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Abstract. We discuss relations between the catenary property and geometrically
normal formal fibers. We present for each integer n ≥ 2 an example of a catenary
Noetherian local integral domain of dimension n which has geometrically regular
formal fibers and is not universally catenary. These examples are obtained by means
of a construction developed in our previous articles which uses power series rings,
homomorphic images and intersections.

1 Introduction

We are happy to dedicate this paper to Shreeram S. Abhyankar in celebration
of his seventieth birthday. In his mathematical work Ram has opened up
many avenues. In the present paper we are pursuing one of these related to
power series and completions. 1

A Noetherian ring R is said to be catenary if, for every pair of comparable
prime ideals P ⊆ Q of R, every saturated chain of prime ideals from P to Q
has the same length [A, page 11]. The ring R is universally catenary if every
finitely generated R-algebra is catenary. A Noetherian local ring (R,m) with

m-adic completion R̂ has geometrically normal (respectively geometrically
regular) formal fibers if for each prime P of R and for each finite algebraic

extension k′ of the field k(P ) := RP /PRP , the ring R̂ ⊗R k(P ) ⊗k(P ) k
′ is

normal (respectively regular).

In this paper we investigate the catenary property in Noetherian local
rings having geometrically normal formal fibers. In Example 4.2 we apply a
technique from our earlier papers to construct, for each integer n ≥ 2, an
example of a catenary Noetherian local integral domain of dimension n with
geometrically regular formal fibers which is not universally catenary.

1 The authors would like to thank the National Science Foundation and the Na-
tional Security Agency for support for this research. In addition they are grateful
for the hospitality and cooperation of Michigan State, Nebraska and Purdue,
where several work sessions on this research were conducted.
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Let (R,m) be a Noetherian local ring. We denote the Henselization of R
by Rh. We say (R,m) is formally equidimensional, or in other terminology
quasi-unmixed, provided all the minimal primes of the m-adic completion
R̂ have the same dimension. A theorem of Ratliff (Theorem 2.1) which is
crucial for our work states that R is universally catenary if and only if R/p is
formally equidimensional for each minimal prime p of R [Ra, Theorem 2.6].

Section 2 of this paper contains several results concerning conditions for
a Noetherian local ring (R,m) to be universally catenary. First, Ratliff’s the-
orem leads to the observation (Proposition 2.2) that a Henselian Noetherian
local ring having geometrically normal formal fibers is universally catenary.

Suppose now that (R,m) is a Noetherian local integral domain having
geometrically normal formal fibers. It follows (Corollary 2.3) that Rh also has
geometrically normal formal fibers and thus by (2.2) is universally catenary;
moreover, if the derived normal ring R is local, then R is universally catenary.
In Theorem 2.6, we show R is universally catenary if and only if the set Γ is
empty, where

Γ := {W ∈ Spec(Rh) | dim(Rh/W ) < dim(R/(W ∩R))}.

We also observe that Γ has a “going down” property.
In Theorem 2.7 we prove for R as above that R is catenary but is not

universally catenary if and only if Γ is nonempty and each prime W in Γ has
dimension one. Thus, as we observe in Corollary 2.8, if R is catenary but not
universally catenary, this is signaled by the existence of dimension one mini-
mal primes of the m-adic completion R̂ of R. If R is catenary, each minimal
prime of R̂ having dimension different from dim(R) must have dimension
one.

In Section 3 we provide examples to illustrate the results of Section 2.
We apply a construction involving power series, homomorphic images and
intersections. The use of power series to construct interesting examples of
Noetherian integral domains has a rich history [Az], [BR1], [BR2], [H], [O1],
[O2], [R1], [R2], [R3]. We give a brief review of relevant notation and results
from our earlier papers describing this technique [HRW1], [HRW2], [HRW3],
[HRW4]. The construction begins with a Noetherian domain which may be
taken to be a “standard” Noetherian domain such as a polynomial ring in
several indeterminates over a field. In Theorem 3.6 we extend this construc-
tion by proving that in certain circumstances it is possible to transfer the
flatness, Noetherian and computability properties of integral domains as-
sociated with ideals I1, . . . , In to the integral domain associated with their
intersection I = I1 ∩ · · · ∩ In.

We apply these concepts in Examples 4.1 - 4.3 to produce Noetherian
local domains which are not universally catenary. In Remark 4.4, we specifiy
precisely which of these rings are catenary. These domains illustrate the re-
sults of Section 2, because in Section 5 we prove that they have geometrically
regular formal fibers.



Catenary local rings 3

The books of Matsumura [M1], [M2] and the book of Nagata [N2] are
good references for our terminology.

We would like to thank M. Brodmann and R. Sharp for raising a ques-
tion on catenary/universally catenary rings which motivated our work in this
paper.

2 Geometric normality of formal fibers

Throughout this section (R,m) is a Noetherian local ring, usually a domain.
We use the following interesting result proved by Ratliff in [Ra, Theorem

2.6] relating the universally catenary property to properties of the completion:

2.1 Theorem. (Ratliff) A Noetherian local ring (R,m) is universally cate-
nary if and only if R/p is formally equidimensional for every minimal prime
ideal p ∈ Spec(R).

2.2 Proposition. If (R,m) is a Henselian Noetherian local ring having
geometrically normal formal fibers, then R is universally catenary, and for
each P ∈ SpecR, the extension PR̂ of P to the m-adic completion of R is
also prime.

Proof. By Theorem 2.1, to show R is universally catenary, it suffices to show
every minimal prime p of R is formally equidimensional. By passing from
R to R/p, we may assume that R is an integral domain. We prove that R̂
is also an integral domain, so, in particular, the zero ideal of R is formally
equidimensional. Since R has normal formal fibers, the completion R̂ of R
is reduced. Hence the derived normal ring R of R is a finitely generated R-
module [N2, (32.2)]. Moreover, since R is Henselian, R is local [N2, (43.12)].

The completion R̂ of R is R̂ ⊗R R [N2, (17.8)]. Since the formal fibers
of R are geometrically normal, the formal fibers of R are also geometrically

normal. It follows that R̂ is normal [M2, Corollary, page 184], and hence an

integral domain because R is local. Since R̂ is a flat R-module, R̂ is a subring

of R̂. Therefore R̂ is an integral domain and so R is formally equidimensional.
ut

2.3 Corollary. Suppose R is a Noetherian local domain having geometri-
cally normal formal fibers. Then

(1) Rh is universally catenary.
(2) If the derived normal ring R of R is again local, then R is universally

catenary.

In particular, if R is a normal Noetherian local domain having geometrically
normal formal fibers, then R is universally catenary.
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Proof. For item (1), the Henselization Rh of R is again a Noetherian local
domain having geometrically normal formal fibers. For (2), by [N2, (43.20)],
R is formally equidimensional and hence universally catenary. ut

We use the following result relating the catenary property to the height
of maximal ideals of the derived normal ring.

2.4 Proposition. Let (R,m) be a Noetherian local domain of dimension d
and let R be the derived normal ring of R. If R contains a maximal ideal m
with ht(m) = r 6∈ {1, d}, then R is not catenary.

Proof. Since R has only finitely many maximal ideals [N2, (33.10)], there
exists b ∈m such that b is in no other maximal ideal of R. Let R′ = R[b] and
m′ = m ∩ R′. By the Going Up Theorem[M2,(9.3)], ht(m′) = r 6∈ {1, d}.
Since R′ is a finitely generated R-module there exists a nonzero a ∈m such
that aR′ ⊆ R. It follows that R[1/a] = R′[1/a]. The maximal ideals of R[1/a]
have the form PR[1/a], where P ∈ Spec(R) is maximal with respect to not
containing a. Since there are no prime ideals strictly between P and m [M2,
(13.5)], if ht(P ) = h, then there exists in R a saturated chain of prime ideals
through P of length h + 1. Thus to show R is not catenary, it suffices to
establish the existence of a maximal ideal of R[1/a] having height different
from d−1. Since R[1/a] = R′[1/a], the maximal ideals of R[1/a] correspond to
P ′ ∈ Spec(R′) maximal with respect to not containing a. Since ht(m′) > 1,
there exists c ∈ m′ such that c is not in any minimal prime of aR′ nor in
any maximal ideal of R′ other than m′. Hence there exist prime ideals of
R′ containing c and not containing a. Let P ′ ∈ Spec(R′) be maximal with
respect to c ∈ P ′ and a 6∈ P ′. Then P ′ ⊆ m′, so ht(P ′) ≤ r − 1 < d − 1.
Therefore R is not catenary. ut

2.5 Remark. For (R,m) a Noetherian local domain, it is well known that
the maximal ideals of the derived normal ring R of R are in one-to-one
correspondence with the minimal primes of the Henselization Rh of R [N2,
(43.20)]. Moreover, if a maximal ideal m of R corresponds to a minimal prime
Q of Rh, then the derived normal ring of Rh/Q is the Henselization of Rm
[N2, Ex. 2, page 188], [N1]. Therefore ht(m) = dim(Rh/Q).

2.6 Theorem. Suppose (R,m) is a Noetherian local integral domain having
geometrically normal formal fibers. Consider the set

Γ := {W ∈ Spec(Rh) | dim(Rh/W ) < dim(R/(W ∩R))}.

(1) For p ∈ Spec(R), R/p is not universally catenary if and only if there
exists W ∈ Γ such that p = W ∩R. The set Γ is empty if and only if R
is universally catenary.

(2) If p ⊆ q in Spec(R) and if there exists W ∈ Γ with W ∩ R = q, then
there also exists W ′ ∈ Γ with W ′ ∩R = p.
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(3) If W ∈ Γ and Q is a minimal prime of Rh such that Q ⊆ W , then Q is
also in Γ , that is, dim(Rh/Q) < dim(Rh) = dim(R).

Proof. For item (1), we use that the map of R/p to its m-adic completion

R̂/pR̂ factors through Rh/pRh. Therefore, by Theorem 2.1, R/p is univer-
sally catenary if and only if Rh/pRh is equidimensional if and only if there
does not exist W ∈ Γ with W ∩R = p. To prove item (2), observe that if R/p
is universally catenary, then R/q is also universally catenary [M2, Theorem
31.6].

It remains to prove item (3). Suppose there exists P ⊆ W in Spec(Rh)
with dim(Rh/P ) = dim(Rh). Let w = W ∩R. Since Rh is flat over R with
zero-dimensional fibers, ht(W ) = ht(w) [M2, Theorem 15.1]. By Proposi-
tion 2.3.1, Rh is universally catenary. Therefore ht(W/P ) + dim(Rh/W ) =
dim(Rh/P ) = dim(Rh) ≥ ht(W ) + dim(Rh/W ), and so ht(W/P ) =
ht(W ). Since ht(w) + dim(R/w) ≤ dim(R) = dim(Rh), it follows that
dim(Rh/W ) ≥ dim(R/w), so W 6∈ Γ . ut

2.7 Theorem. Let (R,m) and Γ be as in Theorem 2.6. Then R is catenary
but not universally catenary if and only if Γ is nonempty and each prime
W ∈ Γ has dimension one. In this case, each W ∈ Γ is a minimal prime of
Rh.

Proof. Assume that R is catenary but not universally catenary. By Theo-
rem 2.6, the set Γ is nonempty and there exist minimal primes Q of Rh such
that dim(Rh/Q) < dim(Rh). By Remark 2.5, if a maximal ideal m of R cor-
responds to a minimal prime Q of Rh, then ht(m) = dim(Rh/Q). Since R is
catenary, Proposition 2.4 implies the height of each maximal ideal of the de-
rived normal ring R of R is either one or dim(R). Therefore dim(Rh/Q) = 1
for each minimal prime Q of Rh for which dim(Rh/Q) 6= dim(Rh). Part (3)
of Theorem 2.6 implies each W ∈ Γ is a minimal prime of Rh and of dimen-
sion one.

For the converse, assume that Γ is nonempty and each prime W ∈ Γ has
dimension one. Then R is not universally catenary by part (1) of Theorem 2.6
and by part (3) of Theorem 2.6, each prime of Γ is a minimal prime of Rh

and therefore lies over (0) in R. To show R is catenary, it suffices to show
for each nonzero nonmaximal prime ideal p of R that ht(p) + dim(R/p) =
dim(R) [M2, Theorem 31.4]. Let P ∈ Spec(Rh) be a minimal prime of pRh.

Since Rh is flat over R with zero-dimensional fibers, ht(p) = ht(P ). Let Q
be a minimal prime of Rh with Q ⊆ P . Then Q 6∈ Γ . For by assumption
every prime of Γ has dimension one, so if Q were in Γ , then Q = P . But
P ∩ R = p, which is nonzero, and Q ∩ R = (0). Therefore Q 6∈ Γ and
hence dim(Rh/Q) = dim(Rh). Since Rh is catenary, it follows that ht(P )+
dim(Rh/P ) = dim(Rh). Since P 6∈ Γ , we have dim(R/p) = dim(Rh/P ).

Therefore ht(p) + dim(R/p) = dim(R) and R is catenary. ut
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2.8 Corollary. If R has geometrically normal formal fibers and is catenary
but not universally catenary, then there exist in the m-adic completion R̂ of
R minimal prime ideals q̂ such that dim(R̂/q̂) = 1.

Proof. By Theorem 2.7, each prime ideal Q ∈ Γ has dimension one and is
a minimal prime of Rh. Moreover, QR̂ := q̂ is a minimal prime of R̂. Since
dim(Rh/Q) = 1, we have dim(R̂/q̂) = 1. ut

3 A method for constructing examples

In this section we give a brief review of relevant notation and results from our
earlier papers describing a method for constructing examples. The construc-
tion begins with a Noetherian domain which may be taken to be a “standard”
Noetherian domain such as a polynomial ring in several indeterminates over
a field. In Theorem 3.6 we extend our previous results; we use Theorem 3.6
in Section 4 to obtain examples with larger dimensions and more minimal
primes.

We use the following result from [HRW2]:

3.1 Theorem. Let R be a Noetherian integral domain with fraction field K.
Let x be a nonzero nonunit of R and let R∗ denote the (x)-adic completion
of R. Suppose I is an ideal of R∗ with the property that p ∩ R = (0) for
each p ∈ Ass(R∗/I) , and set A := K ∩ (R∗/I). Then R → (R∗/I)x is flat
if and only if A is Noetherian and is realizable as a localization of a subring
of Rx = R[1/x].

For our constructions we apply Theorem 3.1 and some other results of
[HRW2] and [HRW1] to a more specific setting, outlined in (3.2).

3.2 Setting and notation for examples. Let k be a field, let n ≥ s ∈ N,
and let x, y1, . . . , yn be indeterminates over k. Let R := k[x, y1, . . . , yn] and
let R∗ be the (x)-adic completion of R. Suppose τ1, . . . , τs ∈ xk[[x]] ⊆ R∗

are algebraically independent over k(x, y1, . . . , yn). Set I := (y1−τ1, . . . , ys−
τs)R

∗ and A := k(x, y1, . . . , yn) ∩ (R∗/I).

The domain A can also be expressed as an intermediate domain between
a Noetherian domain and its x-adic completion:

(3.3) A := k(x, ys+1, . . . , yn, τ1, . . . , τs) ∩ k[ys+1, . . . , yn] [[x]].

It is convenient to also consider a local version of (3.2):

3.2′ Local setting and notation for examples. Here R is the localized
polynomial ring k[x, y1, . . . , yn](x,y1,...,yn); otherwise this is the same setup as
(3.2). Again let

A := k(x, y1, . . . , yn) ∩ (R∗/I), where I := (y1 − τ1, . . . , ys − τs)R∗.
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Then A can be expressed as an intermediate domain between the Noetherian
local domain R and its x-adic completion:

(3.3′) A := k(x, ys+1, . . . , yn, τ1, . . . , τs)∩k[ys+1, . . . , yn](ys+1,...,yn)[[x]].

The expressions in (3.3) and (3.3′) represent a special case of the con-
struction, a simpler “intermediate form”— so that we need not pass to a
proper homomorphic image of the completion. This was our approach to the
construction in [HRW1].

The following proposition describes the situation for the two settings.

3.4 Proposition. ([HRW2, (4.1)]) Assume that R, R∗, I, and A are as in
the setting of (3.2) or (3.2′). Then

(1) The canonical map α : R→ (R∗/I)x is flat.
(2) With the notation of (3.2), A is Noetherian of dimension n− s+ 1 and

is a localization of a polynomial ring in n− s variables over a DVR.
(3) A is a nested union of localizations of polynomial rings in n+1 variables

over k.
(4) If k has characteristic zero, then A is excellent.

3.5 Examples. Assume the notation of (3.2) or (3.2′).
(1) Let R := k[y1, . . . , ys, x] (that is, n = s in (3.2)) and let R∗ denote the
(x)-adic completion of R. Then (R∗/I) ∩ K = A is the DVR obtained by
localizing U at the prime ideal xU . In this example Rx = Ux has dimension
s+ 1 and so dim(U) = s+ 1, while dim(R∗/I) = dim(A) = 1.
(2) A modification of Example 1 is to take R to be the (s + 1)-dimensional
regular local domain k[y1, . . . , ys, x](y1,...,ys,x). In this case Rx = Ux has di-
mension s, while we still have R∗/I ∼= k[[x]].

With R as in either (1) or (2), each domain A constructed is a directed
union of (s + 1)-dimensional regular local domains dominated by k[[x]] and
having k as a coefficient field. In either case, since (R∗/I)x is a field, R ↪→
(R∗/I)x is flat, so we have a nested union of (s+1)-dimensional regular local
domains whose union is Noetherian, in fact a DVR.
(3) With R = k[x, y1, . . . , yn](x,y1,...,yn), a localized polynomial ring in n+ 1
variables, and d := n − s, let J be the ideal (y1 − τ1, . . . , ys − τs)R∗. Then
R∗ ∼= k[y1, . . . , yn](y1,...,yn)[[x]] is an n+ 1 dimensional regular local domain
and R∗/J ∼= k[ys+1, . . . , yn](ys+1,...,yn))[[x]] is a (d+1)-dimensional regular lo-
cal domain. By (3.4.1), (R∗/J)x is flat over R. If V = k[[x]]∩k(x, τ1, . . . , τs),
then V is a DVR and (R∗/J) ∩K ∼= V [ys+1, . . . , yn](x,ys+1,...,yn) is a (d+1)-
dimensional regular local domain which is a nested union of (n+1)-dimensional
regular local domains.

The following theorem shows that in certain circumstances the flatness,
Noetherian and computability properties of the integral domains associated
with ideals I1, . . . , In of R∗ as described in Theorem 3.1 transfer to the in-
tegral domain associated to their intersection I = I1 ∩ . . . ∩ In. We show
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in Section 5 that the property of regularity of formal fibers also transfers in
certain cases to the domain associated with an intersection ideal.

3.6 Theorem. Suppose that R is a Noetherian domain, x ∈ R is a nonzero
nonunit, R∗ is the (x)-adic completion of R, and I1, . . . , In are ideals of
R∗ such that, for each i with 1 ≤ i ≤ n, each associated prime of R∗/Ii
intersects R in (0). Suppose that each (R∗/Ii)x is a flat R-module and that
the localizations at x of the Ii are pairwise comaximal; that is, for all i 6= j,
(Ii+Ij)R

∗
x = R∗x. Let I := I1∩· · ·∩In, A := K∩(R∗/I) and, for i = 1, 2, . . . n,

let Ai := K ∩ (R∗/Ii). Then

(1) Each associated prime of R∗/I intersects R in (0), (R∗/I)x is flat over
R, A is Noetherian, and A∗ = R∗/I is the (x)-adic completion of A.
Similarly, A∗i = R∗/Ii is the (x)-adic completion of Ai, for i = 1, 2, . . . n.

(2) A∗x
∼= (A∗1)x ⊕ . . .⊕ (A∗n)x. If W ∈ Spec(A∗) and x 6∈ W , then (A∗)W is

a localization of one of the A∗i .
(3) A ⊆ A1 ∩ · · · ∩ An and, if w ∈ SpecA with x /∈ w, then (A1)x ∩ . . . ∩

(An)x ⊆ Aw. In particular, Ax = (A1)x ∩ . . . ∩ (An)x.

Proof. For (1), since Ass(R∗/(I1∩. . .∩In)) ⊆ Ass(R∗/I1)∪. . .∪ Ass(R∗/In),
the condition on associated primes of Theorem 3.1 holds for the ideal I =
I1∩ . . .∩In. The natural R-algebra homomorphism π : R∗ → (R∗/I1)⊕ . . .⊕
(R∗/In) has kernel I. Further, the localization of π at x is onto because for
each i 6= j, (Ii + Ij)x = R∗x. Thus (R∗/I)x ∼= (R∗/I1)x ⊕ . . . ⊕ (R∗/In)x is
flat over R. Therefore A is Noetherian by Theorem 3.1. By [HRW2, (2.4.4)],
A∗ = R∗/I is the (x)-adic completion of A.

For (2), the first part is simply that (R∗/I)x ∼= (R∗/I1)x⊕ . . .⊕ (R∗/In)x.
If W ∈ Spec(A∗) and x /∈W , then π(Wx) is a prime ideal of (R∗/I1)x⊕ . . .⊕
(R∗/In)x, so has the form (Wi)x in some ith coordinate and (R∗/Ij)x in all
the others, where Wi ∈ Spec(R∗/Ii). It follows that A∗W is a localization of
some A∗i .

Since R∗/Ii is a homomorphic image of R∗/I, it follows that A ⊆ Ai
for all i = 1, 2, . . . , n. Let w ∈ SpecA with x /∈ w. Since A∗ = R∗/I is
faithfully flat over A, there exists w∗ ∈ Spec(A∗) with w∗ ∩ A = w. Then
x /∈ w∗ implies A∗w∗ is some (A∗i )w∗i , where w∗i ∈ Spec(A∗i ). By symmetry,
we may assume A∗w∗ = (A∗1)w∗

1
. Let w1 = w∗1 ∩ A1. Since Aw ↪→ A∗w∗ and

(A1)w1 ↪→ (A∗1)w∗1 are faithfully flat, we have

Aw = A∗w∗ ∩K = (A∗1)w∗
1
∩K = (A1)w1

⊇ (A1)x.

It follows that (A1)x∩ . . .∩ (An)x ⊆ Aw. Thus we have (A1)x∩ . . .∩ (An)x ⊆
∩{Aw : w ∈ SpecA and x /∈ w} = Ax. Since Ax ⊆ (Ai)x, for each i, it
follows that Ax = (A1)x ∩ . . . ∩ (An)x. ut

4 Examples which are not universally catenary

In [HRW2, (4.5)] we give an example of a Noetherian domain A for which the
completion is two dimensional and has exactly two minimal primes; the first
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minimal prime has dimension one and the other has dimension two. Thus A is
not universally catenary. This is done in such a way that A has geometrically
regular formal fibers. We generalize this example in the following.

4.1 Example. We construct a two-dimensional Noetherian local domain so
that the completion has any desired number of minimal primes of dimensions
one and two. For this, let R be the localized polynomial ring in three variables
R := k[x, y, z](x,y,z), where k is a field of characteristic zero and the field of
fractions of R is K := k(x, y, z). Then the (x)-adic completion of R is R∗ :=
k[y, z](y,z)[[x]]. Let τ1, . . . , τs,β1, β2, . . . , βm, γ ∈ xk[[x]] be algebraically inde-
pendent power series over k(x). Now define Qi := (z − τi, y − γ)R∗, for i
with 1 ≤ i ≤ r, and Pj := (z − βj)R∗, for j with 1 ≤ j ≤ m. We apply
Theorem 3.6 with Ii = Qi for 1 ≤ i ≤ r, and Ir+j = Pj for 1 ≤ j ≤ m.
Then the Ii satisfy the comaximality condition at the localization at x. Let
I := I1 ∩ . . .∩ Ir+m and let A := K ∩ (R∗/I). For J an ideal of R∗ containing
I, let J̄ denote the image of J in R∗/I. Then, for each i with 1 ≤ i ≤ r,
dim( (R∗/I)/Q̄i) = dim(R∗/Qi) = 1 and, for each j with 1 ≤ j ≤ m,

dim( (R∗/I)/P̄j) = 2. Thus Â contains r minimal primes of dimension one
and m of dimension two.

The integral domain A birationally dominates R and is birationally domi-
nated by each of the Ai. It follows from Corollary 5.3 that A has geometrically
regular formal fibers. Since dim(A) = 2, A is catenary.

We show in Example 4.2 that for every integer n ≥ 2 there is a Noetherian
local domain (A,m) of dimension n with geometrically regular formal fibers
which is catenary but not universally catenary.

4.2 Example. Let R = k[x, y1, . . . , yn](x,y1,...,yn) be a localized polyno-
mial ring of dimension n + 1 where k is a field of characteristic zero. Let
σ, τ1, . . . , τn ∈ xk[[x]] be n+ 1 algebraically independent elements over k(x)
and consider in R∗ = k[y1, . . . , yn](y1,...,yn)[[x]] the ideals

I1 = (y1 − σ)R∗ and I2 = (y1 − τ1, . . . , yn − τn)R∗.

Then the ring
A = k(x, y1, . . . , yn) ∩ (R∗/(I1 ∩ I2))

is the desired example. The completion Â of A has two minimal primes I1Â
having dimension n and I2Â having dimension one. By Corollary 5.3, A has
geometrically regular formal fibers. Therefore the Henselization Ah has pre-
cisely two minimal prime ideals P,Q which may be labeled so that PÂ = I1Â
and QÂ = I2Â. Thus dim(Ah/P ) = n and dim(Ah/Q) = 1. By Theo-
rem 2.7, A is catenary but not universally catenary.

In Example 4.3 we construct, for each t ∈ N and for specified nonnegative
integers n1, . . . , nt with n1 ≥ 1, a t-dimensional Noetherian local domain A
that birationally dominates a t + 1-dimensional regular local domain such
that the completion of A has, for each r with 1 ≤ r ≤ t, exactly nr minimal
primes of dimension t + 1 − r. In particular, if ni > 0 for some i 6= 1, then
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A is not universally catenary and is not a homomorphic image of a regular
local domain. It follows from Remark 2.5 that the derived normal ring A of
A has exactly nr maximal ideals of height t+ 1− r for each r with 1 ≤ r ≤ t.
4.3 Example. Let t ∈ N and for each r with 1 ≤ r ≤ t, let nr be a nonneg-
ative integer. Assume that n1 ≥ 1. We construct a t-dimensional domain A
for which Â has exactly nr minimal primes of dimension t+ 1− r for each r.
Let x, y1 . . . , yt be indeterminates over a field k of characteristic zero 2. Let
R = k[x, y1, . . . , yt](x,y1,...,yt), let R∗ = k[y1, . . . , yt] [[x]](x,y1,...,yt) denote the
(x)-adic completion of R and let K denote the fraction field of R. For every
r, j, i ∈ N such that 1 ≤ r ≤ t, 1 ≤ j ≤ nr and 1 ≤ i ≤ r, choose elements
{τrji} of xk[[x]] which are algebraically independent over k(x, y1, . . . , yt).

For each r, j with 1 ≤ r ≤ t and 1 ≤ j ≤ nr, define the prime ideal
Prj := (y1 − τrj1, . . . , yr − τrjr) of height r in R∗. Then each ideal Prj in R∗

is an example of the type considered in (3.2).
Thus the (R∗/Prj)x are flat over R. Here, for each r, j, define

Arj := K ∩ (R∗/(Prj) = k(x, y1, . . . , yt) ∩ k[y1,...,yt] [[x]](−)

(y1−τrj1,...,yr−τrjr)

∼= k(x, Yr , Γrj) ∩ k[Yr] [[x]](−)
∼= Vrj [Yr](x,Yr),

where Yr := {yr+1, . . . , yt}, Γrj := {τrj1, . . . , τrjr}, and Vrj = k(Γrj) ∩ k[[x]]
is a DVR. Then Arj is a (t+ 1− r)-dimensional regular local domain that is
a nested union of (t+ 1)-dimensional RLRs.

We take the ideal I to be the intersection of all the prime ideals Prj .
Since the τrji ∈ xk[[x]] are distinct, the sum of any two of these ideals Prj
and Pmi, where we assume r ≤ m, has radical (x, y1, . . . , ym)R∗, and thus
(Prj +Pmi)R

∗[1/x] = R∗[1/x]. It follows that the intersection I of the Prj is
irredundant and Ass(R∗/I) = {Prj | 1 ≤ r ≤ t, 1 ≤ j ≤ nr}. Since Prj ∩R =
(0), R injects into R∗/I. Let A := K ∩ (R∗/I).

By Theorem 3.6, R ↪→ (R∗/I)x is flat, A is Noetherian and A is a localiza-
tion of a subring ofR[1/x]. In particular,A birationally the (t+1)-dimensional
regular local domain R and the stated properties hold.

4.4 Remark. By Theorem 2.7, the ring A constructed in Example 4.3 is
catenary if and only if each minimal prime of Â has dimension either one or t.
By taking nr = 0 for r 6∈ {1, t} in Example 4.3, we obtain additional examples
of catenary Noetherian local domains A of dimension t having geometrically
regular formal fibers for which the completion Â has precisely nt minimal
primes of dimension one and n1 minimal primes of dimension t.

4.5 Remark. We would like to thank L. Avramov for suggesting we con-
sider the depth of the rings constructed in Example 4.3. The catenary rings
which arise from this construction all have depth one, but we can use Exam-
ple 4.3 to construct, for each integer t ≥ 3 and integer d with 2 ≤ d ≤ t− 1,

2 The characteristic zero assumption implies that each Arj as constructed below
is excellent cf. (3.4.4).
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an example of a noncatenary Noetherian local domain A of dimension t and
depth d having geometrically regular formal fibers. The (x)-adic completion
A∗ of A has precisely two minimal primes, one of dimension t and one of di-
mension d. To see this with notation as in Example 4.3, we set m = t− d+ 1
and take nr = 0 for r 6∈ {1,m} and n1 = nm = 1. Let

P1 := P11 = (y1 − τ111)R∗ and Pm := Pm1 = (y1 − τm11, . . . , ym − τm1m)R∗.

Consider A∗ = R∗/(P1 ∩ Pm) and the short exact sequence

0 −→ P1

P1 ∩ Pm
−→ R∗

P1 ∩ Pm
−→ R∗

P1
−→ 0.

Since P1 is principal and not contained in Pm, we have P1 ∩Pm = P1Pm and
P1/(P1∩Pm) ∼= R∗/Pm. It follows that depthA = depthA∗ = depth(R∗/Pm)
= d ; see for example [K, page 103, ex 14]. Moreover, the derived normal ring
A of A has precisely two maximal ideals one of height t and one of height d.

5 Regularity of morphisms and geometrical regularity
of formal fibers

We show in (5.3) that the ring A of Examples 4.1, 4.2 and 4.3 have geomet-
rically regular formal fibers.

5.1 Proposition. Let R, A and I be as in Theorem 3.1. Suppose that, for
each P ∈ Spec(R∗/I) with x /∈ P , the morphism ψP : RP∩R −→ (R∗/I)P is
regular. Then

(1) A is Noetherian and the morphism A −→ A∗ = R∗/I is regular.
(2) If R is semilocal with geometrically regular formal fibers and x is in the

Jacobson radical of R, then A has geometrically regular formal fibers.

Proof. Since flatness is a local property (and regularity of a morphism in-
cludes flatness), the morphism ψx : R −→ (R∗/I)x is flat. By Theorem 3.1
and [HRW2, (2.4.4)], A is Noetherian with (x)-adic completion A∗ = R∗/I.
Hence A −→ A∗ is flat.

Let Q ∈ Spec(A), let k(Q) denote the fraction field of A/Q and let Q0 =
Q ∩R.

Case 1: x ∈ Q. ThenR/Q0 = A/Q = A∗/QA∗ and the ringA∗QA∗/QA
∗
QA∗ =

A∗ ⊗A k(Q) = AQ/QAQ is trivially geometrically regular over k(Q).

Case 2: x /∈ Q. Let k(Q) ⊆ L be a finite algebraic field extension. We
show the ring A∗ ⊗A L is regular. Let W ∈ Spec(A∗ ⊗A L) and let W ′ =
W ∩(A∗⊗Ak(Q)). The prime W ′ corresponds to a prime ideal P ∈ Spec(A∗)
with P ∩A = Q. By assumption the morphism

RQ0 −→ (R∗/I)P = A∗P
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is regular. Since x /∈ Q it follows that RQ0 = UQ∩U = AQ and that k(Q0) =
k(Q). Thus the ring A∗P ⊗AQ L is regular. Therefore (A∗ ⊗A L)W which is a
localization of this ring is regular.

For part (2), since R has geometrically regular formal fibers, so has R∗

by [R3]. Hence the morphism θ : A∗ = R∗/I −→ Â = ̂(R∗/I) is regular. By
[M1, Thm. 32.1 (i)] and part (1) above, it follows that A has geometrically

regular formal fibers, that is, the morphism A −→ Â is regular. ut

5.2 Proposition. Assume that R, K, x, R∗ are as in Theorem 3.1 and n ∈
N. Let I1, . . . , In of R∗ be ideals of R∗ such that each associated prime of
R∗/Ii intersects R in (0), for i = 1, . . . , n. Let I := I1 ∩ . . .∩ In. Also assume

(1) R is semilocal with geometrically regular formal fibers and x is in the
Jacobson radical of R.

(2) Each (R∗/Ii)x is a flat R-module and, for each i 6= j, the ideals Ii(R
∗)x

and IjR
∗
x are comaximal in (R∗)x.

(3) For i = 1, . . . , n, Ai := K ∩ (R∗/Ii) has geometrically regular formal
fibers.

Then A := K ∩ (R∗/I) = B has geometrically regular formal fibers.

Proof. Since R has geometrically regular formal fibers, by (5.1.2), it suffices
to show for W ∈ Spec(R∗/I) with x 6∈W that RW0 −→ (R∗/I)W is regular,
whereW0 := W∩R. As in (3.1), we have (R∗/I)x = (R∗/I1)x⊕. . .⊕(R∗/In)x.
It follows that (R∗/I)W is a localization of some R∗/Ii. Suppose (R∗/I)W =
(R∗/Ii)Wi , for some i with 1 ≤ i ≤ n, and Wi ∈ Spec(R∗/Ii). Then RW0 =
(Ai)Wi∩Ai and (Ai)Wi∩Ai −→ (R∗/Ii)Wi is regular. Thus RW0 −→ (R∗/I)W
is regular. ut

5.3 Corollary. The rings A of Examples 4.1, 4.2 and 4.3 have geometrically
regular formal fibers, that is, the morphism φ : A→ Â is regular.

Proof. By the definition of R and the observations given in (5.1), the hy-
potheses of (5.2) are satisfied. ut
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