conclusion
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follows immediately from Corollary 4.3 and Lemma 4.2.3.

Example 5.3 Let I be a nonzero ideal in a Noetherian domain R such that I has a unique

Rees valuation ring (V,N) and the Rees integer e of I with respect to V is a unit of V . Let

b1, . . . , bg be a basis of I such that biV = N e for i = 1, . . . , g (see Remark 2.6.2) and let

A = R[x1, . . . , xg] and J = (x1, . . . , xg)A be as in Corollary 4.3. Then Ja is a prime ideal.

Also, each prime ideal in each Noetherian ring A+ between A and its integral closure A′

that lies over Ja has a Rees integer that is equal to one.

Proof. The hypothesis implies that Rad(I) is a prime ideal and that there exists a unique

prime ideal in R′ that lies over Rad(I). Therefore the last statement follows from Corollary

4.3.

Also, Ja = ∩{JUi ∩ A | Ui is a Rees valuation ring of J}, by [15, Theorem 4.12, page

61] (or by [12, (2.5)] together with [2, (2.3)]), and each such Ui is an extension of V , so

the maximal ideal Mi of Ui lies over the maximal ideal N of V (so Mi ∩R = Rad(I)), and

JUi = Mi (since the Rees integer of J with respect to Ui is equal to one (by Proposition

3.1.8)), so JUi ∩ A = Mi ∩ A. Further, there exists a one-to-one correspondence between

the minimal prime divisors of I and the minimal prime divisors of J , by Proposition 3.1.5,

so it follows that Ja has a unique minimal prime divisor and that Ja is a prime ideal.

Example 5.4 generalizes Example 5.3.

Example 5.4 Let R, I, (V1,N1), . . . , (Vn,Nn), e1, . . . , en, A, and J be as in Theorem 2.4,

and let p1, . . . , ph be the distinct prime ideals in {Nj ∩R | j = 1, . . . , n} (subscripted so that

pj = Nj ∩R). Assume that e1 = · · · = ch = (say) e is not in Nj for j = 1, . . . , n and that

p1, . . . , ph are minimal prime divisors of I. Then Ja has h primary components that are

prime ideals and each of them has a Rees integer equal to one. In particular, if p1, . . . , ph

are all the minimal prime divisors of I, then Ja is a radical ideal that is the intersection of

h (and no fewer) minimal prime divisors.

Proof. It follows from the fourth paragraph of the proof of Theorem 2.4 that the Rees

integer of J with respect to each of its Rees valuation rings (U1,M1), . . . , (Uh,Mh) (with Uj

the extension of Vj constructed in the proof of Theorem 2.4) is equal to one. Therefore JUj
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= Mj , so it follows as in the proof of Example 5.3 that Mj ∩A = (J, pj)A, that JaA(J,pj)A

= (J, pj)A(J,pj)A for j = 1, . . . , h, and that each (J, pj)A has a Rees integer equal to one.

Also, there exists a one-to-one correspondence between the minimal prime divisors p of I

and the minimal prime divisors P of J (given by P = (J, p)A), by Proposition 3.1.5. The

conclusions clearly follow from this.

6 EXAMPLES OF PROJECTIVELY FULL IDEALS.

In [2, Section 4] we give a number of examples of projectively full ideals. In this section we

give some additional examples.

Example 6.1 Let R be a Noetherian domain, let R′ be the integral closure of R in its

quotient field, and let R+ ⊆ R′ be a Noetherian integral extension domain of R. Let I be

a nonzero proper ideal of R.

(6.1.1) We have Rees I = Rees IR+. Also, for each V ∈ Rees I, the Rees integer of I with

respect to V is equal to the Rees integer of IR+ with respect to V . Thus the gcd of the

Rees integers of I is equal to the gcd of the Rees integers of IR+.

(6.1.2) If IR+ is projectively full in R+, then I is projectively full in R.

(6.1.3) It is possible for I to be projectively full, while IR+ is not projectively full.

(6.1.4) It is possible for P(I) to be projectively full in R, while P(IR+) is not projectively

full in R+.

(6.1.5) It is possible for P(IR+) to be projectively full, while P(I) is not projectively full.

Proof. To establish (6.1.1), since R+ is contained in the quotient field of R, we have

Rees I = Rees IR+ and R+ ⊆ V for each V ∈ Rees I. Also, IV = (IR+)V , so the Rees

integer of I with respect to each Vi is the same as the Rees integer of IR+ with respect to

Vi. The last statement in (6.1.1) is clear from this.

(6.1.2) is proved in [2, (3.2)(1)].

For (6.1.3), we use [7, Example 3.4]. Let X and Y be indeterminates over a field E, let

R+ = E[X,Y ] and let R = E[X2,XY, Y ] (so R+ = R′). Then I = X2R is projectively full,

but X2R+ is not projectively full.
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For (6.1.4), let R = E[X2,XY, Y ] as in the proof of (6.1.3), and let R+ = R[X3] =

E[X2,X3,XY, Y ]. Since I = X2R is projectively full, P(I) is projectively full. How-

ever, (IR+)a = (X2,X3)R+ := J is such that P(J) is not projectively full in R+ =

E[X2,X3,XY, Y ]. For if H := (X3,X4)R+, then J3 = H2 = (X6,X7)R+ (so J and H are

projectively equivalent), and J and H are not the integral closure of powers of any ideal of

R+.

For (6.1.5), let X be an indeterminate over a field E, let R = E[[X2,X3]], and let

I = (X2,X3)R be the maximal ideal of R. Let R+ = E[[X]] (so R+ = R′). Then R+ is a

DVR, so P(IR+) is projectively full. Let J = (X3,X4)R. Then J2 = I3 = (X6,X7)R, so

it follows that P(I) is not projectively full.

Question 6.2 Does there exist an example of a Noetherian domain R for which Example

6.1.4 holds with R+ taken to be the integral closure R′ of R?

In Example 6.4 we present several examples where R is a Noetherian domain that is

not integrally closed and P(I) is projectively full for all nonzero proper ideals I of R. The

following lemma will be used in explaining why these examples hold.

Lemma 6.3 Let (R,M) be a local domain and let R+ be a Noetherian integral extension

domain of R. Assume that M is the Jacobson radical of R+ and that P(IR+) is projectively

full for all nonzero proper ideals I of R. Then P(I) is projectively full for all nonzero proper

ideals I of R.

Proof. The hypothesis that R and R+ have the same Jacobson radical implies that H

⊆ M ⊂ R for each ideal H in R+ that is projectively equivalent to IR+. The conclusion

readily follows from this.

In the three examples in Example 6.4, the Noetherian integral extension domain R+ of

Lemma 6.3 is chosen to be the integral closure R′ of R.

Example 6.4 For the following rings R, P(IR) is projectively full for all nonzero proper

ideals I of R.

(6.4.1) Let E be a finite algebraic extension field of a field F , let X be an indeterminate,

and let R′ = E[[X]] and R = F +XR′.
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(6.4.2) Let F ⊂ E be as in (6.4.1), let X,Y be indeterminates, and let R′ = E[[X,Y ]] and

R = F + (X,Y )R′.

(6.4.3) Let R ⊂ R′ be as in [9, Example 2, pp. 203-205] in the case where m = 0 and r =

2.

Proof. For (6.4.1), since E[[X]] is a discrete valuation ring, it follows from Lemma 6.3 that

P(IR) is projectively full for all nonzero proper ideals I of R.

For (6.4.2), since R′ is a regular local ring of altitude two, it follows from Lemma 6.3

and either [7, (3.6)] or [1, (4.13)] that P(IR) is projectively full for all nonzero proper ideals

I of R.

For (6.4.3), it is shown in [9] that: dim(R) = 2; the integral closure R′ of R is a unique

factorization regular domain with exactly two maximal ideals M = xR′ and N ; R′M is a

discrete valuation ring and R′N is a regular local domain of altitude two; M ∩ N is the

maximal ideal of R; and, R′ = R + eR for all elements e ∈ R′ − R. Using these it can be

shown that, for each nonzero ideal I in R, IR′ = xiq (= IR′′M ∩ IR′N ) for some positive

integer i and for some ideal q in R′ such that q ⊆ N and q * M . Since R′N is a regular

local domain of altitude two, it follows that qa = Qma for some positive integer m, where

Q is the largest element in the projectively full projective equivalence class P(q) (see either

[7, (3.6)] or [1, (4.13)]). Then, since projectively equivalent ideals H,K have the same

Rees valuation rings and proportional Rees integers (by [7, Proposition 2.10] and [1]), it

follows that P(IR′) is projectively full with largest ideal xi/c(Qm/c)a, where c is the greatest

common divisor of i and m. The conclusion follows from this and Lemma 6.3.

Remark 6.5 If the Noetherian domain R has a finite integral extension domain R+ that

is a regular local domain of altitude two, then [7, (3.6)] or [1, (4.13)] implies that P(IR+) is

projectively full for every nonzero proper ideal I of R. We present in Example 6.6 specific

examples of such rings R.

Example 6.6 Let F be a field, let X,Y be indeterminates, let n be a positive integer,

let Rn = F [[{Xn−iY i}ni=0]], and let Mn = ({Xn−iY i}ni=0)Rn. Then R1 = F [[X,Y ]] is a

finite integral extension domain of Rn and a regular local domain of altitude two. Therefore
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P(IR1) is projectively full for each nonzero proper ideal I in Rn. Also, Mn is a projectively

full normal ideal that has only one Rees valuation ring Vn and its Rees integer with respect

to Vn is equal to one.

Proof. That P(IR1) is projectively full is immediate from Remark 6.5.

For the last statement, note first that Rn[Mn/X
n] = Rn[Y/X] (since Xn−iY i

Xn = Y i

Xi for

i = 1, . . . , n). For each positive integer j let Cj = Rj [Mj/X
j ] and let Cj

′ be the integral

closure of Cj. Then, in particular, C1 = R1[Y/X], and it is well known that C1 = C1
′ and

that XC1 is a prime ideal such that (C1)XC1 is the ord valuation ring of M1 (and the only

Rees valuation ring of M1). Also, Cn[X] (resp., Cn
′[X]) is a free integral extension domain

of Cn (resp., Cn
′), and Y = X(Y/X) ∈ Cn[X] (so R1 ⊂ Cn[X]), so it follows that C1 =

Cn[X] = Cn
′[X] is a free integral extension domain of Cn and of Cn

′. Therefore, since Cn

⊆ Cn
′, it follows that Cn = Cn

′. Also, XnC1 is XC1-primary, so it follows that XnCn is

primary for pn = XC1 ∩ Cn. Since the Rees valuation rings of Mn are the rings (Cn
′)pi ,

where the pi are the (height one) prime divisors of XnCn
′ (= XnCn), it follows that Vn =

(Cn)pn is the only Rees valuation ring of Mn.

To see that Mn is a normal projectively full ideal and that the Rees integer of Mn with

respect to Vn is equal to one, it suffices (by Example 5.1.2) to show that XnCn is a prime

ideal.

For this, since Xn, Y n is a system of parameters in Rn, it is well known that P =

MnRn[Y
n/Xn] is a prime ideal and that the P -residue class T of Y n/Xn is transcen-

dental over F = Rn/Mn (so Rn[Y
n/Xn]/(MnRn[Y

n/Xn]) = F [T ] is a polynomial ring

over F ). Also, XnCn = MnCn (since Xn−iY i = Xn(Y i/Xi) ∈ XnCn for i = 0, 1, . . . , n),

so Cn/(X
nCn) = F [Y/X ]. Further, Cn = Rn[Y/X] is a finite integral extension ring of

Rn[Y
n/Xn], so P = MnRn[Y

n/Xn] = MnCn ∩Rn[Y n/Xn] = XnCn ∩Rn[Y n/Xn]. It fol-

lows that F [Y/X ] = Cn/(X
nCn) is a finite integral extension ring of the polynomial ring

Rn[Y
n/Xn]/(MnRn[Y

n/Xn]) = F [T ], hence XnCn is a prime ideal.

Remark 6.7 If one applies the construction in Theorem 2.4 to the ring Rn of Example

6.6 and the set {Xn−iY i}ni=0 of generators of the ideal Mn = ({Xn−iY i}ni=0)Rn of Rn,

one obtains a finite free integral extension ring An of Rn. By Remark 2.1 there exists a

24



minimal prime ideal z∗ in An such that An/z
∗ = Rn[(X

n)1/n, (Xn−1Y )1/n, . . . , (Y n)1/n] is

a proper finite integral extension domain of R1 = F [[X,Y ]]. However, if instead of applying

the construction in Theorem 2.4 to the ideal Mn, we instead apply it to the generators

Xn, Y n of the reduction (Xn, Y n)Rn of Mn, then the free integral extension ring An =

Rn[T1, T2]/(T1
n − Xn, T2

n − Y n) of Theorem 2.4 has a minimal prime ideal z∗ such that

An/z
∗ = R1 = F [[X,Y ]].

In Example 6.8 we present an example of a normal local domain (R,M) of altitude two

such that M is projectively full and the associated graded ring G(R,M) is not reduced.

Example 6.8 Let F be an algebraically closed field with char F = 0, and let R0 be a

regular local domain of altitude two with maximal ideal M0 = (x, y)R0 and coefficient field

F , e.g., R0 = F [x, y](x,y), or R0 = F [[x, y]], where x and y are indeterminates over F . Let

R = R0[z], where z2 = x3 + yj, where j ≥ 3. It is readily checked that R is a normal

local domain of altitude two with maximal ideal M = (x, y, z)R, and that G(R,M) is not

reduced. We prove that M is projectively full.

Proof. The unique Rees valuation ring of M0 is V0 = R0[y/x]xR0[y/x]. Notice that I =

(x, y)R is a reduction of M since z is integral over I. It follows that every Rees valuation

ring of M is an extension of V0. Let V be a Rees valuation ring of M and let v denote the

normalized valuation with value group Z corresponding to V . Then v(x) = v(y) and the

image of y/x in the residue field of V is transcendental over F . Since z2 = x3 + yj and

j ≥ 3, we have

2v(z) = v(z2) = v(x3 + yj) = 3v(x).

It follows that v(x) = 2 and v(z) = 3. Therefore V is ramified over V0. This implies that V

is the unique extension of V0 and thus the unique Rees valuation ring of M .

For each positive integer n, let In = {r ∈ R | v(r) ≥ n}. Thus I2 = M . Since V is the

unique Rees valuation ring of M , we have I2n = (Mn)a for each n ∈ N. To show M is

projectively full, we prove that V is not the unique Rees valuation ring of I2n+1 for each

n ∈ N. Consider the inclusions

M2 ⊆ I4 ⊂ (z, x2, xy, y2)R := J ⊆ I3 ⊂M.
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Since λ(M/M2) = 3 and since the images of x and y in M/M2 are F -linearly independent,

J = I3 and M2 = I4 = (M2)a. Since x3 = z2 − yj and j ≥ 3, L = (z, y2)R is a reduction

of I3 = (z, x2, xy, y2)R. Indeed, (x2)3 ∈ L3 and (xy)3 ∈ L3 implies x2 and xy are

integral over L. It follows that V is not a Rees valuation of I3, for zV 6= y2V . Consider

M3 ⊂ I3M ⊆ I5 ⊂ I4 = M2. Since the images of x2, xy, y2, xz, yz in M2/M3 are an F -

basis, it follows that I3M = I5 and M3 = (M3)a = I6. Proceeding by induction, we assume

Mn+1 = (Mn+1)a = I2n+2, and consider

Mn+2 ⊂ I3M
n ⊆ I2n+3 ⊂Mn+1 = I2n+2.

Since the images in Mn+1/Mn+2 of {xayb | a + b = n + 1} ∪ {zxayb | a + b = n} is an

F -basis, λ(Mn+1/Mn+2) = 2n + 3, and the inequalities λ(Mn+1/I2n+3) ≥ n + 2 and

λ(I3M
n/Mn+2) ≥ n + 1 imply I3M

n = I2n+3 and M2n+2 = (M2n+2)a. Therefore

the ideal I2n+3 has a Rees valuation ring different from V , and thus is not projectively

equivalent to M . We conclude that M is projectively full. We have also shown that M is

a normal ideal.

Remark 6.9 In [4], Joseph Lipman extends Zariski’s theory of complete ideals of a regular

local domain of altitude two to a situation where R is a normal local domain of altitude

two that has a rational singularity. Lipman proves that R satisfies unique factorization of

complete ideals if and only if the completion of R is a UFD. For R having this property, it

follows that P(I) is projectively full each nonzero proper ideal I. An example to which this

applies is R = F [[x, y, z]], where F is a field and z2 + y3 + x5 = 0. In [3, Corollary 3.11],

Hartmut Göhner proves that if (R,M) is a normal local domain of altitude two that has

a rational singularity, then the set of complete asymptotically irreducible ideals associated

to a prime R-divisor v consists of the powers of an ideal Av which is uniquely determined

by v. In our terminology, this says that if I is a nonzero proper ideal of R having only

one Rees valuation ring, then P(I) is projectively full. Göhner’s proof involves choosing a

desingularization f : X → Spec R such that v is centered on a component E1 of the closed

fiber on X. Let E2, . . . , En be the other components of the closed fiber on X. Let EX

denote the group of divisors having the form
∑n

i=1 niEi, where ni ∈ Z. Define

E+
X = {D ∈ EX |D 6= 0 and (D ·Ei) ≤ 0 for all 1 ≤ i ≤ n}
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and

E
#
X = {D ∈ EX |D 6= 0 and O(−D) is generated by its sections over X}.

Lipman shows in [4] that E#
X ⊆ E

+
X and that equality holds if R has a rational singularity.

Also, if D =
∑

i niEi ∈ E+
X , then negative-definiteness of the intersection matrix (Ei ·Ej)

implies ni ≥ 0 for all i. For if D ∈ E+
X and D = A− B, where A and B are effective, then

(A−B ·B) ≤ 0 and (A ·B) ≥ 0 imply (B ·B) ≥ 0, so B = 0. Let v = v1, v2, . . . , vn denote

the discrete valuations corresponding to E1, . . . , En. Associated with D =
∑

i niEi ∈ E
#
X

one defines the complete M -primary ideal ID = {r ∈ R | vi(r) ≥ ni for 1 ≤ i ≤ n}. This sets

up a one-to-one correspondence between elements of E#
X and complete M -primary ideals

that generate invertible OX -ideals. Lipman suggested to us the following proof that P(I)

is projectively full for each complete M -primary ideal I if R has a rational singularity. Fix

a desingularization f : X → Spec R such that I generates an invertible OX-ideal and let

D =
∑

i niEi ∈ E
#
X be the divisor associated to I. Let g = gcd{ni}. Since E+ = E#,

(1/g)D ∈ E#. The ideals J ∈ P(I) correspond to divisors in E# that are integral multiples

of (1/g)D. Thus if K is the complete M -primary ideal associated to (1/g)D, then each

J ∈ P(I) is the integral closure of a power of K, so P(I) is projectively full. Since the rings

Rn = F [[{Xn−iY i}ni=0]] as in Example 6.6 are normal local domains of altitude two that

have rational singularities, it follows that P(I) is projectively full for each nonzero proper

ideal I of Rn.

ACKNOWLEDGMENT OF PRIORITY:

(i) In [1, Remark 4.2(d)] we noted that it was shown in [7, (2.9)] that if I is a regular ideal

in a Noetherian ring R, then there exists a positive integer d such that, for all ideals J in R

that are projectively equivalent to I, (Jd)a = (In)a for some positive integer n. This result

was also proved in [6, (1.4)].

(ii) In [1, Proposition 3.3] we showed that Rees I∪Rees J = Rees IJ if dim(R) ≤ 2, and we

noted just prior to [1, Proposition 3.3] that for the case that R is a pseudo-geometric normal

Noetherian domain, this result appears in [3, Lemma 2.1]. The equality Rees I ∪Rees J =

Rees IJ was first proved for an equicharacteristic integrally closed analytically irreducible

local domain of dimension two in [10, Theorem 3.17].
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