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In this mainly expository article we describe a technique, dating back at least to
the 1930s, which uses power series, homomorphic images and intersections involving
a Noetherian integral domain R and a homomorphic image S of a power series ring
extension of R to obtain a new integral domain A. Here A has the form A := L∩ S,
where L is a field between the fraction field of R and the total quotient ring of

S. We give in certain circumstances necessary and sufficient conditions for A to be
computable as a nested union of subrings of a specific form. We also prove that
the Noetherian property for the associated nested union is equivalent to a flatness
condition. We present several examples where this flatness condition holds, and other
examples where it fails to hold. In the first case this produces a Noetherian integral
domain and in the second case a non-Noetherian domain.

1. Introduction.

Over the past sixty years, important examples of Noetherian integral domains

have been constructed using power series, homomorphic images and intersections.

The basic idea is to start with a typical Noetherian integral domain R such as

a polynomial ring in several indeterminates over a field and to look for unusual

Noetherian and non-Noetherian extension rings inside a homomorphic image S of

an ideal-adic completion R∗ of R. The constructed ring A has the form A := L∩S,

where L is a field between the fraction field of R and the total quotient ring of S.

(The elements of R∗ are power series with coefficients in R.)

Several of our objectives are:

(1) To construct new examples of nontrivial Noetherian and non-Noetherian

integral domains; this continues a tradition going back to Akizuki in the

1930s and Nagata in the 1950s,
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(2) To study birational extensions (i.e., extensions inside the field of fractions)

of a Noetherian local domain R; this is related to the work of Zariski going

back to the 1930s and 1940s on the problem of local uniformization along a

valuation domain birationally dominating R,

(3) To consider the generic fiber1 of the map R → R∗, where R∗ is an ideal-

adic completion of the Noetherian domain R, and investigate connections

between this fiber and birational extensions of R.

These objectives form a complete circle, since (3) is used to accomplish (1).

The development of this technique to create new rings from well-known ones goes

back to the work of Akizuki in [A] and Nagata in [N1] and has been continued by

Ferrand-Raynaud[FR], Rotthaus [R1],[R2], Ogoma [O1], [O2], Brodmann-Rotthaus

[BR1], [BR2], Heitmann [H1], Weston [W], and the authors [HRW1], . . . , [HRW5]

to produce a wide variety of Noetherian rings. In the work of Akizuki, Nagata

and Rotthaus (and indeed in most of the papers cited above) the description of the

constructed ring A as an intersection is not explicitly stated. Instead A is defined

as a direct limit or nested union of subrings.

The fact that in certain circumstances the intersection domain A is computable

as a nested union is important to the development of this technique; if this holds

one may view A from two different perspectives. In general there is a natural direct

limit domain B associated with A. We examine conditions for A to be equal to

B. This motivates our formulation of limit-intersecting properties in [HRW2, (2.5)]

and [HRW3, (5.1)](see Section 5.2).

A primary goal of our study is to determine for a given R, S and L whether

A := L∩S is Noetherian. An important observation related to this goal is that the

Noetherian property for the associated direct limit ring B is equivalent to a flatness

condition [HRW2, Theorem 2.12], [HRW5, Theorem 3.2] (see Section 4.5).

It took about a page for Nagata [N2, page 210] to establish the Noetherian

property of Example 3.1, and the original proof of the Noetherian property of the

example of Rotthaus described in Example 3.3 is about 7 pages [R1, pages 112-

118]. As noted in [HRW2, Remark 3.4], the Noetherian results of [HRW2] and

[HRW5] described in Section 4.5 gives the Noetherian property in these examples

1The generic fiber is the fiber over the prime ideal (0) of R. Thus if U = R − (0), then the

generic fiber of the map R → R∗ is the ring U−1R∗.
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more quickly.

2. Elementary examples.

We begin by illustrating the construction with several examples. In these exam-

ples R is a polynomial ring over the field Q of rational numbers.

In the one-dimensional case the situation is fairly well understood:

Example 2.1. Let y be a variable over Q, let R := Q[y], and let L be a subfield of

the field of fractions Q(Q[[y]]) of Q[[y]] such that Q(y) ⊆ L. Then the intersection

domain A = L ∩ Q[[y]] is a rank-one discrete valuation domain (DVR) with y-adic

completion A∗ = Q[[y]]. For example, if we work with our favorite transcendental

function and put L = Q(y, ey), then A is a DVR having residue field Q and field of

fractions L of transcendence degree 2 over Q.

The integral domain A of Example 2.1 is perhaps the simplest example of a

local Noetherian domain on an algebraic function field L/Q of two variables that is

not essentially finitely generated over Q, i.e., A is not the localization of a finitely

generated Q-algebra. However A does have a nice description as an infinite nested

union of localized polynomial rings in 2 variables over Q. Thus in a certain sense

there is a good description of the elements of the intersection domain A in this case.

The two-dimensional (two variable) case is more interesting. The following the-

orem of Valabrega [V] is useful in considering this case.

Theorem. Let C be a DVR, let y be an indeterminate over C, and let L be a

subfield of Q(C[[y]]) such that Q(C)(y) ⊆ L. Then the integral domain D = L ∩

C[[y]] is a two-dimensional regular local domain having completion2 D̂ = Ĉ[[y]],

where Ĉ is the completion of C.

Applying Valabrega’s theorem, we see that the intersection domain is a two-

dimensional regular local domain with the “right” completion in the following two

examples:

Example 2.2. Let x and y be indeterminates over Q and let C = Q(x, ex)∩Q[[x]].

Then A1 := Q(x, ex, y) ∩ C[[y]] is a two-dimensional regular local domain having

completion Q[[x, y]].

2By the completion of a local ring, we mean the ideal-adic completion with respect to the

powers of its maximal ideal.
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Example 2.3. Let x and y be indeterminates over Q and let C = Q(x, ex)∩Q[[x]]

as in Example 2.2. Then A2 := Q(x, y, ex, ey) ∩ C[[y]] is a two dimensional regular

local domain having completion Q[[x, y]].

There is a significant difference, however, between the integral domains A1 of

Example 2.2 and A2 of Example 2.3. As is shown in [HRW3, Section 2], the 2-

dimensional regular local domain A1 of Example 2.2 is, in a natural way, a nested

union of 3-dimensional regular local domains. It is possible therefore to describe

A1 rather explicitly. On the other hand, the 2-dimensional regular local domain A2

of Example 2.3 contains, for example, the element (ex − ey)/(x − y). As discussed

in [HRW3, Section 2], the associated nested union domain B naturally associated

with A2 is 3-dimensional and non-Noetherian.

Remark 2.4. It is shown in [HRW1, Theorem 3.9] that if we go outside the range of

Valabrega’s theorem, that is, if we take more general subfields L of Q(Q[[x, y]]) such

that Q(x, y) ⊆ L, then the intersection domain A = L∩Q[[x, y]] can be, depending

on L, a localized polynomial ring in n ≥ 3 variables over Q or even a localized

polynomial ring in infinitely many variables over Q. In particular A = L∩Q[[x, y]]

need not be Noetherian.

3. Historical examples.

A Noetherian local domain R is said to be analytically irreducible if its completion

R̂ is again an integral domain. Related to singularities of algebraic curves, there

are classical examples of one-dimensional local Notherian domains R such that R̂

is not an integral domain, i.e., R is analytically reducible. For example, let X and

Y be variables over Q and let R = Q[X, Y ](X,Y )/(X2 − Y 2 − Y 3). Then R is a

one-dimensional Noetherian local domain since the polynomial X2 − Y 2 − Y 3 is

irreducible in the polynomial ring Q[X, Y ]. Let x and y denote the images in R

of X and Y , respectively. Then R̂ is also the y-adic completion of R and is equal

to R∗ = Q[X][[Y ]]/(X2 − Y 2((1 + Y )). Since (1 + Y )1/2 ∈ Q[[Y ]], we see that

X2 − Y 2(1 + Y ) factors in Q[X][[Y ]] as (X − Y (1 + Y )1/2) · (X + Y (1 + Y )1/2).

Thus R∗ is not an integral domain.

In this example, the integral domain R is not normal or equivalently, integrally

closed. That is, there are monic polynomials in the polynomial ring R[Z] that have

roots in the fraction field of R that are not in R. For example, the polynomial
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Z2 − (1 + y) ∈ R[Z] has x/y as a root.

If R is a normal one-dimensional Noetherian local domain, then R is a rank-one

discrete valuation domain (DVR) and it is well-known that the completion of R is

again a DVR. Thus R is analytically irreducible.

Zariski showed (cf. [ZS, pages 313-320]) that the normal Noetherian local do-

mains that occur in algebraic geometry are analytically normal, i.e., the completion

of such a domain is again a normal domain. In particular, the normal local domains

occuring in algebraic geometry are analytically irreducible.

This motivated the question of whether there exists a normal Noetherian local

domain for which the completion is not a domain. Nagata produced such examples.

He also pinpointed sufficient conditions for a normal Noetherian local domain to

be analytically irreducible [N, (37.8)].

In Example 3.1, we present a special case of a construction of Nagata [N2, Ex-

ample 7, pages 209-211] of a 2-dimensional normal Noetherian local domain that is

analytically reducible.

Example 3.1 (Nagata). Let x and y be algebraically independent over Q and

let R be the localized polynomial ring R = Q[x, y](x,y). Then the completion of R

is R̂ = Q[[x, y]]. Let α ∈ yQ[[y]] be an element that is transcendental over Q(x, y),

e.g., α = ey − 1. Let ρ = x + α. Now define3 A := Q(x, y, ρ2)∩Q[[x, y]]. Then A is

Noetherian (in fact a 2-dimensional regular local domain4). Moreover ρ2 is a prime

element of A, so if D := (A[z]/(z2 − ρ2))(x,y,z), then D is an integral domain. As

is shown by Nagata, D is, in fact, a normal Noetherian local domain. The element

z2, however, factors as a square in D̂: z2 = (x + α)2 in D̂. Thus D has completion

D̂ = Q[[x, y, z]]/(z − (x + α))(z + (x + α)) which is not an integral domain.

Remark 3.2. The two-dimensional regular local domain A of Example 3.1 has a

principal prime ideal ρ2A that factors in Â = Q[[x, y]] as the square of the prime

element ρ of Â. Therefore the map A → Â = Q[[x, y]] is not a regular morphism.5

3The original definition by Nagata is in terms of a nested union of subrings. He then proves
that this nested union is Noetherian with completion Q[[x, y]]. It then follows that the nested
union is an intersection as defined here.

4This example constructed by Nagata (historically) is the first occurence of a 2-dimensional
regular local domain containing a field of characteristic zero that fails to be pseudo-geometric. As
such, the example fails to satisfy one of the conditions in the definition of an excellent ring. For
the definition and information on excellent rings see [M1, Chapter 13], [M2, Section 32] and [R4].

5A homomorphism φ : S → T of Noetherian rings is said to be regular if it is flat with

geometrically regular fibers [M2, page 255].
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The existence of examples such as the normal Noetherian local domain D of

Example 3.1 naturally motivated the question: Is a pseudo-geometric domain (in

the terminology of Grothendieck, a universally Japanese domain; in that of Mat-

sumura, a Nagata domain) necessarily excellent? It was shown by Rotthaus in [R1]

that pseudo-geometric domains need not be excellent.

In Example 3.3, we present a special case of the construction of Rotthaus [R1]

of a 3-dimensional regular local domain A such that the formal fibers of A are

geometrically reduced, but are not geometrically regular. The integral domain A is

pseudo-geometric but is not excellent.

Example 3.3 (Rotthaus). Let x, y, z be algebraically independent over Q and let

R be the localized polynomial ring R = Q[x, y, z](x,y,z). Let τ1 =
∑∞

i=1 aiy
i ∈ Q[[y]]

and τ2 =
∑∞

i=1 biy
i ∈ Q[[y]] be power series such that y, τ1, τ2 are algebraically

independent over Q, for example, τ1 = ey − 1 and τ2 = ey2

− 1. Let u := x + τ1

and v := z + τ2. Define6 A := Q(x, y, z, uv) ∩ (Q[x, z](x,z)][[y]]). It is shown in

[R1] that A is Noetherian and that the completion of A is Â = Q[[x, y, z]], so A

is a 3-dimensional regular local domain. Since u, v are part of a regular system of

parameters of Â, it is clear that (u, v)Â is a prime ideal of height two. It is shown

in [R1], that (u, v)Â∩A = uvA. Thus uvA is a prime ideal and Â(u,v) bA/uvÂ(u,v) bA

is a non-regular formal fiber of A. Therefore A is not excellent.

4. Constructions, pictures and Noetherian results.

Let R be a Noetherian integral domain and let a ∈ R be a nonzero nonunit.

Then the a-adic completion of R is the ring R∗ := R[[y]]/(y− a) [N2, (17.5)]. Thus

the elements of R∗ are power series in a with coefficients in R, but without the

uniqueness of expression as power series that occurs in the formal power series ring

R[[y]].

We usually reserve the notation R̂ for the situation where R is a local ring with

maximal ideal m and R̂ is the m-adic completion of R. If m is generated by

elements a1, . . . , an, then R̂ is realizable by taking the a1-adic completion R∗
1 of

R, then the a2-adic completion R∗
2 of R∗

1, . . . , and then the an-adic completion of

R∗
n−1.

6In [R1] the example is constructed as a direct limit. The fact that it is Noetherian implies it

is also this intersection.
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Given a Noetherian domain R and a nonzero nonunit a ∈ R, there are two forms

of the construction associated with the a-adic completion R∗ of R. Thus there are

two methods for the construction.

Method 4.1. Suppose τ1, . . . , τs ∈ aR∗ are algebraically independent over the

fraction field Q(R) of R. Let L = Q(R)(τ1, . . . , τs), and define A := L ∩ R∗.

Method 4.2. Suppose I is an ideal of R∗ having the property that P ∩ R = (0)

for each P ∈ SpecR∗ that is associated to I. Define A := Q(R) ∩ (R∗/I).

The condition in (4.2), that P ∩ R = (0) for every prime ideal P of R∗ that

is associated to I implies that the fraction field Q(R) of R embeds in the total

quotient ring Q(R∗/I) of R∗/I. For then R → R∗/I is an injection and regular

elements of R remain regular as elements of R∗/I.

Pictures. Diagrams for these constructions are drawn below.

Q(R∗) R∗ Q(R∗/I)

R∗ L = Q(R)({τi}) R∗/I Q(R)

A = R∗ ∩ L A = (R∗/I) ∩ Q(R)

R R

(4.1) A := L ∩ R∗ (4.2) A := Q(R) ∩ (R∗/I)

Remark 4.3. The papers [HRW2] and [HRW3] feature the construction described

in (4.1) which realizes the intersection domain A := Q(R)(τ1, . . . , τs) ∩ R∗. The

construction given in (4.2) includes that given in (4.1) as a special case. To see

this, let R, a and R∗ be as in (4.1). Let t1, . . . , ts be indeterminates over R, define

S := R[t1, . . . , ts], let S∗ be the a-adic completion of S and let I denote the ideal

(t1 − τ1, . . . , ts − τs)R
∗. Consider the following diagram where λ is the R-algebra

isomomorphism that maps ti → τi for i = 1, . . . , s.
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(4.4)
S := R[t1, . . . , ts] −−−−→ D := Q(R)(t1, . . . , ts) ∩ (S∗/I) −−−−→ S∗/I

λ

y λ

y λ

y

R −−−−→ R[τ1, . . . , τs] −−−−→ A := Q(R)(τ1, . . . , τs) ∩ R∗ −−−−→ R∗.

Since λ maps D isomorphically onto A, we see that the construction given in (4.2)

includes as a special case that of (4.1).

4.5. Noetherian results. Suppose R is a Noetherian local domain and let the

notation be as in (4.1). We prove in [HRW2, Theorem 2.12]:

Theorem 4.5.1. The canonical map R[τ1, . . . , τs] → R∗[1/a] is flat if and only if

A is Noetherian and is a nested union of localized polynomial rings in s variables

over R as defined in Section 5.2 .

Later, in [HRW5], we prove an analogous result in the more general setting of

(4.2). With notation as in (4.2), we prove in [HRW5, Theorem 3.2]:

Theorem 4.5.2. The canonical map R → (R∗/I)[1/a] is flat if and only if A is

simultaneously Noetherian and a localization of a subring of R[1/a].

The proof of the more general result in the setting of (4.2) is actually shorter and

more direct than the earlier proof in [HRW2]. In [HRW5] and [HRW6] examples

are constructed of the form (4.2) that cannot be realized by means of (4.1).

5. Flatness, approximations and universality.

5.1. Flatness. The concept of flatness was introduced by Serre in the 1950’s in

an appendix to his paper [S]. Mumford writes in [Mu, page 424]: “The concept of

flatness is a riddle that comes out of algebra, but which technically is the answer

to many prayers.” An R-module M is flat over R if tensoring with M preserves

exactness of every exact sequence of R-modules. Equivalently, M is flat over R

if for every m1, . . . , mn ∈ M and a1, . . . , an ∈ R such that
∑

aimi = 0, there

exist for some integer k elements bij ∈ R and elements m′
1, . . . , m

′
k ∈ M such that

mi =
∑k

j=1 bijm
′
j for each i and

∑n
i=1 aibij = 0 for each j. A finitely generated

module over a local ring is flat if and only if it is free [M1, Proposition 3.G]. If S is

obtained as a localizaton of R, then S is flat as an R-module [M1, (3.D)]. If I is an

ideal of a Noetherian ring R, then the I-adic completion of R is flat over R [M1,



BUILDING NOETHERIAN INTEGRAL DOMAINS 9

Corollary 1, page 170]. Thus flatness is a property that holds for several standard

constructions for extensions of a Noetherian ring.

An important fact for the Noetherian results described in Section 4.5 is that

if φ : C → D is a flat homomorphism of rings, i.e., D is a flat C-module, then φ

satisfies the going-down theorem [M1, (5.D)]. This implies that for each P ∈ Spec D

the height of P in D is greater than or equal to the height of φ−1(P ) in C.

5.2. Approximations. Let R be a Noetherian integral domain with field of

fractions K, let a ∈ R be a nonzero nonunit, and let R∗ denote the a-adic completion

of R. Associated with the constructions described in (4.1) and (4.2) there are

subrings of the intersection domain A which approximate A.

In (4.1), the elements τ1, . . . τs ∈ aR∗ are algebraically independent over Q(R).

Hence U0 := R[τ1, . . . , τs] ⊆ A is a polynomial ring in s variables over R. Each

τi ∈ aR∗ has a representation τi =
∑∞

j=1 rija
j , where the rij ∈ R. For each

positive integer n, we associate with this representation of τi the n-th endpiece, τin =
∑∞

j=n+1 rija
j−n. Then Un := R[τ1n, . . . , τsn] is a polynomial ring in s variables over

R, and for each n we have a birational inclusion of polynomial rings Un ⊆ Un+1.

Since a is in the Jacobson radical of R∗ [M1, (24,B)], the localization Bn := (1 +

aUn)−1Un of Un is also a subring of A. We define U := ∪∞
n=1Un and B = ∪∞

n=1Bn,

and we say the construction (4.1) is limit-intersecting if B = A.

The limit-intersecting property depends on the choice of the elements τ1, . . . , τs ∈

aR∗. For example, if R is the localized polynomial ring k[a, y](a,y), s = 1 and

U0 = R[τ1], and if we define U ′
0 := R[yτ1, ], then Q(U0) = Q(U ′

0), so the intersecton

domain A = Q(U0) ∩ R∗ = Q(U ′
0) ∩ R∗. However the approximation domain B′

associated to U ′
0 is properly contained in the approximation domain B associated to

U0. Therefore B′ ( B ⊆ A and the limit-intersecting property fails for the element

yτ1.

For the construction (4.2), one no longer has an approximation of A by a nested

union of polynomial rings over R. Indeed, in (4.2) the extension R ⊆ A is birational.

However, there is an analogous approximation. We are given an ideal I of R∗ with

the property that P ∩ R = (0) for each P ∈ Ass(R∗/I). Let I := (σ1, . . . , σt)R
∗,

where each σi :=
∑∞

j=0 aija
j , and the aij ∈ R. We define σin, the nth frontpiece
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for σi, to be

σin :=
n∑

j=0

(aija
j)/an.

As an element of the total quotient ring of R∗/I, it is observed in [HRW5] that

the frontpiece σin is the negative of the nth endpiece of σi as defined in [HRW2,

(2.1)]; that is,

−σin =
∞∑

j=n+1

(aija
j)/an =

∞∑

j=n+1

aija
j−n (mod I).

It follows that σin ∈ K ∩ (R∗/I).

We define

Un := R[σ1n, . . . , σtn], and Bn := (1 + aUn)−1R[σ1n, . . . , σtn](σ1n,...,σtn),

where these rings are considered to be subrings of R∗/I.

Now σin = −aai,n+1 +aσi,n+1, and so R ⊆ U0 ⊆ · · ·Un ⊆ Un+1 and Bn ⊆ Bn+1.

Set

U := ∪∞
n=1Un, B := ∪∞

n=1Bn = (1 + aU)−1U, and A := K ∩ (R∗/I).

Again the fact that a is in the Jacobson radical of R∗ implies that B ⊆ A. We say

the construction (4.2) is limit-intersecting if B = A.

Remark 5.3. The following results about the nested union approximation of an

integral domain A constructed as in (4.2) are given in [HRW5]

(1) The definitions of B and U are independent of the choice of generators for

I, and the representation of the generators σi of I as power series in a.

(2) a(R∗/I) ∩ A = aA, a(R∗/I) ∩ U = aU, a(R∗/I) ∩ B = aB.

(3) U/anU = B/anB = A/anA = R∗/((an) + I). All the rings A, U , B have

the same a-adic completion, that is, A∗ = U∗ = B∗ = R∗/I.

(4) Ra = Ua, U = Ra ∩ B = Ra ∩ A and the fraction fields of R, U , B and A

are all equal to K.

(5) The rings U = Ra ∩ (R∗/I) and B = (1 + aU)−1U are uniquely determined

by a and the ideal I of R∗.

(6) If b ∈ B is a unit of A, then b is already a unit of B.

(7) We have the following diagram displaying the relationships among the rings.

Recall that B = (1 + aU)−1U .
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Q(R) Q(U) Q(B) Q(A)
⊆

−−−−→ Q(R∗/I)
x

x
x

x
x

R[1/a] U [1/a]
⊆

−−−−→ B[1/a]
⊆

−−−−→ A[1/a]
⊆

−−−−→ (R∗/I)[1/a]
x

x
x

x
x

R
⊆

−−−−→ U = ∪Un
⊆

−−−−→ B
⊆

−−−−→ A
⊆

−−−−→ R∗/I.

In connection with the flatness property, if U0 := R[τ1, . . . , τs] →֒ R∗[1/a] is

flat, then for each P ∈ Spec R∗[1/a] one has that htP ≥ ht(P ∩ U0). It is shown

in [HRW6, Theorem 2.2] that conversely this height inequality in certain contexts

implies flatness.

5.4. Universality. Let k be a field and let L/k be a finitely generated field

extension. A general question one may ask with regard to L/k is how to describe

those Noetherian local integral domains (A,n) such that k ⊆ A ⊆ L, A has fraction

field L and k is a coefficient field for A, i.e., the canonical map of A → A/n maps k

isomorphically onto A/n ? Given such a Noetherian local domain (A,n), it is easy

to find a Noetherian local domain (R,m) such that

(1) R contains k and has fraction field L,

(2) R is contained in A and mA = n,

(3) R is essentially finitely generated over k.

There is then a relationship between R and A that is realized by passing to

completions; the inclusion map R →֒ A extends to a surjective homomorphism

φ̂ : R̂ → Â of the m-adic completion R̂ of R onto the n-adic completion Â of A

[M2, Theorem 8.4, page 58]. If I = ker(φ̂), then L embeds in Q(R̂/I), the total

quotient ring of R̂/I and A = L∩(R̂/I). The following commutative diagram, where

the vertical maps are injections, displays the relationships among these rings:

(5.4.1)

R̂
φ̂

−−−−→ R̂/I ∼= Â −−−−→ Q(R̂/I)
x

x
x

k
⊆

−−−−→ R −−−−→ A := L ∩ (R̂/I) −−−−→ L .
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Summary 5.5.

(1) Every Noetherian local domain A whose fraction field L is finitely generated

over a coefficient field k has the form L ∩ (R̂/I) for a domain R which is

essentially finitely generated over k. That is, every such A is realizable as

the intersection of Q(R) with a homomorphic image of R̂.

(2) More generally, if we drop the assumption that R and A have the same

fraction field, then the above argument yields: Every Noetherian local do-

main A having a coefficient field k is realizable as L ∩ (R̂/I), where R is

a local domain essentially finitely generated over k and I is an ideal of its

completion R̂ having the property that P ∩R = (0) for each P ∈ Ass(R̂/I).

Remark 5.6. A drawback with (5.5) is that it is not true for each R, L, I as in

(5.5) that L∩ (R̂/I) is Noetherian (e.g, see part(4) of Remark 6.4 below). To make

the classification more satisfying an important goal is to identify the ideals I of R̂

and fields L such that L ∩ (R̂/I) is Noetherian.

In relation to Theorem 4.5.2, we display, in the following diagram, the inclusions

that are always flat:

Q(R) Q(U) Q(B) Q(A)
⊆

−−−−→ Q(R∗/I)

flat

x flat

x flat

x flat

x flat

x

R[1/a] U [1/a]
flat

−−−−→ B[1/a]
⊆

−−−−→ A[1/a]
⊆

−−−−→ (R∗/I)[1/a]

flat

x flat

x flat

x flat

x flat

x

R
⊆

−−−−→ U = ∪Un
flat

−−−−→ B
⊆

−−−−→ A
⊆

−−−−→ R∗/I.

On the other hand, (i) if B ( A, then B → A is not flat, and (ii) the inclusion

A ⊆ R∗/I is flat if and only if A is Noetherian.

6. Explicit constructions.

Using the flatness results described in Section 4.5, we formulate two methods

for the construction of explicit examples. The first of these methods uses the

construction technique of (4.1) while the second uses (4.2).

Method 6.1. Let k be a field, let a, y1, . . . , yn be variables over k, let R be the

localized polynomial ring R := k[a, y1, . . . , yn](a,y1,...,yn) and let m denote the max-

imal ideal of R. Let τ1, . . . , τs ∈ ak[[a]] be formal power series that are algebraically
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independent over k(a) and let D0 := R[τ1, . . . , τs](m,τ1,...,τs) be the associated lo-

calized polynomial ring over the field k in n + s + 1 variables. Observe that D0

is contained in the a-adic completion R∗ of R. It is readily seen that the map

D0 → R∗[1/a] is flat and that D := Q(D0) ∩ R∗ is the localized polynomial ring

V [y1, . . . , yn](a,y1,...,yn), where V := k(a, τ1, . . . , τs) ∩ k[[a]] is a DVR. Thus the

construction method of (4.1) gives a Noetherian limit-intersecting domain D.

We now investigate the construction of examples inside D. Let f1, . . . , fr be

elements of the maximal ideal of D0 that are algebraically independent over Q(R),

and let B0 := R[f1, . . . , fr](m,f1,...,fr) be the associated localized polynomial ring.

The inclusion map B0 →֒ D0 is an injective local R-algebra homomorphism.

Let A := Q(B0) ∩ R∗ and let B be the associated nested union domain. Then

B is Noetherian and B = A if and only if the map B0 → R∗[1/a] is flat. This

map factors as B0 → D0 → D0[1/a] → R∗[1/a] and the map D0 → R∗[1/a] is flat.

Therefore B is Noetherian (and so also B = A) if B0 → D0[1/a] is flat.

Since B0 and D0 are localized polynomial rings over a field, the nonflat locus

of the inclusion map B0 → D0 is closed [M2, Theorem 24.3] and is defined by the

ideal J := ∩{P ∈ Spec D0 : B0 → (D0)P is not flat }. Thus we have established

the following theorem.

Theorem 6.2. With the notation above, we have

(1) If JD0[1/a] = D0[1/a], then B is Noetherian.

(2) B is Noetherian if and only if JD[1/a] = D[1/a] if and only if JR∗[1/a] =

R∗[1/a].

Using again the factorization of B0 → R∗[1/a] through D0[1/a], Theorem 5.5 of

[HRW3] implies the following result.

Theorem 6.3. With the notation above, if ht(JD0[1/a]) > 1, then B = A.

Remark 6.4. With the notation of this section,

(1) If B is Noetherian, then B is a regular local ring.

(2) Example 3.1 of Nagata may be described by taking n = s = r = 1, y1 =

y, τ1 = τ , and f1 = f . Then R = k[a, y](a,y), D0 = k[a, y, τ ](a,y,τ), f =

(y+τ)2, and B0 = k[a, y, f ](a,y,f). The Noetherian property of B is implied

by the flatness property of the map B0 → D0[1/a]. In this case, D0 is
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actually a free B0-module with < 1, y + τ > as a free basis.

(3) Example 3.3 of Rotthaus may be described by taking n = s = 2, and r = 1.

Then R = k[a, y1, y2](a,y1,y2), D0 = R[τ1, τ2](m,τ1,τ2), f1 = (y1 + τ1)(y2 + τ2)

and B0 = R[f1](m,f1). Again the Noetherian property of B is implied by

the flatness property of the map B0 → D0[1/a].

(4) The following example is given in [HRW6, Section 4]. Let n = s = r = 2,

let f1 = (y1 + τ1)
2 and f2 = (y1 + τ1)(y2 + τ2). It is shown in [HRW6] for

this example that B ( A and that both A and B are non-Noetherian.

Method 6.5. Let k be a field, let a, y1, . . . , yn be variables over k, let R be the

localized polynomial ring R := k[a, y1, . . . , yn](a,y1,...,yn) and let m denote the max-

imal ideal of R. Let τ1, . . . , τs ∈ ak[[a]] be formal power series that are algebraically

independent over k(a) and let D0 := R[τ1, . . . , τs](m,τ1,...,τs) be the associated lo-

calized polynomial ring over the field k.

Assume that I is an ideal of D0 such that P ∩R = (0) for each P ∈ Ass(D0/I).

Let A := Q(R) ∩ (R∗/IR∗); then the a-adic completion of A is R∗/IR∗. Using

the frontpiece approximations of a generating set for I, it is shown in [HRW5,

Section 2] that there exists a quasilocal integral domain B = ∪∞
n=1Bn ⊆ A bira-

tionally dominating R such that the a-adic completion of B is R∗/IR∗. By [HRW5,

Theorem 3.2], R → (R∗/IR∗)[1/a] is flat if and only if B is Noetherian.

Since the map D0 → R∗[1/a] is flat, the map D0/I → (R∗/IR∗)[1/a] is flat.

Also the map R → (R∗/IR∗)[1/a] factors as R → (D0/I)[1/a] → (R∗/I)[1/a].

Thus R → (R∗/IR∗)[1/a] is flat if R → (D0/I)[1/a] is flat. Since R and D0/I := T

are essentially finitely generated over a field, the nonflat locus of the inclusion map

R → T is closed [M2, Theorem 24.3] and is defined by the ideal J := ∩{P ∈

Spec T : R → TP is not flat }. This yields the following theorem.

Theorem 6.6. With the notation above, if J(D0/I)[1/a] = (D0/I)[1/a], then B

is Noetherian

Remark 6.7. Let the notation be as in part(4) of Remark 6.4, so f1 = (y1 + τ1)
2

and f2 = (y1 + τ1)(y2 + τ2), and let I := (f1, f2)R
∗. In [HRW6, Section 4] it is

shown that C := Q(R) ∩ (R∗/I) is Noetherian and limit-intersecting. Indeed, it

is shown in [HRW6, Proposition 4.5] that C is a two-dimensional Noetherian local

domain for which the generic formal fiber is not Cohen-Macaulay.
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