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ABSTRACT. Let (S,n) be a regular local ring and let I = (f,g) be an ideal in S
generated by a regular sequence f, g of length two. Let R = S/I and m = n/I.
As in [GHK], we examine the leading form ideal I* of I in the associated graded
ring G = gr, (S). If gr (R) is Cohen-Macaulay, we describe precisely the Hilbert
series H(gr,, (R), A) in terms of the degrees of homogeneous generators of I* and
of their successive GCD’s. If D = GCD(f*,¢") is a prime element of gr,(S)
that is regular on gr, (S)/ (%, %), we prove that I* is 3-generated and a perfect
ideal. If bty (s)(f*, 9", h") = 2, where h € I is such that h* is of minimal degree
in I\ (f*,g") grn(S), we prove I" is 3-generated and a perfect ideal of gr, (S),
so gr,(R) = gr,(S)/I" is a Cohen-Macaulay ring. We give several examples to
illustrate our theorems.

1. INTRODUCTION

This paper examines generators of the defining ideal of the tangent cone of a

complete intersection of codimension two. We fix the following notation.

Setting 1.1. Let (S,n) be a regular local ring of dimension s > 2 and let I = (f, g)
be an ideal in S generated by a regular sequence f,g of length two. For simplicity
we assume that the residue class field £ = S/n is infinite. We put R = S/I and
m=n/I. Let
R'(n) =) n't' CS[t,t7"] and R'(m)=> m't' C RJt,t"]
1E€EZL 1€EZ
denote the Rees algebras of n and m respectively, where ¢ is an indeterminate. We
put
G =gr,(S) = R’(n)/t_lR'(n) and gr,(R) = R'(m)/t_lR’(m).
For each 0 # h € S let o(h) = sup{i € Z | h € n'} and put h* = ht", where n = o(h)
and ht" denotes the image of ht" in G. The canonical map S — R induces the
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epimorphism ¢ : G — gr,.(R) of the associated graded rings. We put
I =Ker (G5 gr.(R)).

Then the homogeneous components {[/*];}icz of the leading form ideal I* of I are
given by

[I*]; = {ht? | h € I Nn'}
for each ¢ € Z. We throughout assume that a = o(f) < b = o(g) and that f*{g¢* in
G. The latter part of the condition is equivalent to saying that f*, ¢* form a part

of a minimal homogeneous system of generators of I*.

The original motivation for our work comes from a paper of S. C. Kothari [K].
Kothari answers several questions raised by Abyhankar concerning the local Hilbert
function of a pair of plane curves. Let £g(*) denote length over S. In the case where
dim S = 2, Kothari proves that 0 < dimg[gr,(R)]; — dimg[gr,(R)]i+1 < 1 for all
i > a and that ¢g(R) > ab; moreover, one has the equality {s(R) = ab if and only
if f*, ¢g* are coprime in G, that is, f*, ¢* form a G-regular sequence.

We have subsequently learned from an informative referee report of other work
in this area. Indeed, F. Macaulay in a 1904 paper [M] employs a different method
to determine the same necessary condition as Kothari on the Hilbert function of a
pair of plane curves. Using his inverse systems, Macaulay establishes the structure

of the Hilbert function H(A) of a complete intersection quotient A = k[[z,y]]/(f,9)
to be of the form

(1) H:(1’2a"'aaata?“"tj’o)’

where a > t, > to41 > -+ > t; = L and |t; — t;11| < 1 for all 5. Thus the Hilbert
function H after an initial rising segment breaks up into platforms and regular flights
of descending stairs, each step of height one. The structure of H(A) is studied from
the point of view of parametrizations by J. Briancon [Br| and by A. Iarrobino [Ial]
and [Ia2]. These authors prove that every sequence satisfying the conditions in
Equation 1 is realizable as the Hilbert function H(A) of some Gorenstein Artin
algebra of the form A = k[[z,y]]/(f,9)-

Let v(H) = 2 + #{platforms}. Iarrobino [Ial], [Ia2] proves that I* needs two
initial generators f*, g* and requires a new generator following each platform, and
that v(H) is the minimum possible number of generators of a graded ideal defining
a standard algebra with Hilbert function H. In [Ial, Theorem 2.2.A], Iarrobino

characterizes those graded ideals corresponding to I* for which I is a complete
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intersection of height two. He proves they are exactly the graded ideals with v(H)
generators. The referee has pointed out that our results in Theorem 1.2 and Theorem
1.3 can be deduced from these results of Iarrobino. While acknowledging the priority
of these results of Iarrobino, we hope that our different approach is still of some

interest.

Theorem 1.2. Let notation be as in Setting 1.1 and assume that dim S = 2 and
n = pg(I*). Then I* contains a homogeneous system {& }1<i<n of generators that
satisfy the following three conditions.

(1) &&=[f"and & =g".

(2) degg; +2 < deg&q1 forall2<i<n-—1.

(3) htg(§1,82, 1 &n-1) =1

Let {&}1<i<n be a homogeneous system of generators of I* satisfying conditions

(1) and (2) in Theorem 1.2. We prove that the ideals

{(& 1155 <1)Gh<i<n
of G are independent of the particular choice of the family {&; }1<i<, and are uniquely
determined by I. Moreover, if D; = GCD(§; | 1 < j < i) and d; = degD;, then one

has the strictly descending sequence

a=dy>dy>--->dp_1>d,=0

§ivi _ &1 & &i ,
d — = = ..., =)foralll<i<n-1(L 3.2). Let ¢; =d ;
an Di—l—le(Di’Di’ ,Di) orall1<i<n (Lemma ). Let ¢ eg &
and let

H(gry,(R),A) = Z dimg[gre, (R)]: '

denote the Hilbert series of gr,,(R). We explicitly describe H(gr,(R),\) and the
difference £g(R) — ab in terms of ¢; and d;, sharpening results proved by Kothari in
K.

Theorem 1.3. Let notation be as in Setting 1.1 and assume that dim S = 2 and
n = pg(I*). The following assertions hold true.

n . di— _di ¢ —d;
1) H(gr(R), ) = S X020 020,

( (ESYE
(2

(

(

) £s(R) = 2io(dion — di)(ci — di) = ab+ 3755 div[(con — ) — (dia — dy)].
3) ¢ciy1—¢;>dim1—d; >0 forall2<i<mn-—1.
4) [K, Corollaryl] ¢s(R) = ab if and only if n = 2, i.e., f*,g* is a G-regular

Sequence.
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Remark 1.4. In the case where dim S = s > 2, it is still true that htg(f*,¢*) > 1
implies f*, g* is a G-regular sequence, and therefore I* = (f*, g*)G also in this case.
Thus we assume that htg(f*, ¢*) = 1 and put Dy = GCD(f*, g*) and dy = degDs.
Let f* = D€ and g = Dsn. Notice that £, n is a regular sequence in G. We
have b > a > dy > 0, and pug(I*) = n > 3. There exists a minimal homogeneous
system {&1,&2,...,&,} of generators of I such that & = f* and & = g¢*, and
c; = deg&; < degf;y1 := ci+1 for each i < n — 1. However, the ideal I* may fail to
be perfect, and it is possible to have D3 := GCD(&1,&2,&3) = Dy as is illustrated in
[GHK, Example 1.6]. We prove in [GHK, Theorem 1.2] that I* is perfect if n = 3.
We also prove in [GHK] that &3 = h*, where h has the form h = af + g € I with
o(a)) = b —dg, and o(f8) = a — do, and that c3 := o(h) > a + b — da. Moreover, if
q = of 4+ 7g is such that ¢* & (f*,¢*)G and (0)(0) = b — da, then o(q) = o(h) and
(f* g% h)G = (f*,9%,¢*)G. Thus the ideal (&1, &2,£3)G is independent of the choice
of &. In the case where n > 4, we also prove that ¢4 > c3 + 2 [GHK, Proposition
2.4]. However, examples shown to us by Craig Huneke and Lance Bryant show that
it is possible to have ¢;11 = ¢; for ¢ > 4. This resolves a question mentioned in
[GHK, Discussion 2.5]).

If gr,(R) is a Cohen-Macaulay ring, we prove in Section 4 by passing to the
factor ring of G modulo a suitable linear system of parameters for gr, (R) that it
is possible to reduce the problems to the case where dim.S = 2 and obtain results
corresponding to those proved in Section 3 about the Hilbert series H(gr, (R),\).
In particular, if I* is perfect, then ¢;+1 > ¢; + 1 for each ¢ with 2 <¢ <n — 1.

With notation as in Setting 1.1, let eJ(R) denotes the multiplicity of R with

respect to m. Using Theorem 1.2, we prove in Section 4:

Theorem 1.5. Assume notation as in Setting 1.1 and Remark 1.4, and let D := D,
d:=dy and c:= c3. If htg(f*, g*, h*) = 2, then the following assertions hold true.
g g
1) I* = (f*, g%, h").
2) grn(R) is a Cohen-Macaulay ring.
1-29)(A=-2AD) A4 (1A= (a-r0—4
3) H(grp(R), N) = G020 s, D=2,
4) ) (R) = ab+d-[(c+d) — (a +b)].

—~ o~ o~ o~

Let M = [gr,,(R)]+ and let H3 ?(gr,,(R)) denote the s — 2t local cohomology
module of gr.,(R) with respect to M. Recall that

a(gty (R)) = max{i € Z | [Hy*(grn(R))]; # (0)}
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is the a-invariant of gr.,(R). Using this notation and setting @ = (X1,... ,Xs_2)G,
where Xi,..., X, are suitably chosen homogeneous elements of degree one in G

such that G = k[X1, ..., X,], and using the formula

a(grn(R)/Qgry(R)) = a(grn(R)) + (s - 2)

of [GW, Remark (3.1.6)], we establish the following result in Section 4.

Theorem 1.6. Assume notation as in Setting 1.1 and Remark 1.4. If gr.. (R) is a

Cohen-Macaulay ring and n = pg(I*), then the following assertions hold true.
S, A (1 = M1 (1 = ped)
1) H A) = == .
(1) Hlgra(R),A) o
(2) en(R) = ab+ 3155 dir[(civr — i) — (dim1 — di)] with

Ciy1 — Cj > di_1—d; >0

forall2 <i<n-—1.
(3) €2 (R) < a-[cy, +dn_1 — a], where the equality holds true if and only if n = 2.
(4) a(grn(R)) =cpn+dp—1 —s.

Sections 5 is devoted to some examples, which illustrate our theorems. Let
H = (ni,n2,n3) be a Gorenstein numerical semigroup generated by the three
integers nj,ng,n3, where 0 < ny < ng < ng and GCD(nj,ng,n3) = 1. Let
S = k[[X1, X2, X3]] and T = E[[t]] be formal power series rings over a field k. We
denote by ¢ : S — T the k-algebra map defined by p(X;) = " for i = 1,2,3. Let
I =Kerp, R=FEk[[t",t"2,t"]], n= (X1, Xo, X3)S, and m = (¢",¢"2 ¢"3)R. Then,
as was essentially shown in [H2] and [RV], gr,,(R) is a Cohen-Macaulay ring if and
only if I* is 3-generated. We shall recover this result in our context. In Example
5.5, we present a family of examples due to Takahumi Shibuta that demonstrates
that for I = Ker ¢ as above, there is no bound on the number of elements needed

to generate I*.

2. PRELIMINARIES

Throughout this section, let notation be as in Setting 1.1, assume that dim .S = 2

and let n = (z,y).

Lemma 2.1. Let h € S with m = o(h) and assume that * t h*. Then h = ey™ +zp
for some € € U(S) and ¢ € n™ 1.
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Proof. Let S = S/(x) and denote by * the image in S. Let £ = o(h). Then £ > m
and h = -7 for some ¢ € U(S). We write h = ey’ + xp with ¢ € S. Then

¢ € n™ 1 because (z) Nn™ = zn™"1. Hence { = m, as z* { h*. -

Lemma 2.2. There exist elements x,y,u, and g1 € S satisfying the following con-
ditions.

(1) n=(z,y) and x* 1 f*.
(2) ue U(S), o(g1) =b—1, and g = uy’*f +zg1

Proof. Let n = (x,y). Then, since k = S/n is infinite, we have z* + cy* { f* and
x* + cy* 1 g* for some ¢ € k. Let c = a mod n (o € S) and z = = + ay. Then

n = (z,y). Because z* { f* and z* { g*, by Lemma 2.1, we have

f=ey®+2z£ and g:Tyb—l—zn

for some e, 7 € U(S), £ € n® 1, and n € n®~L. Let g1 = n — uy®~ ¢ where u = 71

Then g = uy®~°f + zg1 and o(g1) = b— 1, because g; € n’~! and f* { g*. Replacing

x with z, we get the required elements x,y,u, and g; € S as claimed. d

In what follows let x,y,u, and g; € S be elements which satisfy conditions (1)

and (2) in Lemma 2.2. We put I} = (f,g1), X = 2z*, and Y = y*.

Proposition 2.3. The following assertions hold true.

([K]) Suppose that b > 1. Then Iy is a parameter ideal in S and I* =
(f*)+ XI}. Hence I* :q X = I}.

Proof. (1) Since g = uy®~°f + xg1, we get I = (f,zg1), whence zI; C I. Let
¢ €I :gx and write zp = af + B(zg1) (o, 8 € S). Then (¢ — Bg1) € (f) so that
¢ — Bg1 € (f), because f,x is a regular sequence in S (recall that = { f). Hence
v € (f,g1) =1 and thus [ :g z = I.

(2) Recall that ¢g* = u*Y =% f* + Xgi.

(3) This is clear, since X 1 f*.

(4) We have a = 1, since a < b. Hence o(g;) = 0 and o(f mod (z)) = 1 (cf.
Proof of Lemma 2.1), so that we have I = (f,zg1) = (f,z) = n.
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(5) Since b > 1, we get I C I; € S. Hence I; is a parameter ideal of S. Let
i > a—1 be an integer. Then, thanks to Proof of [K, Lemma|, we see that for every k
-basis Wi, W, --- , W, of [I];, the elements Y= f* XW; XWs,--- , XW, form
a k-basis of [I*];+1. Consequently, [I*];11 C (f*) + X1} C I* (recall that «I; C I),
whence I* = (f*) + X I, because [[*]; = (0) for i <a — 1. As f*, X is a G-regular
sequence, we have the equality I* :¢ X = I similarly as in the proof of assertion
(1). O

Corollary 2.4. Suppose that b > 1. Then H(G/I*,\) = Z?;OI N+ N-H(G/ITN).

Proof. Notice that (X, f*)/I* = (X, f*)/[(f*) + XIi] = (X)/XI} = (G/I})(-1),
because (X) N (f*) = (X f*) and f* € If. Then we get the exact sequence

0— (G/I))(-1) = G/I" - G/(X,f*) =0
of graded G-modules, so that
H(G/I*,\) = H(G/(X, f*),\) +XH(G/I{,\)

a—1
= > N+ MH(G/I}, N
i=0
as claimed. O

The following fact plays a key role in our argument.

Corollary 2.5. Suppose that b > 1. Let n = pg(I*) and ¢ = pa(I7y).

(1) Suppose that a < b. Then n = { and, for every homogeneous system
{nihi<i<n of generators of I with n1 = f* and n2 = gf, we have I* =
(f%,9%) + (Xns | 3 < < n).

(2) Suppose that a = b and ¢ 1 f*. Then n = £ and, for every homogeneous
system {m;}1<i<n of generators of I with n1 = g7 and n2 = f*, we have
' = (f,9") + (Xmi | 3 <i < n).

(3) Suppose that a = b but g7 | f*. Then n = £+ 1. Choose fi € S so
that o(f1) > a, I1 = (q1, f1), and g7 1 ff. Then, for every homogeneous
system {n; }1<i<n—1 of generators of I{ with m1 = g§ and ny = f{, we have
= (f9") + (Xmi |2 i <n—1).

Proof. (1) By Proposition 2.3 (2) we have f*{ gj. Let {n;}1<i</ be a homogeneous
system of generators of I{ with m; = f* and 2 = gj. Then, because I* = (f*)+ X I
and (f*,g%) = (f*, Xg7) (cf. Proposition 2.3, (2) and (5)), we have I* = (f*, Xn2)+
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(Xn; | 3 <1 <. To see that n = ¢, we shall check that f* Xno, Xns,---, Xny
is a minimal system of generators of I*. Since f* ¢ (X), it suffices to show that
Xn ¢ (f)+ (Xmoy-- , Xmi—1, Xnig1,- -+, Xmp) for any 2 < ¢ < £. Assume the
contrary and write Xn; = "¢ + 3 5y ;2 Xnjp; With ¢, ¢; € G. Then X[n; —
> a<i<riziNiil € (f*). Because f*, X form a G-regular sequence, we get 7; €
(f*)+ (m2,- -+ ,mi—1,Mi+1," - - Me), which is impossible (recall that f* = ny,n2, -+,
is a minimal system of generators of I7). Thus n = /.

(2) Let {n;}1<i<¢ be a homogeneous system of generators of I7 with n; = gf and
ny = f*. Then I" = (f*, Xm )+ (Xn; | 3 < i < {). For the same reason as in the
proof of assertion (1), f*, Xn, Xns, -+, Xnp is a minimal system of generators of
I* and we get n = £.

(3) Let {n; }1<i<¢ be a homogeneous system of generators of I such that n; = ¢}
and ny = fy. Then I" = (f*,Xm)+ (Xm | 2 < i < ). We want to show
that f*, Xn, Xno, -+, Xn, is a minimal system of generators of I*. Let 1 <
i < £ and assume that Xn; € (f*) + (Xm, -, Xni—1, Xnit1,--- Xne). Then
Xni — D 1<j<oj2iniwi]l € (f*) for some p; € G, so that we have n; € (f*) +
(M- smim1s i1, me). IE @ =1, then m = g7 € (f*) + (n2,m3,--- ,me). Since
deg f* = a > deg gy = a — 1, this forces n1 € (n2,m3,- - ,m¢), which is impossible.

Hence ¢ > 1. Then, because n; | f*, we have n; € (91, ,Mi—1,Mit1," - ,M¢), which
is absurd. Thus f*, Xny, Xno, -, X1 constitute a minimal system of generators
of I* and son=1/¢+1. O

We close this section with the following.

Proposition 2.6. Let P = k[X,Y] be the polynomial ring in two variables X,Y
over a field k. Let J be a graded ideal of P with up(J) =n and vJ = (X,Y). Let
{& }1<i<nbe a homogeneous system of generators of J and set D; = GCD(&1,&2,- -+ , &)
for 1 <i<mn. IfdegD; > degDys1 and - € (5,8, §) for all 1 < i <
n — 1, then the Hilbert series H(P/J,\) = Y22, dimy[P/J);\" of P/J is given by
the formula

Z?:Z )\deg Di(l _ )\deg D;_1—deg Di)(l _ )\deggﬁdeg Di)

H(P/J,\) = T

In particular,

; : m ym—i(] _ \3(i—1)
H(G/(XPY™ 1 [0 < i <m—1),\) = 2=i=2 : (_ . AD)

for all 2 <m € Z.
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Proof. If n = 2, then &,& is a P-regular sequence and we get H(P/J,\) =
(1—xdeg€1)(1—\deg2)
(1-x)2

Let D = Dy_1. Then J C (D,¢&,) and D, &, form a P-regular sequence (recall that
GCD(D,§,) = 1). We write § = Dn; (1 <i<mn—1)andput K = (5 | 1 <

. Suppose that n > 2 and that our assertion holds true for n — 1.

i <n—1). Then ¢, = f)—’; € (%,%,--- ,5"51) = K and so pup(K) = n — 1, since
J = DK + (&,). Let E; = GCD(n1,7m2,--+,n;). Then D; = DE; so that we have
deg E; > deg E; 1 and gi—fl = gi—i € (%11’167_27;"“ ’%) = (%,g—i, ’%1) for all

1 <¢ < n — 2. Therefore, thanks to the exact sequence
0— (P/K)(—degD) - P/J — P/(D,&,) =0

of graded P-modules (recall that (D,¢&,)/J = (D,&,)/[DK + (&,)] = (D)/[DK +
(D)N(én)] = (D)/DK = (P/K)(—deg D), since (D) N (&n) = (D&n) and &, € (K))
and the hypothesis of induction on n, we get

H(P/J,\) = H(P/(D,&,),\) + 28D . H(P/K,\)
(1 _ )\degD)(l _ )\deg{n)

(1—A)?
N N\deg D, 2?2—21 \deg Ei(l _ )\deg E; 1 —deg Ez)(l — )\degmi—deg EZ)
(1-=A)?
2?22 )\deg‘Di(l _ )\degDiflfdegDi)(l _ )\deg&fdegDi)
B TESYE
as claimed.
For the last assertion, let & = X3(~DY™~ for 1 <i < m. Then D; = Y™ % and
% = X361 for all 1 < ¢ < m. Hence
H(G/(X?nym—z—l ‘ 0 S i S m— 1)’)\) _ 2212)\ ( )\)( A )
(1=X)?
22"12 Am—i(] )\3(i—1))

3. PROOF OF THEOREMS 1.2 AND 1.3

Proof of Theorem 1.2. Assume that Theorem 1.2 fails to hold and choose the
ideal I so that a = o(I) := sup{i € Z | I C n'} is as small as possible among
the counterexamples. We furthermore choose our ideal I so that b = o(g) is the
smallest among the counterexamples I with o(/) = a. Then n > 2, whence b > 1

(Proposition 2.3 (4)). Choose elements z,y,u, and g; € S so that conditions (1)
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and (2) in Lemma 2.2 are satisfied and put I; = (f, g1). We then have the following
three cases: (i) a < b, (ii) a = b and g7 1 f*, and (iii) a = b but g7 | f*.

Suppose that case (i) occurs. Then ug(I7) = n (cf. Corollary 2.5). Since o(I;) =
a but o(¢g1) = b — 1, we may choose a minimal homogeneous system {7; }1<;<pn of

generators of I] so that

(1) m = f* and nz = gf,
(2) degn; +2 < degn;+1 for all 2 <i<mn—1, and
(3) htG(T]]_,T]Q, U 777n71) - ]-

Then, thanks to Corollary 2.5 (1), we get I* = (f*,¢*) + (Xns3, -+, Xn,). Letting
&= f* & =g and & = Xn; (3 <i < n), we certainly have conditions (1) and
(2) in Theorem 1.2, because degg; = b —1 < degns — 2. Since (£1,&2,- -+ ,&n-1) =
(f9)+ &, 1) = (fF, XgT) + (X3, -+, Xnin—1) € (m1,m2) + (035 5 Mn—1),
we get htg(&1,&2, -+ ,&n—1) = 1. Thus case (i) cannot occur.

Suppose case (ii) occurs. Then pug(I7) = n. Since o(l;) = a — 1, we may choose
a minimal homogeneous system {n; }1<;<p of generators of I so that

(1) m = g7 and n2 = f*,

(2) degm; +2 < degmy1 forall 2 <i<n-—1, and

(3) hta(n,m2, -+, Mp—1) = L.
Then I* = (f*,g*)+(Xns, -+, Xny,) by Corollary 2.5 (2). Let & = f*, £ = g%, and
& =Xn; (3<i<n). Then degls =b=a and degés = degns + 1 > degns +3 =
a + 3, so that conditions (1) and (2) in Theorem 1.2 are safely satisfied for the
family {&}1<i<n. Since (1,82, ,&n—1) = (", 9%) + (&, &n1) = (", Xg7) +
(&3, ,&n—1) € (m1,m2,*+ ,Mn—1), we also have condition (3) in Theorem 1.2 to be
satisfied. Hence case (ii) cannot occur.

Thus we have case (iii). Hence ug(Iy) = n — 1. We choose f; € S so that
o(fi) = a1 > a, I = (g1, f1), and ¢7 1 ff. Because o(l1) =a—1 < a = o(I), we
may choose a minimal homogeneous system {7; }1<i<n—1 of generators of I} so that

(1) m = g7 and n2 = fT,

(2) degm; +2 < degm;y1 for all 2 <i<n-—2, and

(3) hte(m,me, - ,n—2) = 1.
Then I* = (f*,¢*) + (Xn2, Xn3, -, Xnp—1). Let & = f*, & = g%, and & =
Xn;—1 for 3 < i < n. Because degny = a1 > a, we have degés > a + 2, so that
conditions (1) and (2) in Theorem 1.2 are satisfied for the family {&;}1<i<p. Since
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(f*?g*) + (53"" ,gn—l) = (f*?Xgik) + (§3a"' ’gn—l) - (gT) + (772"" ann—Q) =
(m,m2,- - ,Mn—2) (recall that g | f*), we also have condition (3). This is absurd
and thus Theorem 1.2 holds true.

Discussion 3.1. Let &1,&,--- ,&, be a homogeneous system of generators for I*

which satisfies conditions (1) and (2) in Theorem 1.2. Let ¢; = deg; for 1 < i < n,

and let G4 = ) .., G;. We then have {c1,c2,-- ,cp} ={i € Z | [I*/G-I"]; # (0)},
whence the degree sequence (c1, ca, - - , ¢,) is independent of the choice of {&; }1<i<n.
Because £ = f*, & = g%, and g = a < ¢ =b < ¢3 < -+ < ¢y, the ideals

(&1,&2,--+,&) (1 <i<n)G also do not depend on the choice of {& }1<i<n. We put
D; = GCD(&,&2,-+- ,&)and d; =deg D; (1 <1i <n). (Hence D1 =& and D,, = 1.)
Since the ideal (§1,82,- -+ ,€&n—1) is independent of the choice of {;}1<i<n, we have
condition (3) in Theorem 1.2 that htg(&1,&2, - ,&n—1) = 1 is always satisfied for
every homogeneous system of generators {&;}1<i<, of I* which satisfies conditions
(1) and (2) of Theorem 1.2. Similarly, the fact whether gi—i € (%li, %, e ,%) or
not does not depend on the particular choice of a homogeneous system {&;}1<;<y, of

generators of I* which satisfies conditions (1) and (2) in Theorem 1.2.

Lemma 3.2. With notation as in Discussion 3.1, the following assertions hold true.
(1) d;i > di+1 cmalgi—“1 € (1%—1,1%—2,--- ,D)forall1<z<n—1
(2) ¢iq1—¢i >di1—d; >0 forall2<i<n-—1.
(3) ¢ —|—dn1>d21—|—cz—d for all 2 <i < mn.
(4) ¢ —1>a+b.

Proof. Assume that Lemma 3.2 is false and choose an ideal I so that a = o(l) =
sup{i € Z | I C n'} is as small as possible among the counterexamples. We further-
more choose the ideal I so that b = o(g) is the smallest among the counterexamples
I with o(f) = a. Then b > 1, since n > 2. Let z,y,u, and g; € S be elements which
satisfy conditions (1) and (2) in Lemma 2.2. We put I1 = (f, g1). Then we have the
following three cases: (i) a < b, (ii) a = b and g7 1 f*, and (iii) a = b but ¢7 | f*. For
case (i) we have f*{ g7 and for case (iii) we have some fi € S with o(f1) =a1 > a
such that It = (g1, f1) and ¢7 1 f{. In any case, because the value a or the value b
for Iy is less than that for I, Lemma 3.2 holds true for the ideal I3. In what follows,
we shall establish a contradiction by showing (i),(ii), and (iii) cannot occur.
Suppose that case (i) occurs. Then ug(If) = n. Let {n;}1<i<n be a homogeneous

system of generators of I7 such that n; = f*, 72 = g, and degn; + 2 < degn;41
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for 2 < i < n—1. Then Lemma 3.2 holds true for the family {n;}i1<i<, and by

Corollary 2.5 we have
I =(f%9") + (Xns, -, X))

Let & = f*, & = g%, and & = Xn; (3 < i < n). Then the homogeneous system
{&}1<i<n of generators of I* satisfies conditions (1) and (2) in Theorem 1.2. We put
¢, = degn;, D; = GCD(n1,m2,- -+ ,n;), and d, = deg D;. Then, because (£1,&2) =
(f*9%) = (f*,Xg7) = (m,Xn2) and X t f*, we have D; = D, for all 1 < i < n,
while ) = a = ¢; and ¢, = ¢; — 1 for all 2 <4 < n. Consequently, assertions (2),
(3), (4), and the former part of assertion (1) in Lemma 3.2 are safely deduced from

those on the ideal I;. Let us check that g",—i € (%, %, e ,%). Since D1 = &1,

we may assume ¢ > 2. First of all, recall that gi,—:ll € (H 5, 7) and we

X1 o (e, Xm oo Xmy (&L b2
Dit1 D;’> D; > > D, D;’> D;>

(&1,&2,- -+ ,&). Hence Lg)ii—i € (%li, %"" ,g—ii) as &+1 = Xni+1. Thus case (i) does

have ,%), because (n1, X1, -+, Xn;) =
not occur.

Suppose case (ii). Then pg(Iy) = n. Let {n;}1<i<n be a homogeneous system
of generators of I such that 71 = ¢f, n2 = f*, and degn; + 2 < degn;y; for all
2<i<n-—1. Then I* = (f*, g*) + (Xns3, -+, Xn,) by Corollary 2.5. Let & = f*,
& = g, and & = Xn; for 3 < i < n. Then {&}1<i<n is a homogeneous system
of generators of I* which satisfies conditions (1) and (2) in Theorem 1.2. We put
¢, = degn;, D} = GCD(n1,m2,- - ,mi), and d} = deg D} for each 1 < i < n. Then
dd=a—-1=c¢c—-1¢ =a=c, and ¢, = ¢ —1for 3 <i < n. Because
X f £ and (61,6) = (F,9) = (m, Xm), we get D} =y = gf and D! = D;
for 2 < i <n. Henced; =a—-1=d —1andd, = d; forall 2 < i < n.
Consequently, it is direct to check that assertions (2), (3), (4), and the former part

of assertion (1) hold true for the ideal I. Let us show E)ii—i S (g—li, %21,, e ,%) for
all 1 <¢<n—1. We may assume ¢ > 2. Because gi—:ll (%li, ?7_27;’ e ,g—ii), we have
Xn; Xm X Xn; Xn; o .

#:6(51171)2277DTZ)g(%)+(%|1§]§Za]#2):(%7%775_1)
(use the fact (£1,&2) = (&1, Xm1)). Hence S:l € (%,%,~~~ ,fp—i) as §iy1 = Xnit1.

Thus case (ii) does not occur.

Now we consider case (iii). We have ug(If) = n—1. Let f; € S such that o(f1) =
a1 > a, Iy = (g1, f1), and ¢7 1 f;. Choose a homogeneous system {n; }1<ij<n—1 of
generators for I{ so that m1 = ¢, n2 = f{, and degn; + 2 < degmn;11 for all
2<i<n—2. ThenI* = (f*, g")+(Xno, -, Xnn_1). Weput & = f*, £, = ¢*, and
& = Xmi—1 for 3 <i <n—1. Then the homogeneous system {; }1<i<y, of generators
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of I* satisfies conditions (1) and (2) in Theorem 1.2. Let D, = GCD(n1,m2,- -+, m),
d; = deg D}, and ¢, = degmn; for each 1 < i < n —1. Then D, = D;yq for 1 <
i < n—1 (recall that g7 | f* and (€1,6) = (f*,9%) = (%, Xg}) = (f*, Xm)).
Hence ¢f =a—-1=¢1-1,¢ =c¢p1—1for 2 <i<n-1,and d, = dit1
for 1 < i < n — 1. Consequently, assertions (2), (3), (4), and the former part of
assertion (1) hold true (use the fact that ¢c3 = a1 +1 > a+ 2, d; = a — 1, and
¢n > a+2). Let us check the latter part of assertion (1). We may assume i > 2.
- ni Xni o (ff X Xni
Then, since g—; (D’Zil DTZ:,--- ,D;jl), we get Tzl € (E’Tnil"" ;= +)- Hence

gi—fl € (%,%,--- ,%), because &1+1 = Xn; and (f*, Xn1) = (£1,&2). Thus even

case (iii) cannot occur. We conclude that Lemma 3.2 holds true. O

Proof of Theorem 1.3. Items (1) and (3) follow from Proposition 2.6 and Lemma
3.2.
For items (2) and (4), since

n di—1—d;—1 ci—d;i—1
H(gra(R),\) = > A% > M) D) V)
=2 7=0 7=0

and lg(R) = dimy gr,(R), we readily get £5(R) = > 5(dim1 — di)(c;i — d;) =
cres + 300 dil(civ1 — ¢) = (dim1 — di)] = ab + 375 di-[(civn — &) — (i1 — d3)]-
We have ¢s(R) = ab if and only if n = 2, because (¢;+1 — ¢;) — (di—1 — d;) > 0 for all
2 <i<n-—1by Lemma 3.2 (2). Since I* = (f*,¢*) if and only if n = 2, we have

ls(R) = ab if and only if f*, g* form a regular sequence in G.

Corollary 3.3. Assume notation as in Theorem 1.3, and let
a(grn(R)) = max{i € Z | [grn(R)]; # (0)}. The following assertions hold true.

(1) a(gra(R)) =cn +dp—1 — 2.
(2) ls(R) < a'len +dn—1 —a].
(3) €s(R) = a'[cn + dn—1 — a] if and only if n = 2.

Proof. Since a(gr,,(R)) = degH(gr,,(R), ), thanks to Theorem 1.3 (1), we have
a(gr,(R)) = max{d; + (di—1 —d;— 1)+ (c; —d;—1) | 2 < i < n}. Hence a(gr,(R)) =
¢n + dp—1 — 2 by Lemma 3.2 (3). Because dj —1=a—1>d; forall2<i<n-1
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and ¢, + dp—1 > a+ b by Lemma 3.2 (1), (4), we get by Theorem 1.3 (2) that

|
—_

n

gg(R) ab + (CL - 1) : [(Ci+1 - Ci) - (di,1 — dl)]

IN
||
I\

= ab+ (a— 1)[lcn +dn—1— (a+ )]
= afep+dn—1—a] —[cn+dn_1— (a+D)

< aey +dp—1 —al.

If the equality ¢s(R) = a+[¢, + dn—1 — a] holds true, then ¢, + d,,—1 — (a + b) = 0,
so that ¢g(S/I) = a‘[cy, + d—1 — a] = ab, whence n = 2. Since ¢; = b and d; = aq,
we certainly have ¢s(R) = a(c, + dp—1 — a) if n = 2. This completes the proof of
Corollary 3.3. g

Suppose that htg(f*,g*) = 1. Let D = GCD(f*,¢*) and d = deg D. We write
f*=D¢and g* = Dnpwith&,n € G. Then b > a > d > 0 and by [GHK, Proposition
2.2] we may choose h = af + B¢ with a, 3 € S so that o(a) =b—d, o(8) = a —d,
and h* ¢ (f* g*). We call such an element h* the third generator of I*. We put
¢ = o(h). With this notation we have the following.

Corollary 3.4. Suppose that htg(f*,9*) = 1 and hte(f*, g*,h*) = 2. Then the

following assertions hold true.

2% (1=)\¢ d(1_ya—d\(1_ \b—d
(2) H(gr, (R),\) = 1=290=2 )+(A1fi)2x )(A=AT)

(3) 2 (R) = ab+ d-[(c+ d) — (a +b)].

Proof. For each 3 < i < n, let & = h;t% where h; € I with o(h;) = ¢;. We write h; =
a; f+Big with a;, 3; € S. Then o(«;) > b—d and o(h;) > o(h)+[o(a;)—(b—d)] > o(h)
(cf. [GHK, Proposition 2.4 (1)]). Let h* = >"7" , &; with ¢; € Ge—,. Then, since
h* ¢ (f*,9%) = (&1,&2), we have ¢ —¢; > 0 for some 3 < ¢ < n. Hence ¢ > ¢; > ¢3, so
that ¢ = c3, because c3 > c+[o(a3)—(b—d)] > ¢. We furthermore have o(ag) = b—d,
whence, thanks to [GHK, Proposition 2.4 (3)], we get (f*, ¢*,&3) = (f*, 9%, h*). Thus
n = 3 by Theorem 1.2 (3), because htg(f*, g*, h*) = 2 by our assumption, so that
I = (&1,62,83) = (f*, g%, h") as claimed. Assertions (2) and (3) now readily follow
from Theorem 1.3 (1) and (2). O
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Remark 3.5. With notation as in Setting 1.1, it follows from Part (1) of Lemma
3.2 that there exists a strictly descending chain

ISERS) &1 & & &1 &2 En—1
0 0.2 Dy by 00 2 B By Do

of height-two ideals of G. In particular, I* is contained in the ideal (5—12, E—Z)G. This
behavior fails to hold in general in the higher dimensional case. The leading ideal of

)G D I*

a complete intersection of height two in a three-dimensional regular local ring may

fail to have this property as is demonstrated by Example 1.6 of [GHK].

4. PROOF OF THEOREMS 1.5 AND 1.6

The goal of this section is to prove Theorems 1.5, and 1.6 and deduce several

consequences of these theorems. We use the following lemma.

Lemma 4.1. Assume notation as in Setting 1.1. Let 0 # h € n and m = o(h). Let
X1,Xo, -+, Xs—1 € G be a linear system of parameters for the graded ring G/(h*)
and write X; = x; with x; € n. Then x1,%2,--- ,xs—1 5 a part of a reqular system
of parameters of S and for all 1 < £ < s — 1, we have o(h) = m, where h denotes

the image of h in S = S/(x1,22, -+ ,2¢).

Proof. Since X7, Xo,:--, X1 are algebraically independent over k, the elements
1,29, -+ ,2s—1 form a part of a regular system of parameters in S. If
hen™ 4z, 29, ,xy),
then since (x1, 2, -+ ,z¢) 0™ = (z1,22, - ,27) W1, we get
hen™ f(zy,z9,-- ) n™ L.

Thus h* € (X1, X9, -+, Xy), which is impossible, because X7, Xs,--- , Xy, h* forms

a regular sequence in G. Hence o(h) = m as claimed. O

Proof of Theorem 1.5. By Corollary 3.4, we may assume that dimS = s > 2.
Choose X1, Xo,--- ,Xs_ 1 € Gy so that Xy, X5, -+, Xs_1 is a homogeneous system
of parameters for the graded rings G/(f*), G/(¢9*), G/(h*), G/(a*), G/(5*), and
G/(D) and X1, X5, -+, Xs_2 is a homogeneous system of parameters for the graded
rings G/(f*,9*,h*), G/(&,n), and gr,(R). For each ¢ with 1 < i < s — 1, choose
x; € nsuch that 7 = X;. Then z1,z2, -+ ,z,_1 form a part of a regular system
of parameters for S. Let q = (21,72, -+, 25 2)S. We put S = S/q, 1 = n/q, and

I = (f,g), where overline denotes image in S. Notice that qR is a minimal reduction



16 SHIRO GOTO, WILLIAM HEINZER, AND MEE-KYOUNG KIM

of m. Thus I + q is a parameter ideal for S and T = (f,§)S is a parameter ideal in
the regular local ring S of dimension 2. Lemma 4.1 implies that o(f) = a, o(g) = b
and o(h) = c.

Let Q = (X1, Xo,... ,Xs—2)G. We prove that the following diagram is commu-

tative: B
S —_ S/q:=S

o | o

G :=gr,(S) —— G/Q =G = grg(9).
Here ¢; and @5 denote the canonical maps associating an element with its leading
form in the associated graded ring, and the identification G = grz(S) is because
Q@ is the leading ideal in G of the ideal q of S. We denote with a tilde the image
in G/Q of elements and ideals of G. Since X1, Xs,--+ , Xs_2,&,n is a homogeneous
system of parameters in G, E, 7 is a homogeneous system of parameters in G/Q.
Thus GCD(,7) = 1, and D = GCD(}’V*,gN*). Since o(f) = o(f), we have =7
Similarly, g* = g* and h* =h". We have I* C T". Moreover, I* =T if and only
if Xq,...,Xs_9 is a regular sequence on G/I*. Thus I* =T if and only if I* is a
perfect ideal of G.

We furthermore have the following.

Claim 4.2. The following assertions hold true.
(1) F 13" in grz(S).

(2) o(@) =b—d, o(B) = a—d, and o(h) = c.
(3) 1" ¢ (F,9).
Thus h" is the third generator of T  in gr(S).

Proof of Claim 4.2. (1) Suppose that 7 | g*. Then, via the identification G/Q =
grz(S), we have g* € (f*) + Q. Let us write g* = f*o + 3572 X,¢; with ¢, ¢; € G.
Then, since f* = D¢ and ¢* = Dn, we have D(n — &p) € Q. Hence n — &p € Q,
because X1, Xo, -+, Xs_2, D is a regular sequence in G. Thus n € Q + (§), which is
impossible, because X1, Xo, -, X5_9,&,n is a G-regular sequence. Hence ?* 17"

(2) See Lemma 4.1

(3) We have h* € (&,n) (JGHK, Remark 2.3]; recall that h € (o, 3)). Write
h* =& + mp with ¢, € G. Then

* ok *\ SD_Q;[)D
(fag7h)_:[2<£ n 0)7
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so that (f*, g*, h*) is a perfect ideal with pg(f*, g*, h*) = 3, since ht(f*, ¢*,h*) = 2.
Therefore G/(f*, g*, h*) is a Cohen-Macaulay ring, whence X1, Xo,- -+ , X5_o form a
regular sequence in G/(f*,g*,h*). Thus b ¢ (f*,g*), because Hgr_(3) (F, 7%, 0") =

n

3. i

Therefore I = (7*,§*,E*) by Corollary 3.4, because 1" is the third generator of
T" in gry(S) with ht, (s (F*,9*,h") = 2. We now look at the estimation ():

(r(R/qR) = t(S/T) = dimygra(S)/(f, 7" 1)
dimy, G/[Q + (f*, 9%, h")]
> dimy G/[Q + I*]

= dimy gry,(R)/Qern(R)

> &g, (1) (&Tm(R))

= en(R)

(r(R/qR),

since qR is a minimal reduction of m. Thus gr,,(R) = G/I* is Cohen-Macaulay,
since dimy, gr,(R)/Qgrn(R) = e%grm(R) (gr,(R)) (cf. estimation (%)), and so the
sequence X1, Xo, -+, Xs_o is gry, (R)-regular. Hence I'* = (f*, g*, h*), because Q +
(f*,9",h*)=Q+ I" and Q N I* = QI*. We furthermore have that

H(grz(S)/(F ", 7% 7). \)
(1= N2 !

H(gry(R),A) =
whence
(1 =2 (1 =A%) + X1 — A=) (1 — \b=9)
(1=
by Corollary 3.4. Thus ) (R) = ab+d-[(c+d) — (a+b)] as claimed. This completes

H(gry,(R),A) =

the proof of Theorem 1.5. O

Remark 4.3. Without the assumption in Theorem 1.5 that ht(f*, ¢*,h*) = 2, it
is still possible to specialize via q and @) to obtain }‘v* = 7*, g* = g* and D =
GCD(?;, E“) However, =R may fail to be a minimal generator of I as we

demonstrate in Example 4.4.

Example 4.4. Let S = Ek[[z,y, ]| be the formal power series ring in the three
variables x,y, z over a field k, and let X,Y, Z denote the leading forms of x,y, 2z
in G = gr,(S) = k[X,Y,Z]. As in [GHK, Example 1.6], let I = (f,g), where

f=22—2%and g = 2z — 3. Thus R = S/I is a complete intersection of dimension
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one. We have I* = (Z%,ZX,ZY3,Y%)G. We consider several choices for an element
w € n'\ n? and behavior of the specialization S — S/wS = S. Since dim G/I* = 1
and I* is not a perfect ideal, one always has the strict inequality I *G C (I19)*.
(1) Let w = x. Then S = k[[y, 2]], f = 2% and g = —y3. We have
I'G = (2%,2Y3 Y9G C (IS)* = (22, Y®)k[Y, Z).
The multiplicity of G/I* is 6 as is the multiplicity of grg(S)/(IS)*. The
Hilbert series for G/I* is
L+22+ A2+ A3+ X0
1—A
while the Hilbert series for gry(S)/(IS)* is
S T+2X+ 2224+ 23
H(grg(8)/(18)",3) = -0 20 E A
The multiplicity of G /I *G is 9, and the Hilbert series for G /1 *G s

14+2X 4202 4203 4 X1 4+ )°
1-X '
(2) Let w = x — y and use this to eliminate x. Then S = k[[y, 2]], f = 2% — ¢°

H(G/I*G,\) =

and g = zy — y>. We have
I'G = (22,2Y,Y%G C (IS)" = (2%, ZY,Y®)k]Y, Z).

The multiplicity and Hilbert series of G/I* are as given in part (1). The
multiplicity of grg(S)/(IS)* is 6, while the multiplicity of G /I *G is 7. The
Hilbert series of grg(S)/(1S5)* is
S L+2X+ A2+ A%+ M
while the Hilbert series of G/I*G is
LH2A+ A2+ X+ A4 N0
1-X '

H(G/I*G,\) =

Example 4.5. Let S = k|[z,y, z,u|] be the formal power series ring in the four
variables x,y,z,u over a field k, and let X,Y,Z, U denote the leading forms of
z,y,z,u in G = gry(S) = k[X,Y,Z,U]. Let I = (f,g)S, where f = zy and
g =xz+u3. Thus R = S/I is a complete intersection of dimension two. It can be
seen directly, and also is a consequence of Theorem 1.5, that I* = (XY, XZ, YU?)G.
Since I'* is a perfect ideal and dim G/I* = 2, it is possible to choose @ = (X1, X2)G,
the leading form ideal of q = (z1,22)S such that I* = I". We illustrate how to

successively choose x1 and 5.
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(1) Let #;1 = y — u and use this to eliminate u. Thus S = k[[x,y,2]], f = zy
and § = zz + y3. We have
I'G = (XY, XZ,YHG = (IS)" = (XY, X Z,YHK[X,Y, Z].

We now apply the process again:
(2) Let x5 = z — = and use this to eliminate z. Thus S = k[[z,y]], f = zy and
g =22 + 3> We have
I'G = (XY, X2, YHG = (IS)" = (XY, X2, YHk[X,Y].

The numerator polynomial of the Hilbert series in each case is 142t +12 +¢3.
We record the following corollary to Theorem 1.5.

Corollary 4.6. Assume notation as in Setting 1.1 and Remark 1.4. If D := Dy is
a prime element of G that is regular on G/(&,n), then u(I*) =3 and I* is perfect.

Proof. 1t suffices to show that GCD(f*, g*, h*) = 1. If this fails, then

h* e (D)n (& n) = (D&, Dn) = (f*,97),

a contradiction to the assumption that h* is the third generator of I*. O

Example 4.7. Let S = Ek[[z,y, z]] be the formal power series ring in the three
variables z,y, z over a field k. Let f = zy’ + 2° and g = x27, where s > i+ 1 and i

and j are positive. By Corollary 4.6, u(I*) = 3 and I* is perfect.

We use Lemma 4.1 and Theorem 1.2 to establish in Theorem 4.8 conditions on
the degrees of a minimal homogeneous system of generators for I* in the case where

I* is perfect.

Theorem 4.8. Assume notation as in Setting 1.1 and Remark 1.4. If gr,(R) is
a Cohen-Macaulay ring and n = pg(I*), then there exist homogeneous elements
{&it1<i<n of G such that

(1) I" = (1,82, ,&n),

(2) &= f" and & = g,

(3) deg&; +2<deg&1 forall2<i<n-—1, and
(4) htg (1,82, ,€n—1) = L.

Proof. By Theorem 1.2, we may assume s > 2. If n = 2, then I* = (f*, g*) and there
is nothing to prove. Assume n > 2 and let D = GCD(f*, g*). We write f* = D¢
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and ¢g* = Dn; hence £,7n is a G-regular sequence. We choose, similarly as in the
proof of Theorem 1.5, the elements X, X, -+ ,Xs-1 € G1 so that {X;}i<i<s—1
is a homogeneous system of parameters for the rings G/(f*),G/(g9*), and G/(D)
and {X;}1<i<s—2 is a homogeneous system of parameters for the rings G/(&,n) and
grn(R). Let z; € n with X; = 27, Weputq= (z; | 1 <i <s-2), S = 9/q,
n=n/q, and I = (f,g), where f and g respectively denote the images of f and g
in S. Then f~ 17* (cf. Proof of Claim 4.2 (1)). The sequence X1, Xo, -, X5 is
regular in the ring gr,,(R), because gr,,(R) is Cohen-Macaulay. We identify

grs(S) =G/Q and T = [I" +Q/Q,

where @ = (X; | 1 <i < s—2). Therefore, since I’Lgrﬁg(f*) = pg(I*) = n, thanks to
Theorem 1.2, the ideal T contains a homogeneous system {n; }1<i<, of generators
which satisfies the conditions

(1) m = F and o = g,

(2) degm; +2 < degmiy1 forall 2 <i<n-—1, and

(3) htgrﬁ(g)(m |1<i<n-1)=1
Thus, taking & € I* to be a preimage of 7;, we readily get a homogeneous system
{&}1<i<n of generators of I* which satisfies conditions (2) and (3) in Theorem 4.8.

Let us check condition (4) is also satisfied. Assume the contrary and rechoose the

system {X; }1<i<s—1 so that {X;}1<i<s_2 is also a homogeneous system of parameters
for the ring G/(& | 1 <4 < n — 1) of dimension s — 2. Let & denote the image of &;
in G/Q. Then {&}1<;<, constitutes a minimal homogeneous system of generators
of I" = [I* + Q]/Q with deg&; < deg& for all 2 < i < n — 1. Consequently,
even though we do not necessarily have 7; = & (1 < i < n) for the second choice of
{Xi}i<i<s—1, we still have (n; | 1 <i<n—1) = (& |1<i<n-—1), because the
ideals {(n; | 1 < j < i)}hi<i<n of grz(S) are independent of the choice of minimal
homogeneous systems {n; }1<i<n, of generators of T" which satisfy the condition that
m=f,mn =g" and degnm; +2 < degn;+1 for all 2 < ¢ < n — 1. This is however
impossible, since ht,_g (i | 1 <i <n—1) =1 while dimG/[Q + (& | 1 <7 <
n—1)] =0. Thus htg(& |1 <i<n—1) =1 as claimed. O

Proof of Theorem 1.6. Assume that gr,, (R) is a Cohen-Macaulay ring and let
{&}1<i<n be a homogeneous system of generators of I* which satisfies conditions (2)
and (3) in Theorem 4.8. Let Xy, X, -+, X o € G and write X; = z} with z; € n.
Weput q= (7; | 1<i<s—-2),8=S8/q,a=n/q,and I = (f,g), where f and g
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respectively denote the images of f and g in S. We put Q = (X; | 1 <i < s—2).
Then, choosing {X;}1<i<s—2 to be sufficiently general, we may assume that

(1) {X;}1<i<s—2 is a homogeneous system of parameters for gr,,(R), so that S

is a regular local ring of dimension 2 with the parameter ideal I, and

(2) D; = GCD(&;, &, -+ ,&) forall 1 < i < m,
where D; and Ez respectively denote the image of D; and ¢; in G/Q = grz(S). Then
the minimal homogeneous system {Ei}lgign of generators of the ideal I* =T in
G/Q = gry(9) satisfies conditions (1) and (2) in Theorem 1.2. We have
H(grs(5)/T", \)

(1—X)s—2 7

because Xj, Xo, -+, X 9 form a regular sequence in gr,(R). The assertions in

H(gro(R),A) =

Theorem 1.6 readily follow from this. O

Question 4.9. With notation as in Setting 1.1 and Remark 1.4, if I* is perfect,
does it follow that I* C (£1/Da,&2/D2)G?

5. EXAMPLES WITH pug(I*) =3 AND WITH GIVEN pg(I*)

Let 0 < n; < mg < ng be integers such that GCD(ny,ng,n3) = 1 and let S =
E[[X1, X2, X3]] and T' = k[[t]] be the formal power series rings over a field k. We
denote by ¢ : S — T the k-algebra map defined by ¢(X;) = t" for i = 1,2,3. Let

I =Kerp, R=k[[t",t",¢"]], n = (X1, X2, X3)S, and m = (£"™,¢",t")R.

We then have the following, which is essentially due to J. Herzog [H2] (see p.191—
192) and L. Robbiano and G. Valla [RV]. Let us include a brief proof in our context

for the sake of completeness.

Theorem 5.1. Suppose that ps(I) = 2, namely, R is a Gorenstein ring. Then
gr.(R) is a Cohen-Macaulay ring if and only if the leading form ideal I* of I is
3-generated.

Proof. See [GHK, Theorem 1.2] for the proof of the if part. Suppose now that
gr.(R) is a Cohen-Macaulay ring. Let G = gr,(S), which we shall identify with
the polynomial ring k[X;, X2, X3] over k. We will show that pug(I*) < 3. Since
us(I) = 2, as for the system of generators of I we distinguish the following four

cases ([H1]):
(1) 1= (X~ XZ, X5 — X),
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(2) I=(X3?—X5*, X' — X512 X3"8) (s12 > 0,813 > 0),

(3) I = (X" — X33, X5% — X7 X3%) (s21 > 0,593 > 0), and

(4) I = (X7 — X357, X3° — X7*1 X5) (s31 > 0,832 > 0)
where ¢; =min{0 < c € Z | 0 # X{— X" X532 X3® € I for some 0 < aj, a2, 03 € Z}.
For cases (1), (3), and (4), the ideal I+ (X}) is generated by monomials in X7, X, X3
and so, thanks to [H2, Theorem 1], we have pg(I*) = us(l) = 2, once gry,(R) is a

Cohen-Macaulay ring. We are now concentrated in case (2), where
I = (X202 _ ngqul _ X512X§13)

for some integers s12 > 0 and si3 > 0. Then ¢; = (ng,n3), no = cic3, and ng = c1co
([H1]); hence c3 < co. We write s13 = c3q + s} with integers g, s}; such that

0 < ¢q,0 < si3 < c3 and put s}, = caq + s12. Then
s15 =0 or c1+c3— sig > ca+ s,

because gr,,(R) is a Cohen-Macaulay ring (see [H2, p.192]). Let f = X5* — X35°
and g = X% — X312X313. Then I = (f, g), since g = X% — X2 X3 mod (f). If
shs = 0, then ¢g* = X' if ¢1 < sy, ¢* = X' — X;lm if ¢; = §),, and ¢g* = —XQS/12
if ¢; > s}5. Since f* = —X5* (recall that ¢3 < ¢2), in any case the forms f*,g*
constitute a regular sequence in G, so that we have I'* = (f*, ¢g*).

Assume that s3> 0. Then ¢g* = —XQSIHX;I”’, since ¢; — (s]y + s13) > c2 —c3 > 0.
We put = X512 f + X& g = X0 XS0 _ X2 Let J = (£*, g% h*) C I*,
Then

-Gt g g —n (5, )
X5 X$T

/ / / / ‘1 C2 3/13
(resp. J = (X101X§3*S13 _ X§2+512,X;12X§13,X§3) =1, <X1 X2 X3 ))

7 i
X2512 X§3 513 0
if ¢1 + ¢35 — s > co + s}, (resp. ¢1 + ¢35 — si5 = c2 + s],). We now want to show

I* = J. For this purpose we firstly look at the exact sequence
0—1I"/J — G/J — gr,(R) — 0.

Then, since a = t™ is a minimal reduction of the ideal m, the element X; € G acts
on the Cohen-Macaulay ring gr,, (R) as a non-zerodivisor, whence we have the exact

sequence

0 — (I*/J)/X1(I*/T) = G/[(X1) + J] = grw j(a) (R/(a)) — 0.
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Therefore, to show I* = J, by Nakayama’s lemma it is enough to check that ¢ is an

isomorphism, or equivalently, to check that
dimy, G/[(X1) + J] < dimy gry, o) (R/(a)).
We have
dimy, gry, /(a)(R/(a)) = Lr(R/(a)) = e} (R) = ny
and ny = c3s), + e85 (recall that nic; = nas), +nssis, na = cics, and ngz = cicp).

On the other hand, since
G/[(X1) + J) = K[Xa, X3]/ (X522, X512 X318, X52),

we readily get dimy G/[(X1) + J] < c3(ca + sh9) — ca(cs — sh3) = c3s]y + casis = 0.
Hence I* = J so that we have pug(I*) = 3 as claimed. O

Corollary 5.2 (to the proof). Assume that ps(I) = 2. Then pg(I*) = 3 if and
only if there exist integers o, 3 € Z such that 0 < a,0 < B < ¢3,¢1 +¢3 > o +
(a+B), and I = (X5* — X3*, X7' — XZO‘XL?). When this is the case, we have
¢1 = GCD(ng,n3),ny = c1c3,n3 = c1c2,n1 = csa + co3, and the leading form ideal
I* of I is given by

c c c
ifci+c3>ca+ (a+0) (resp. c1 +cz3=ca+ (a+0) ).

Remark 5.3. This result classifies Gorenstein numerical semigroups H = (n1,na, ns)
generated by 3 integers nis with 0 < n; < ng < ng and GCD(ny,na,ng) = 1, for
which the associated graded rings gr,(R) (R = k[[t",t"2,t™]],k a field) are non-
Gorenstein Cohen-Macaulay rings. In fact, firstly we choose integers cs,c3 so that
2 < ¢3 < c2 and GCD(cg,c3) = 1. Let «, 3 be integers such that 0 < «,0 < 8 < ¢3
and put ny = c3a + co3. We choose an integer ¢; so that ¢; > Z—;, GCD(ny,c1) =1,
and ¢; + ¢c3 > c2 + (o + (). Lastly let nos = cje3 and ng = cyca. Then for
H = (n1,n2,n3) we easily get the equality
I= (X5 - X5° X{' - X§XY)

and ¢; = min{0 < c € Z |0 # X{ — X{" X532 X35% € I for some 0 < oy, a0,a3 € Z}
as well for each ¢ = 1,2,3. Hence by Corollary 5.2 the ring gr,,(R) is a non-
Gorenstein Cohen-Macaulay ring. Let f = X3* — X5°, g = X7' — Xg‘Xg, and
h=X0X53P _ xgete (= Xgf + X5 Pg). Then, since ¢ > ¢3 and ¢ — (a4 8) >
co —c3 > 0, we have f* = —X35* and ¢* = —XQCVX?’? whence GCD(f*, g*) = Xg,
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while h* = =X (resp. h* = X0 X5 P — X824 if ¢1 + 3 > o + (a + ) (resp.
c1 + c3 = co2 + (a+ 3)), which is the third generator of I*. Hence
(1 — 22T (1 = A8) + NP1 — A =P)(1 — \%)

TSy
and e (R) = cs(a+ B) + Bl{(c2 + a) + B} — {c3 + (a + B)}] = csa + 28 = ny by
Theorem 1.5.

H(gri(R),A) =

Let us note more concrete examples.

Example 5.4. (1) Let ¢ > 0 be an integer and put n; = 6¢+5, ny = 2(3¢+4), and
nsg = 3(3q +4). Then, letting co = 3,c3 =2, =3¢+ 1, =1, and ¢; = 3¢ + 4, by

X3 X
Corollary 5.2 and Remark 5.3 we get I* = I 391+1 2 % ). If we take q=20,
X, X3 0

then ny = 5,n9 = 8, ng = 12.
(2) Similarly, let ¢ > 0 be an integer and put ny = 6q + 5, no = 2(3¢ + 3), and
ng = 3(3¢ + 3). Then, letting co = 3,c3 =2, =3¢+ 1, =1, and ¢; = 3¢+ 3, by

Xé)’qﬂ X, 0) If we take ¢ = 0,

then n; = 5,n9 = 6,n3 = 9, which is [GHK, Example 1.5].

Corollary 5.2 and Remark 5.3 we get I* = I (

We close this section with an example due to Takahumi Shibuta (Kyusyu Uni-
versity). His example shows that, unless gr,(R) is Cohen-Macaulay, we do not

necessarily have the descending sequence
a=dy>dy >+ >dp_1>d,=0

of degrees of GCD’s of /s even for a minimal homogeneous system {&;}1<;<pn of

generators of I* which satisfies the conditions in Theorem 4.8.

Example 5.5. Let 2 < m € Z and put ny = 3m,ny = 3m + 1, and ng = 6m + 3.
Then I = (X — X' X3 — X1X3) in S and I* = (X1X3) + (X5'X3"7" | 0 <
i < m)in G = k[X;1,Xo, X3] with pg(I*) = m + 2. Letting & = X;X3 and
& = X;’(i_mX;)”_i+2 for 2 < i < m 4+ 2, we see that the minimal homogeneous
system {& }i1<i<m+2 of generators of I* satisfies the conditions in Theorem 4.8,
while GCD(&1,&2,- -+ ,&) = X3 for 2 <i <m+ 1. We have
D D D DD WP

1—A ’
Proof. Tt is routine to check that I = (X! — X X3 — X, X3)S. Hence we
have X; X3, X' € I*. Let h; = X7+ — X3iXI"" for 1 < i < m. We put
J = (X1X3) + (XFXI" | 0<i<m)inG Then h; € I for all 1 < i < m,

H(gry(R),A) =
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whence J C I*. Let K = (X1) + (X3'X5"" 1 |0 < i <m—1)in G. Then
VK =G = (X1, X2,X3), J :¢ X3 = K, and (X3)+.J = (X3™, X3). Consequently,
H%(G/J) = (X3), where X3 is the image of X3 in G/J and H%,(G/J) denotes the
02 local cohomology module of G/J with respect to N = G.. Hence

m—1

(0):grg N =) kXFIXT,
i=1

because (X3) = [G/K](—1) and the k-vector space (0) :q/x N is spanned by the
images of { X3 X"} cicmo1.

Let 0 : G/[J + (X3)] — grp(R)/HY (grn(R)) be the epimorphism induced from
the canonical epimorphism G — gr,,(R). Recall that X; is a parameter for the ring
gr (R), since 3™ is a minimal reduction of m, so that X is a non-zerodivisor in the
Cohen-Macaulay ring m = gr(R)/HY (grm(R)). Hence 6 is an isomorphism,
because dimy G/[J + (X1, X3)] = 3m and

dimy, gre, (R)/[HY (g1m(R)) + X181 (R)] = %5 (r)(81m(R))
= Spr(r) (@m(R))
= en(R)

= 3m.

Therefore, the kernel of the epimorphism 6 : G/J — gr,(R) induced from the
canonical epimorphism G — gr,,(R) is contained in (X3) = H%(G/J) and so, to see
that 6 is an isomorphism, it suffices to show that 6 is injective on the socle

m—1

(0):gg N=> kX3 x5
i=1
of G/J, that is, it is enough to show O(X3" 1 XJ"~*) # 0 in gry,(R) for any 1 < i <
m — 1, because the degrees of X23i_1X§n_i are distinct.

Let x = t"™,y = t"2, and z = t". We put U = k[z,y,2| in R. Hence U is a
graded ring with degz = nj,degy = ng, and deg z = n3. Let M = Uy = (z,y, 2)U.
We denote by U; the homogeneous component of U of degree i. In what follows we
will show that y3 12"~ ¢ m™*2 for any 1 < i < m — 1. Assume that y3 12" ¢
m™*2 or equivalently, assume that y3~12m~% € M™*2 for some 1 < i < m — 1.

Then we have the following.

Claim 5.6. >~ 1277 € M™%+ for all 0 < £ < m —i.
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Proof of Claim 5.6. When ¢ = 0, we have nothing to prove. Assume that 0 < ¢ <
m — i and that our assertion holds true for £. We put 6 = (3i — 1)ny + (m — i)ng =
6m? + 3mi — 1. Then 0 = y3i-1zm—i g pmA2itl — S mA2itl g, ym+2itl—a o gy
U. Take 0 < o € Z and assume that m — ¢ — ¢ < a < m + 2i + £. Then

(z,y)™ T2 — (Py72% | 0 < B,y € Z such that §+~v =m+ 2 + £ — a).
We now choose 0 < 3,v € Z so that f+v = m+2i+£—a and put n = Bni+yns+ans.
Then

n > (B+7v)n1+ ans

3(m+2i+ £ — a)m+ a(6m + 3)
= 3m? + 6mi + 3ml + 3ma + 3a

AV

6m? +3mi +3(m —i—£) (since a >m —i— )
6m” + 3mi

v

§ = 6m? + 3mi — 1.

Vv

Consequently, 0 € > i—t= 1( )Mt e We write 0 = ZZZS'*H Paz®

with @, € (z,y)™ 2+~ such that ¢, € Us_qn,- Let us furthermore write ¢, =

Zm+21+é a m+2i+l—a—0

wa,ﬁ'wﬁy with Wa,5 € Ué—ang—(5n1+(m+2i+€—a—6)n2' Then,

f0<a<m—i1—£—1, choosing 0 < g8,y € Z with 8+~ =m+ 2i+ £ — a, we have

Bny +yna+ang = 3mB+ (3m+ 1)y + ans

IN

Bm +1)(8+7) + a(6m + 3)
3m? +m + 6mi + 2i + 3¢m + £ + 3ma + 2«

IN

6m? +3mi — £ —2 (sincea <m—i—{—1)

§ = 6m>* 4+ 3mi — 1,

N

whence Bni + yna < § — anz. Consequently, w, g € M for each o and 3, so that
0o € M™MH2iH—at] for all 0 < o < m —i — £ — 1, whence t° € M™MH2HAFL 55

claimed. g
Therefore t° € M?™ ¢ which is however impossible, because
Brni+na+7ng3 > (B+y+ 7)1 = (2m+1i)-3m
= 6m>+3mi>4

for all 0 < B,v,7 € Z with 8+ v+ 7 = 2m + 4. Thus the epimorphism 6 : G/J —

gr,(R) is injective on the socle of G/J, so that 6 is an isomorphism. Hence [* = J.



THE LEADING IDEAL OF A COMPLETE INTERSECTION
Because H% (G/I*) = (X3) & (G/K)(—1), thanks to the exact sequence
0= (G/K)(-1) = G/I* = G/(X3™,X3) = 0

of graded G-modules, we have
. 1 \3m
H(G/I*,\) = AH(G/K, \) + m
Therefore
Z?;Z )\mfiJrl(l _ )\3(1'71)) N 1 — )\3m
1-A (1—X)2
S AmTHL S A2 g X
1-A
by Proposition 2.6, since G/K = k[X2, X3]/(X3' X510 <i<m—1).

H(grm(R)v )‘) =
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