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ABSTRACT. Let (R,m) be a Cohen-Macaulay local ring and let F = {F;}icz
be an Fi-good filtration of ideals in R. If F} is m-primary we obtain sufficient
conditions in order that the associated graded ring G(F) be Cohen-Macaulay. In
the case where R is Gorenstein, we use the Cohen-Macaulay result to establish
necessary and sufficient conditions for G(F) to be Gorenstein. We apply this
result to the integral closure filtration F associated to a monomial parameter
ideal of a polynomial ring to give necessary and sufficient conditions for G(F)
to be Gorenstein. Let (R, m) be a Gorenstein local ring and let F} be an ideal
with ht(F1) = g > 0. If there exists a reduction J of F with u(J) = g and
reduction number u := r;(F), we prove that the extended Rees algebra R (F)
is quasi-Gorenstein with a-invariant b if and only if J" : F\y, = Fhpyp—yqg—1 for
every n € Z. Furthermore, if G(F) is Cohen-Macaulay, then the maximal degree
of a homogeneous minimal generator of the canonical module wg(F) is at most
g and that of the canonical module w () is at most g — 1; moreover, R (F) is
Gorenstein if and only if J* : F\, = F,,. We illustrate with various examples cases
where G(F) is or is not Gorenstein.

1. INTRODUCTION

All rings we consider are assumed to be commutative with an identity element.
A filtration F = {F;}ien on a ring R is a descending chain R = Fy D F; D F» D ---
of ideals such that F; F; C F;y; for all 7,j € N. It is sometimes convenient to extend
the filtration by defining F; = R for all integers ¢ < 0.

Let t be an indeterminate over R. Then for each filtration F of ideals in R, several

graded rings naturally associated to F are :

(1) The Rees algebra R(F) = @, Fit' C Rl[t],
(2) The extended Rees algebra R (F) = @D,y Fit' C Rt 71,

(3) The associated graded ring G(F) = % =Di>o %
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If F is an I-adic filtration, that is, F = {I'};cz for some ideal I in R, we denote
R(F),R (F), and G(F) by R(I), R (I), and G(I), respectively.

In this paper we examine the Cohen-Macaulay and Gorenstein properties of

graded rings associated to filtrations F of ideals. We establish
(1) sufficient conditions for G(F) to be Cohen-Macaulay,

(2) necessary and sufficient conditions for G(F) to be Gorenstein, and

(3) necessary and sufficient conditions for R (F) to be quasi-Gorenstein.

These results extend those given in [HKU] in the case where F is an ideal-adic
filtration.

Let (R,m) be a d-dimensional Cohen-Macaulay local ring and let F = {F;};cz
be an Fi-good filtration, where F} is m-primary. Assume that J is a reduction of F
with p(J) = d and let u := r;(F) denote the reduction number of F with respect to
J. In Theorem 3.12, we prove that G(F) is Cohen-Macaulay, if J : F,,_; = J + F; 41
for all ¢ with 0 <7 <w— 1. If R is Gorenstein, we prove in Theorem 4.3 that G(F)
is Gorenstein < J:F, ;=J+F for0<i<u-1 <= J:F,_;=J+F
for 0 <i < |“%51|. If R is regular with d > 2 and G(F) is Cohen-Macaulay, we prove
in Theorem 4.7 that G(F /J) has a nonzero socle element of degree < d —2. We
deduce in Corollary 4.9 that if G(F) is Gorenstein and F;11 C m F; forall i > d—1,
then r;(F) <d— 2.

Let J be a monomial parameter ideal of a polynomial ring R = k[z1,...,x4] over
a field k. In Section 5 we consider the integral closure filtration F = {J"}, >0
associated to J. If J = (2f*,...,23")R and L is the least common multiple of
ai,...,aq, Theorem 5.6 states that G(F) is Gorenstein if and only if Zfil a% =
mod L. Corollary 5.7 asserts that the following three conditions are equivalent:
(i) Zle a% = L+ 1, (ii) G(F) is Gorenstein and r;(F) = d — 2, (iii) the Rees
algebra R(F) is Gorenstein. Example 5.13 demonstrates the existence of monomial
parameter ideals for which the associated integral closure filtration £ is such that
G(€) and R(E) are Gorenstein and £ is not an ideal-adic filtration.

In Section 6 we consider a d-dimensional Gorenstein local ring (R,m) and an
Fi-good filtration F = {F; };ez of ideals in R, where ht(F}) = g > 0. Assume there
exists a reduction J of F with u(J) = g and reduction number v := r;(F). In
Theorem 6.1, we prove that the extended Rees algebra R (F) is quasi-Gorenstein
with a-invariant b if and only if (J" : F,) = Fhjp—yyg—1 for every n € Z. If

G(F) is Cohen-Macaulay, we prove in Theorem 6.2 that the maximal degree of a
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homogeneous minimal generator of the canonical module wg(r) is at most g and
that of the canonical module w (F) is at most g — 1. With the same hypothesis, we
prove in Theorem 6.3 that R (F) is Gorenstein if and only if J* : F, = F,.

In Section 7 we present and compare properties of various filtrations.

2. PRELIMINARIES

Definition 2.1. Let F = {F}};cz be a filtration of ideals in R and let I be an ideal
of R.

(1) The filtration F is called Noetherian if the Rees ring R(F) is Noetherian.

(2) The filtration F is called an I-good filtration if IF; C F;;4 for all i € Z and
Fni1 = IF, for all n >> 0. The filtration F is called a good filtration if it is
an [-good filtration for some ideal I in R.

(3) A reduction of a filtration F is an ideal J C Fj such that JF,, = F,; for
all large n. A minimal reduction of F is a reduction of F minimal with
respect to inclusion.

(4) If J C F} is a reduction of F, then

r7(F) =min{r | F,y1 = JF, forall n>r}

is the reduction number of F with respect to J.

(5) If L is an ideal of R, then F /L denotes the filtration {(F; + L)/L};cz on
R/L. The filtration F /L is Noetherian, resp. good, if F is Noetherian, resp.
good.

Remark 2.2. If the filtration F is Noetherian, then R is Noetherian and R'(F) is
finitely generated over R [BH, Propositon 4.5.3]. Moreover, dim R'(F) = dim R+ 1
and dim G(F) < dim R, with dim G(F) = dim R if F} is contained in all the maximal
ideals of R [BH, Theorem 4.5.6]. Furthermore, one has dim R(F) = dim R + 1, if
F} is not contained in any minimal prime ideal p in R with dim(R/p) = dim(R)
(cf. [Va]). Assume the ring R is Noetherian, then the filtration F = {F;}icz is a
good filtration <= it is an Fj-good filtration, and F is an Fj-good filtration <=
there exists an integer k such that F,, C (F;)" % for all n <= the Rees algebra
R(F) is a finite R(F})-module [B, Theorem III.3.1.1 and Corollary I11.3.1.4].
If F = {F,}iez is a filtration on R, then we have

R(F) = @ F't" € R(F) = P Fut™ C RY1].
n>0 n>0
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If R is Noetherian and F = {F;};cz is an Fj-good filtration, then R(F) is a finite
R(Fj)-module, and hence R(F) is integral over R(Fy). Thus, in this case, we have
P CF, C F_ln, for all n > 0, where F_ln denotes the integral closure of FJ'. Notice
also that if F is an Fj-good filtration, then J is a reduction of F <= J is a

reduction of Fj.

The proof of Remark 2.3 is straightforward using the definition of an Fj-good
filtration.

Remark 2.3. Let (R,m) be a Noetherian local ring and let F = {Fj}icz be a
Fi-good filtration of R. Set

f)Jr = @_Fltl,

i>1
- @ E+ltzu
>0

G(F)y =EPGi, where G;=F;/Fiy1 i>0.
i>1

Then we have the following:

1) VE - R@) = VEE) D

2) \/th ):\/R(}')+ for each ¢ > 1.

3) VGi-G(F)=+/G(F); foreachi>1.

4) (G(F))"™ Q@iZHGi:Gn~G(f) for all n >> 0.

o~ o~ o~ o~

We use Lemma 2.4 in Section 6.

Lemma 2.4. Let (R,m) be a Noetherian local ring and let F = {F;}icz be an
Fi-good filtration of ideals in R. Let G := G(F) = @,~¢ Fi/Fit1 = ;50 Gi and
Gy =5 Fi/Fiq1. If grade Gy > 1, then for each int;ger n>1 we ha;e:

(1) Foyi: Fs=F, forall i>1.

(2) Fo = Nj21(Fnsj : Fy) = Ujz1(Fagg < Fj).

Proof. (1) For a fixed i > 1 we have G C G;G for some m >> 0 by Remark 2.3.
Therefore grade G;G > 1. It is clear that F,, C F,4; : F;. Assume there exists
be (Fnoyi: F;)\ F,. Then b € Fj \ Fj41 for some j with 0 < j < n — 1, and
0#b"=b+ Fj11 € Fj/Fj41 = Gj. Since b € (F,,4; : F;), we have b*G; = 0, and so
b*G;G = 0. This is a contradiction.

(2) Item (2) is immediate from item (1). O
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The I-adic filtration F = {I'};cz is an I-good filtration. We describe in Exam-
ples 2.5 and 2.6 other examples of good filtrations.

Example 2.5. Let I be a proper ideal of a Noetherian ring R. If I contains a non-
zero-divisor, then Ratliff and Rush consider in [RR] the following ideal associated
tol:
I=Jut.r.
i>1
The ideal I is now called the Ratiliff-Rush ideal associated to I, or the Ratliff-
Rush closure of I. It is characterized as the largest ideal having the property that
(f ) = I" for all sufficiently large positive integers n. Moreover, for each positive
integer s
Is = s 19,
i>1
and there exists a positive integer n such that I* = I* for all integers k > n [RR,

(2.3.2)]. Consequently, F = {fi}ieN is a Noetherian I-good filtration.

Example 2.6. Let (R, m) be a Noetherian local ring with dim R = d and let I be
an m-primary ideal. The function Hj(n) = A(R/I™) is called the Hilbert-Samuel
function of I. For sufficiently large values of n, A(R/I") is a polynomial P;(n) in n
of degree d, the Hilbert-Samuel polynomial of I. We write this polynomial in terms

of binomial coeflicients:

Pi(n) = eo(I) (” +§_ 1) —er(I) (” zfz 2) Feee g (21 e (D).

The coefficients e;(I) are integers and are called the Hilbert coefficients of I. In

particular, the leading coefficient ey(I) is a positive integer called the multiplicity
of I.

As was first shown by Shah in [Sh], if (R,m) is formally equidimensional of
dimension d > 0 with |[R/m| = oo, then for each integer k in {0,1,...,d} there
exists a unique largest ideal If;} containing I and contained in the integral closure

T such that
ei(I{k}):ei(I) for iZO,l,...,k.
We then have the chain of ideals

(1) I=1Itgi1y Cligy C--- Clpyy C Iy = 1.
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The ideal Iy is called the k" coefficient ideal of I, or the ej-ideal associated to I.
The ideal Igy is the integral closure I of I, and if I contains a regular element, then
I14y is the Ratliff-Rush closure of I.

Associated to I and the chain of coefficient ideals given in (1), we have a chain of

filtrations
(2) Far1 C€FqC--- CFy1 C Fo,

where the filtration Fy := {(In){k}}nez’ for each k such that 0 < k < d+1. In par-
ticular, Fgi1 = {I"}nez is the I-adic filtration, and Fg = {I"},ez is the filtration
given by the integral closures of the powers of I. If I contains a non-zero-divisor,
then Fyq = {IN”}nez is the filtration given by the Ratliff-Rush ideals associated to
the powers of I. The filtration F1 = {(I")1; }n ¢z, is called the e;-closure filtration.
In this connection, see also [C1], [C2] and [CPV]. If R is also assumed to be ana-
lytically unramified, then each of the filtrations Fj := {(In){k}}nez is an I-good
filtration. This follows because the integral closure of the Rees ring R(I) = R[It] in
the polynomial ring R[t] is the graded ring B,,~¢ I™t", and a well-known result of
Rees [R], [SH, Theorem 9.1.2] implies that P, -, It" is a finite R(I)-module. Thus
{I"} ez is a Noetherian I-good filtration. Moreover, if R is analytically unramified
and contains a field and if (I™)* denotes the tight closure of I", then F = {(I ")*}

is an I-good filtration.

neL

3. THE COHEN-MACAULAY PROPERTY FOR G(F)

Let (R,m) be a Noetherian local ring and let F = {F;}icz be a Noetherian
filtration on R. For an element x € F, let z* denote the image of z in G(F); =
F1/F,. The element z is called superficial for F if there exists a positive integer
¢ such that (Fj,41 : ) N F. = F), for all n > c. In terms of the associated graded
ring G(F), the element x is superficial for F if and only if the n-th homogeneous
component [0 :g(r) *], of the annihilator of 2* in G(F) is zero for all n >> 0. If
grade F1 > 1 and =z is superficial for F, then x is a regular element of R. For if
w € R and ux = 0, then (F1)°u C (), (Fnt1 : ) N EF. = (), Fn = 0. Since F is a
Noetherian filtration, it follows that w = 0. A sequence z1, ...,z of elements of F}
is called a superficial sequence for F if xy is superficial for F, and z; is superficial
for F /(x1,...,mi—1) for 2 <i < k.

The following well-known fact is useful in working with filtrations.
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Fact 3.1. If z* is a regular element of G(F), then z is a regular element of R and
G() = G(F)/ ().

We record in Proposition 3.2 a result of Huckaba and Marley that involves what

is now called Sally’s machine, cf. [RV, Lemma 1.8].

Proposition 3.2. ([HM, Lemma 2.1 and Lemma 2.2]) Let (R,m) be a Noetherian
local ring, let F = {F;}icz be a Noetherian filtration on R, and let x1,...,z) be a
superficial sequence for F. Then the following assertions are true:

(1) If grade (G(F)4) > k, then 7,...,z} is a G(F)-reqular sequence.

(2) If grade (G(5:25-),) = 1, then grade (G(F)1) > k+ 1.

Ty Tk

The following result of Huckaba and Marley generalizes to filtrations a result of
Valabrega and Valla [VV, Corollary 2.7].

Proposition 3.3. ([HM, Proposition 3.5]) Let (R,m) be a Noetherian local ring,
let F = {F};}icz be a Noetherian filtration on R, and let x1,--- ,x) be elements of
Fy. The following two conditions are equivalent:

(1) a3,...,2% is a G(F)-regular sequence.

(2) (4) z1,...,xk is an R-reqular sequence, and

(1) (z1,...,2x)RNF; = (z1,...,25)Fi—1 for alli > 1.

Remark 3.4. Let (R,m) be a Noetherian local ring and let F = {Fj}icz be a
filtration on R. If there exists a reduction J of F such that JF, = F,4+; for all
n > 1, then F,, = F* for all n, that is, F is the Fj-adic filtration.

Proof. For every n > 2 we have F,, = JF, 1 = J*F, o =---=J" 1 CFr. O

Corollary 3.5. Let (R,m) be a Cohen-Macaulay local ring and let F = {F;};cz be
an Fy-good filtration on R, where Fy is m-primary. If there exists a reduction J of
F with u(J) = dim R and JF,, = F,41 for alln > 1, then the associated graded ring
G(F) is Cohen-Macaulay.

Proof. Remark 3.4 implies that F is the Fj-adic filtration. Hence G(F) is Cohen-
Macaulay by [S1, Theorem 2.2] or [VV, Proposition 3.1]. O

Proposition 3.6 is a result proved by D.Q. Viet([Vi, Corollary 2.1]). It generalizes
to filtrations a result of Trung and Ikeda ([TI, Theorem 1.1]), and is in the nature
of the well-known result of Goto-Shimoda ([GS]).
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Let a(G(F)) = max{n | [Hd;(G(F))]» # 0} denote the a-invariant of G(F) ([GW,
(3.1.4)]), where 90 is the maximal homogeneous ideal of R(F) and Hiy(G(F)) is the
i-th graded local cohomology module of G(F) with respect to 9.

Proposition 3.6. ([Vi, Corollary 2.1]) Let (R,m) be a d-dimensional Cohen-
Macaulay local ring and let F = {F;}icz be an Fi-good filtration on R, where Fy is
m-primary. Then the following conditions are equivalent:

(1) R(F) is Cohen-Macaulay.

(2) G(F) is Cohen-Macaulay with a(G(F)) < 0.

Remark 3.7. Let (R,m) be a d-dimensional Cohen-Macaulay local ring and let
F = {F,}iez be an Fj-good filtration on R, where Fj is m-primary. Assume
that there exists a reduction J of F with u(J) = d. If R(F) is Cohen-Macaulay,
then Proposition 3.6 implies that a(G(F)) < 0. Since r;(F) = r)(F/J) =
a(G(F /J)) = a(G(F)) +d, it follows that r;(F) < d.

Proposition 3.8. Let (R,m) be a d-dimensional regular local ring and let F =

{F;}iez be an Fi-good filtration on R, where Fy is m-primary. Assume there exists
a reduction J of F with u(J) =d. If G(F) is Cohen-Macaulay, then r;(F) < d.

Proof. We have R(F}) = GnsoF " C R(F) = GnsoFat™ C R[t]. Since F = {F }ier
is an Fj-good filtration, R(F) is a finite R(F})-module, and thus R(F) is integral
over R(Fy). Hence we have F* C F,, C FJ, for all n > 0. Since J is a minimal
reduction of Fi, it follows that F_ln C J, for every n > d by the Briangon-Skoda
theorem ([LS, Theorem 1]). Therefore we have F,, = F,,NJ for n > d. Since G(F) is
Cohen-Macaulay, Proposition 3.3 shows that F,,NJ = JF,,_;. Thus r;(F) <d. O

Remark 3.9. Let (R,m) be a 2-dimensional Cohen-Macaulay local ring and let
F = {F,}iez be an Fi-good filtration on R, where F} is m-primary.
(1) If R(F) is Cohen-Macaulay, then Remark 3.7 and Remark 3.4 imply that
F = {F,}iez is the Fi-adic filtration.
(2) If R is also regular and G(F) is Cohen-Macaulay, then Proposition 3.8 and
Remark 3.4 imply that F = {F;};cz is the Fj-adic filtration.

Let (R, m) be a d-dimensional Cohen-Macaulay local ring and let F = {F; },cz be
an Fi-good filtration on R, where Fj is m-primary. Assume that J is a reduction of

F with u(J) = d and let r;(F) = u denote the reduction number of F with respect
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to J. We determine sufficient conditions for G(F) to be Cohen-Macaulay involving
the reduction number v and residuation with respect to J. The dimension one case

plays a crucial role, so we consider this case first.

Theorem 3.10. Let (R,m) be a one-dimensional Cohen-Macaulay local ring and
let F = {F,;}iez be an Fi-good filtration, where Fy is m-primary. Assume there

exists a reduction J = xR of F with reduction number r;(F) = u such that
J:Fy_i=J+Fyq foralliwith0<i<u—1.

Then the following two assertions are true:

(1) Fy: Fyy =F; forl1<i<u, and
(2) G(F) is a Cohen-Macaulay ring.

Proof. Notice that J'F, = Fj, = F;F, foral j>0. (*)

To establish item (1), we first prove the following claim.
Claim 3.11. F; CF,: F, ; CJ+F, forl<i<u.

Proof of Claim. For 1 <i < u, we have

FyCF,: Fyy C FyFy : Fy by,
= JUF, : J“'F, by (%)
= J'F,: F, since J = (z) with = a regular element
CJ': F,
=(J* )R, since J = (z) with z regular
— Jt . JF,
— Jt R
CJ*T T, o1y since J'F, ;1) € Fupq
=J:F_i-) since J = (z) with = regular

=J+F by assumption.

This establishes Claim 3.11.
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For the proof of (1), we use induction on ¢. If i = 1, the assertion is clear in view

of Claim 3.11. Assume that ¢ > 2. Then we have
F,:Fyi=(J+EF)N(F,: Fu) by Claim 3.11

=[JN(F, : Fyy)] + [F; N (Fy : Fy—y)]  since F; C Fy @ Fy_;
=J(Fy:Fy—):J)+F;, since J=(x)and F; C F, : F,_;
=J(Fy,:JF,_;)+ F,

C J(F,F, : JF,_;F,) + F;

J(J"Fy : Fuyus1-i) + Fi by ()
CJIJFy: J"Fy_i—1)) + F; since J“Fy_(i—1) € Futut1—i

=J(Fy: Fy_gi—1)) + F since J = (z)
=JF,_1+F; by the induction hypothesis
= in.

This establishes item (1).
For item (2), we show that J N F; = JF;—1 for 1 < i < u. It is clear that
JNF; D JF;,_1. We prove that J N F; C JF;_1. For 1 <i < wu, we have

JNF;,=J(F;:J) since J = (x) with x regular
J(FF, : JF,)
J(J'F, ) by ()
J(J'Fy: J'F,_i—1))  since J'F,_ ;1) C JE,
=J(Fu: Fy_(in)) since J = (z) with = regular
= JF_, by item (1).
By Proposition 3.3, G(F) is Cohen-Macaulay. O

Theorem 3.12 is the main result of this section.

Theorem 3.12. Let (R,m) be a d-dimensional Cohen-Macaulay local ring and let
F = {F;}iez be an Fi-good filtration, where Fy is m-primary. Assume that J is a
reduction of F with u(J) = d, and let u := r;(F) denote the reduction number of F
with respect to J. If

J:Fy_i=J+ Fip1 foralli with 0 <i<wu—1,

then the associated graded ring G(F) is Cohen-Macaulay.
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Proof. We may assume that R/ m is infinite. There is nothing to prove if d = 0.
If d = 1, then G(F) is Cohen-Macaulay by Theorem 3.10. Assume that d > 2.
There exists elements x1,...,z4 that form a minimal generating set for J and a
superficial sequence for F. Set R := R/(x1,...,24_1), M :=m /(z1,...,24_ 1), and
F=F/(x1,...,24-1) = {F;}icz where F; = F;R for all i € Z. Then (R, m) is a
I-dimensional Cohen-Macaulay local ring and F = {F; };cz is an Fi-good filtration,
where [} is m-primary. Since J is a minimal reduction of F with u = r;(F),
J - F, = F,y for all n > u, and hence J = (73) is a minimal reduction of F and

% :=r7(F) < u. Finally, we need to check that J : Fy_; = J+F;41 for 0 <i <u—1.

Since u < u, we have

J:F, CJ:Fyy CJ:Fyy=J+Fy =J+Fq.

The other inclusion is shown as follows:

(J+Fi1) Fai=J Fai+Fiq1-Faoy ©J-Fyi+Fiq C J,

and hence J + F;;1 C J : Fy_;. By Theorem 3.10, G(F) is Cohen-Macaulay. Since
dim(G(F)) = 1, we have grade (G(ﬁ)” = 1, and thus by Proposition 3.2
(2), grade(G(F)4+) = d. Therefore G(F) is Cohen-Macaulay. O

Remark 3.13. The sufficient conditions given in Theorem 3.12 in order that G(F)
be Cohen-Macaulay are not necessary conditions. For example, with R = k[[t°, 0, %]
and m = (t°,t% t) R as in [HKU, Example 3.6, then G(m) is Cohen-Macaulay and
the ideal J = t°R is a minimal reduction of m with reduction number r;(m) = 3.

However, t° € (J : m?)\ J + m?.

4. THE GORENSTEIN PROPERTY FOR G(F)

In this section, we give a necessary and sufficient condition for G(F) to be Goren-
stein. We first state this in dimension zero. Among the equivalences in Theorem
4.2, the equivalence of (1) and (3) are due to Goto and Iai [GI, Proposition, 2.4].
We include elementary direct arguments in the proof. We use the floor function |z |

to denote the largest integer that is less than or equal to z.

Lemma 4.1. Let (R,m) be a zero-dimensional Gorenstein local ring and let F =
{Fi}icz be an Fi-good filtration. Assume that F, # 0 and Fy41 = 0, that is, u =
7y (F). Let G := G(F) = @iy Fi/Fiy1 = Pi_y Gi and let S := Soc(G) = P, S
denote the socle of G. Then the following hold:
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(1) S; = Fiﬂ(Fi+1:m)ﬂ(Fi+;ff11)ﬂ"'ﬁ(Fi+u+1:Fu) for 0 <i < u.

(2) Sy, =(0:m)N Fy.
(3) Sy = R/m.

Proof. (1): We may assume that v > 0. Let k := R/ m and write 0 :=m /F; P G4

for the unique maximal homogeneous ideal of G. For 0 < ¢ < u we have
Si=0:q M

=0:5/r, m/F)N 05 r, F1/F2)0-0 (055, Fu/Fut1)
_ b (Fit1:m) A (Fiy2 : F1) AA (Fitut1 IFu)‘
Fina Fina Fina Fina
(2): Sy =F,N(0:m), because Fyy1; =0fori >1and0:m C0: F; C---C0: F,.

(3): Since S, =0 :p, m C 0 :p, Fy = F, # 0 and (R, m) is a zero-dimensional

Gorenstein local ring, we have S, = k. g

Theorem 4.2. Let (R, m) be a zero-dimensional Gorenstein local ring and let F =
{F;}iez be an Fi-good filtration. Assume that F,, # 0 and Fy,y1 = 0, that is, u =
Ty (F). Let G := G(F) = D Fi/Fis1 = D)y Gi and let S := Soc(G) = By, Si
denote the socle of G. The following are equivalent:
(1) G(F) is Gorenstein.

) Si=0 for0<i<u-—1.
3)0:F,;=F11 for0<i<u-1.

) 0: Fyy=Fipq  for0<i<|[%2].

5) MGi) = MGu—i) for0<id < |[“5=].

Proof. (1) <= (2): G(F) is Gorenstein if and only if dim; S = 1 if and only if
S; =0 for 0 <i<wu—1i, by Lemma 4.1.(3).

(2) = (3): Suppose that S; =0 for 0 <i <wu—1. Then S =S, = k, by Lemma
4.1.(3). Hence there exists 0 # s* € 5, such that S = s*k. Let 0 <i <wu— 1. The
containment 7 O ” is clear, because Fy+1 = 0. To see the other containment, we
assume that 0 : F,_; SZ Fj 4 for some j with 0 < j < u—1. In this case there exists
an element 3 € 0: F,_;, but 8 ¢ F; 1, and hence we can choose an integer v with
0 < v < jsuch that § € F,,\ F,41. Hence 0 # 5* = B+ F,41 € Fy/Fy+1. Since the
graded ring G is an essential extension of Soc(G), we have 3*G N Soc(G) # 0. Then
there exists a non-zero element ¢ such that £ € *G N Soc(G). Since S = S, = s*k,
we can express s* = *w* = fw + Fyy1, for some w € F,,_,,. Then fw # 0, because

s* # 0. This is impossible, because 3 € 0: F,_; and w € F,_, € F,,_j, as v < j.
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3)
(4)

(4): This is clear.
(5): For 0 <14 < [%5], we have
MGu—i) = MFu-i/Fu—it1)

=
=

= MBR/Fu-iy1) — AR/ Fy—;)

=A0: Fy_i+1) — A0 : Fyy) by [BH, Proposition 3.2.12]
= MNF;) — AM(Fit1) by condition (4)

= MFi/Fiy1) = MGi).

A Fit1) = AM(Fi41/Fut1) since Fyy1 =0
= ANGit1) + AM(Gig2) + -+ AGu)
= MGu—(i41)) + MGu—(iz2)) + -+ MGu—u) by condition (5)
=MNR/F,—;) =0 : F,_;) by [BH, Proposition 3.2.12].

Since Fiy41 = 0, we have F;41 C 0: Fy_; for 0 < i < u — 1. We conclude that

(5) = (3): For 0 < i <wu—1, we have

Fii 1 =0:F,_;, because these two ideals have the same length.
(3) = (2): Let 0 <i <wu—1. By Lemma 4.1.(1), we have
E N (E+1 : m) M (E+2 : Fl) MN---N (Fu : Fu,(i+1)) M (Fu+1 : Fufl) MN---N (E+u+1 : Fu)

e Fina
Fyy1:Fy
Fiqa
0: Fu—i .
_ - Tu—i F .1=0
Firy since Fy 1

F4
= = by condition (3).

Fina

Hence S; =0 for 0 <¢ <wu—1. O

Theorem 4.3. Let (R,m) be a d-dimensional Gorenstein local ring and let F =
{Fi}icz be an Fi-good filtration, where Fy is m-primary. Assume there exists a
minimal reduction J of F such that p(J) = d, and let uw = r;(F) denote the
reduction number of F with respect to J. The following are equivalent:

(1) G(F) is Gorenstein.

(2) J:Fyoi=J+Fiy1 for0<i<u-—1.

(3) J:Fyy=J+Fiy1 for0<i<|[%2]

Proof. The equivalence of items (2) and (3) follows from the double annihilator

property in the zero-dimensional Gorenstein local ring R/J, see, for example [BH,
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(3.2.15), p.107]. To prove the equivalence of (1) and (2), by Theorem 3.12, we
may assume that G(F) is Cohen-Macaulay. Choose x1,...,x4 in Fj such that
J = (x1,...,24)R and z1,...,24 is a superficial sequence for F. Since G(F) is
Cohen-Macaulay, the leading forms 7, ...,z in F| /F; are a G(F)-regular sequence

by Proposition 3.2, and hence we have the isomorphism
G(F)/(@1,...,xq) = G(F /J)

as graded R-algebras. Set R := R/J, m:=m/J, and F := F /J = {F} };cz, where
F, = F,R for all i € Z. Then (R,m) is a zero-dimensional Gorenstein local ring
and F is a F}-good filtration with F, ;1 = 0 and F,, # 0. To show the last equality
suppose that F, = 0. In this case F,, C J, and hence F, = F, N J = JF,_1, as
G(F) is Cohen-Macaulay. This is impossible since u := r;(F). Now we have

G(F) is Gorenstein <= G(F) is Gorenstein
<= 0:F,_;=F4 for 0<i<u—1 by Theorem 4.2
<~ J:F_i=J+F4 for 0<i<u-—1

This completes the proof of Theorem 4.3. O

The following is an immediate consequence of Theorem 4.3 for the case of reduc-

tion number two.

Corollary 4.4. Let (R,m) be a d-dimensional Gorenstein local ring and let F =
{F;}icz be an Fi-good filtration, where Fy is m-primary. Assume there exists a

minimal reduction J of F such that u(J) = d and that rj(F) = 2. Then:

G(F) s Gorenstein <= J : F5 = F7.

Corollary 4.5 deals with the problem of lifting the Gorenstein property of associ-

ated graded rings. Notice we are not assuming that G(F) is Cohen-Macaulay.

Corollary 4.5. Let (R,m) be a d-dimensional Cohen-Macaulay local ring and let
F = {F;}iez be an Fi-good filtration, where Fy is m-primary. Assume there exists
a minimal reduction J of F such that p(J) = d and that F, ¢ J for u := r;(F).
Set R:= R/J and F := F/J = {F;R}icz. If G(F) is Gorenstein, then G(F) is

Gorenstein.

Proof. If G(F) is Gorenstein, then R is Gorenstein, and hence R is also Gorenstein,

because (R, m) is Cohen-Macaulay. The condition F,, ¢ J implies that F,, # 0 and
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Fuy1 = 0. Hence r;(F) = r)(F). The assertion now follows from Theorem 4.2
and Theorem 4.3. O

The following theorem is a special case of a result of Goto and Nishida that

characterizes the Gorenstein property of the Rees algebra R(F).

Theorem 4.6. (Goto and Nishida [GN]) Let (R,m) be a Gorenstein local ring
of dimension d > 2 and let F = {F}}icz be an Fi-good filtration, where Fy is m-
primary. Let J be a reduction of F with u(J) = d. The following are equivalent:

(1) The Rees algebra R(F) is Gorenstein.
(2) The associated graded ring G(F) is Gorenstein and a(G(F)) = —2.
(3) The associated graded ring G(F) is Gorenstein and rj(F) =d — 2.

In Theorem 4.7 and Corollary 4.9, we generalize to the case of filtrations results
of Herrmann-Huneke-Ribbe [HHR, Theorem 2.5]

Theorem 4.7. Let (R,m) be a regular local ring of dimension d > 2 and let F =
{F;}iez be an Fi-good filtration, where Fy is m-primary. Let J be a reduction of
F with u(J) =d and rj(F) = u. If G(F) is Cohen-Macaulay, then G(F /J) has a
nonzero homogeneous socle element of degree < d — 2.

Proof. We have

(3) F; CF;:mCF;:F, =F;_ forall integers j,

where the last equality holds by Lemma 2.4(1) because G(F) is Cohen-Macaulay.

Since J is a reduction of F with r;(F) = u, we have F; C J7=“ for all j > u, hence
F;rmC ™ :mC i J=Jg"""tC,

whenever j > uw+ 1. Thus there exists an integer £ > 1 such that

(4) FpomZF,+J and F;:mCF;+J, forall j>k+1.

Letve (Fy:m)+J \ Fp+J, thenv € F_1+J \ Fp+J by (3). Thus the image
v of v in R/J has the property that its leading form 7* € G(F /J) is a nonzero
element in [G(F/J)], ;.

Claim 4.8. : 7* € Soc (G(F /J)).

Proof of Claim. Let o be any homogeneous element in 91, where 91 is the unique

maximal (homogeneous) ideal of the zero-dimensional graded ring G(F /J). We
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show that a - v* = 0. We have two cases :
(Case i) : Assume that dega =n > 1. Write « = y + (Fp41 + J), where y € F,.

Then we have
T = yo+ (Fuer + J)

-0,
since yv € Fo,((F, :m)+J) C (F,Fy :m)+J C (Fqg:m)+J C F 1+ J, where
the last inequality holds by (4).

(Case ii) : Assume that dega = 0. Then o = z + (F} + J), where z € m, and we

have
a-v"=zv+ (F, + J)

= 0’
where the last equality holds because v € (Fj, : m) + J and z € m. This completes
the proof of Claim 4.8.
Since F is an Fi- good filtration, we have F]* C F,, C F_ln for all n > 0, where F_ln
denotes the integral closure of Fj*. Hence F, C F_I" for all n > 0. We have

Fd:mng:mdflQE:mdilgFf:mdfng,

where the last inclusion follows from a result of Lipman [L, Corollary 1.4.4]. Hence
we have
F;,mCF;:mCJ forall j>d.

Thus by (4), we have k < d — 1. Therefore degv* = k — 1 < d — 2. Since 7" €

Soc(G(F)) by Claim 4.8, the proof of Theorem 4.7 is complete. O

Corollary 4.9. Let (R,m) be a regular local ring of dimension d > 2 and let
F = {F;}iez be an Fi-good filtration, where Fy is m-primary. Let J be a reduction
of F with u(J) = d. If Fix1 C mF; for each i > d — 1 and G(F) is Gorenstein,
then ry(F) < d—2.

Proof. Since G(F) is Gorenstein, Proposition 3.3 shows that G(F /J) is Gorenstein,
as well. Hence Theorem 4.7 implies that [G(F /J)]; = 0 for all ¢ > d — 1. Thus for
i > d— 1 we have

Fi+J o F; _ F;

Fii+J  Fa+(NE)  Fa+JE_
where the last equality holds again by Proposition 3.3. Thus for all ¢ > d — 1, we

0= [G(F /)i =

have

(5) Fi=Fi1+ JFi g,
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and hence by Nakayama’s Lemma, F; = JF;_; since F;4; C mF;. Therefore
’I”J(f) <d-—2. O

5. INTEGRAL CLOSURE FILTRATIONS OF MONOMIAL PARAMETER IDEALS

In this section we examine the integral closure filtration F associated to a mono-
mial parameter ideal in a polynomial ring. We use Theorem 4.3 to give necessary
and sufficient conditions in order that G(F) be Gorenstein. We demonstrate that

G(F) and even R(F) may be Gorenstein and yet F is not an ideal-adic filtration.

Setting 5.1. Let R := k[z1,...,x4] be a polynomial ring in d > 1 variables over
the field k. Let ai,...,aq be positive integers and let J := (z{*,...,25%)R be a
monomial parameter ideal. Let L := LCM{ay,...,aq} denote the least common
multiple of the integers ai,...,aq, and let F := {J"},cz be the integral closure
filtration associated to J. The ideal J has a unique Rees valuation v that is defined
as follows: v(z;) := L/a; for each ¢ with 1 < ¢ < d. Then for every polynomial f € R
one defines v(f) to be the minimum of the v-value of a nonzero monomial occuring
in f (cf. [SH, (10.18), p. 209]). The Rees valuation v determines the integral closure
J" of every power J" of J. We have J* = {f € R | v(f) > nL}. Each of the ideals
Jm is again a monomial ideal. Let m := (x1,...,24)R denote the graded maximal
ideal of R. Notice that s := 29'"! ... xgdfl € (J:m) \ Jis asocle element modulo
J. Since R is Gorenstein and J is a parameter ideal, we have (J,s)R = J : m, and

s € K for each ideal K of R that properly contains J.

Remark 5.2. The filtrations F = {J"},>0 of Setting 5.1 may also be described
as the integral closure filtrations associated to zero-dimensional monomial ideals

having precisely one Rees valuation [SH, Theorem 10.3.5].

Lemma 5.3. Let the notation be as in Setting 5.1. For each integer k, let I} :=
{feR|v(f) >k} Wehave:
(1) Let o € R be a monomial, then o ¢ J <= s € aR.
(2) Let K be a monomial ideal, then K C J <— s ¢ K.
(3) Each Iy is a monomial ideal, and Iy C J <= k > v(s) + 1.
(4) The reduction number r;(F) satisfies rj(F) =u <= s€ Ju \ Jutl,

Proof. For item (1), let K = (J,a)R. If a ¢ J then s € K. Since K is a monomial

ideal, s is a multiple of some monomial generator of K. Since s ¢€ J, we must have
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s is a multiple of a. Conversely, if s € aR then a € J because s ¢ J. Items
(2) and (3) follow from item (1). For item (4), a theorem of Hochster implies that
R(F) is Cohen-Macaulay [H, Theorem 1], [BH, Theorem 6.3.5(a)]. Therefore G(F)
is Cohen-Macaulay, which gives r;(F) = s;(F) := min{n | J*+1 C J}. Hence by
item (2), we have item (4). O

Proposition 5.4. Let the notation be as in Setting 5.1. Write
v(zy) +v(ze) + -+ v(rqy) =jL+p, where j>0 and 1<p<L.

Then the reduction number satisfies rj(F) =d — (5 + 1).

Proof. Observe that
v(s) = dL — (v(z1) + v(z2) + - - + v(24))

=dL — (jL+p) by hypothesis

= (d=j)L —p.
Therefore (d — (j +1))L < v(s) < (d — j)L and hence s € J4=U+1) \ Jd=i. Thus
rj(F)=d— (j+1) by Lemma 5.3(4). O

Lemma 5.5. Let the notation be as in Setting 5.1 and let Zﬁzlv(xk) = jL + p,
where j >0 and 1 < p < L. The following are equivalent :

(1) The associated graded ring G(F) is Gorenstein.

(2) For every integer i > 0 and every monomial o € R with s € aR one has

v(ia) <(i+1)L -1 <= v(a) < (i+1)L —p.

Proof. Let u := r;(F). Proposition 5.4 shows that v(s) = (u+ 1)L — p. For any
monomial o € R one has
adJ+JH — ag¢gJ and a¢g Jt!
< se€aR and v(a)<(i+1)L—1.
Here we have used Lemma 5.3(1) and the fact that Ji1 is a monomial ideal.
Likewise,

agJ:Jimt = aJvi g J

= seaJui

<= sc€aR and 2 € Jui

< s€aR and v(s)—v(a)> (u—1i)L
< s€aR and v(a)<(i+1)L—p.
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Thus, item (2) above holds if and only if J + Ji*1 = J : J*=% for every i > 0 or,
equivalently, for 0 < ¢ < u — 1. But this means that G(F) is Gorenstein according
to Theorem 4.3. O

We thank Paolo Mantero for showing us that G(F) is Gorenstein implies ZZ:1 v(zg) =
1 mod L as stated in Theorem 5.6.

Theorem 5.6. Let the notation be as in Setting 5.1. Then we have
d
G(F) is Gorenstein <= Zv(xk) =1 mod L.
k=1

Proof. If p = 1, then G(F) is Gorenstein according to Lemma 5.5. To show the
converse notice that for ¢ >> 0, (i4+ 1)L —1 is in the numerical semigroup generated
by the relatively prime integers v(z1),...,v(zq). As L = agv(zy), we may subtract
a multiple of L to obtain (i + 1)L — 1 = cyv(x1) + -+ + cqv(xy) for some integer ¢
and ¢, integers with 0 < ¢, < a; — 1. Clearly ¢ > 0. Write o := z7* - --:cfld. Now
a € R is a monomial with s € aR and v(a) = (i + 1)L — 1. If G(F) is Gorenstein
then by Lemma 5.5, v(a) < (i + 1)L — p. Therefore p < 1, which givesp=1. O

Corollary 5.7. Let the notation be as in Setting 5.1 and assume that d > 2. The
following are equivalent :

(1) X4 v(xk) = L+ 1.

(2) G(F) is Gorenstein and rj(F) =d — 2.

(3) The Rees algebra R(F) is Gorenstein.

Proof. The equivalence of items (1) and (2) follows from Proposition 5.4 and The-
orem 5.6, whereas the equivalence of items (2) and (3) is a consequence of Theo-

rem 4.6. O

Remark 5.8. Assume notation as in Setting 5.1. Since G(F) is Cohen-Macaulay,
Proposition 3.8 implies that the maximal value of the reduction number r;(F) is
d — 1. For every dimension d, the minimal value of r;(F) is zero as can be seen by
taking a1 = -+ = ag_1 = 1. If d > 2 and all the exponents a; are assumed to be
greater than or equal to 2, then the inequalities L/2 > L/a; along with Lemma 5.3
imply that the possible values of the reduction number u := r;(F) are all integers

u such that [4| <u<d-—1.
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Setting 5.9. Let the notation be as in Setting 5.1. Let e be a positive integer and
let y1,...,ye be indeterminates over R. Let S := R[y1,...,v]. Let by,...,b. be
positive integers and let K := (J, yll’l, ...,y%)S be a monomial parameter ideal of
S. Let & := {K"},>0 denote the integral closure filtration associated to the ideal
K. Let w denote the Rees valuation of K, and let ¢ := :c‘flfl e xgd_lyllnfl e yle’e_1

denote the socle element modulo the ideal K.
Remark 5.10 records several basic properties relating to the filtrations F and &.

Remark 5.10. Assume notation as in Setting 5.1 and 5.9. Then the following hold:

(1) For each positive integer n we have
J"=K'nR (J)"=(K)"NnR J'=K'NR.

(2) If € is an ideal-adic filtration, then F is an ideal-adic filtration.

(3) The reduction numbers satisfy the inequality r;(F) < rg(E).

(4) The Rees valuation w restricted to R defines a valuation that is equivalent
to the Rees valuation v, that is, these two valuations determine the same

valuation ring.

Corollary 5.11. Assume notation as in Setting 5.1 and 5.9. For each monomial
parameter ideal J of R there exists an extension S = R[y1, ..., Y] and a monomial
parameter ideal K = (J,4%", ..., y%)S such that G(E) is Gorenstein where £ =

{K"™},>0 is the integral closure filtration associated to K.

Proof. Let J = (x{*,...,25%)R, let L be the least common multiple of ay,...,aq
and let v denote the Rees valuation of J. Write Zi:l v(zg) = jL + p, where j >0
and 1 <p < L. If p=1, then G(F) is Gorenstein by Theorem 5.6 and we can take
S=R. Ifp>1,lete=L—p+landletS=Rly,...,y]and K = (J,yF, ... ,y5)S.
Then w(yx) = 1 for each k with 1 < k < e. Also w restricted to R is equal to v and

we have
d e
> wlzk) + Y wlys) =jL+p+L—p+1=(j+1)L+1
k=1 k=1
Therefore G(€) is Gorenstein by Theorem 5.6. O

Remark 5.12. With the notation of Corollary 5.11, we have :
(1) If Zizlv(:ck) = jL + p, where 1 < p < L, then from the construction

used in the proof of Corollary 5.11 one may obtain for each positive m a
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polynomial extension S and a monomial parameter ideal K of S such that
r(€) =dim S — (j +m), where £ = {K"}, ..

(2) If Zizl v(x) < L, then by Corollary 5.7 there exists a monomial parameter
ideal K = (J, 4%, ...,4%)S such that the Rees algebra R(£) is Gorenstein.

Example 5.13 demonstrates the existence of monomial parameter ideals K such

that the integral closure filtration & = {K"},>¢ has the following properties:

(1) The reduction number satisfies rx(£) =d — 2.
(2) The associated graded ring G(£) and the Rees algebra R(E) are Gorenstein.
(3) The filtration & is not an ideal-adic filtration.

Example 5.13. Let R = k[z1, 72, 73] and let J = (23,23, 2])R. Then L = 42 and
v(z1) = 21,0(x9) = 14 and v(x3) = 6. Thus 3>, v(z;) = 41 = L — 1. Hence G(F)
is not Gorenstein. Notice that r;(F) = 2 and

7 4 2 2 5 .23
J = (J, ziz5, z1m005, T125, Tox3, x573)R.

The element zix3z§ € J2 \ (J)2. Hence the filtration F = {J"},>¢ is not an
ideal-adic filtration. Let S = R[y1,¥2] and let K = (J,y$2,v32)S. Then we have
w(y1) = w(y2) = 1 and w(z;) = v(x;) for each i. Hence the sum of the w-values of
the variables is equal to L 4+ 1. Therefore G(€) is Gorenstein. Notice that also the
Rees algebra R(E) is Gorenstein by Corollary 5.7.

Alternatively, one could let S = R[y;] and let K = (J,5?!)S. Again the sum of
the w-values of the variables is L + 1, so R(£) and G(£) are Gorenstein. In both
cases 1k (&) is the dimension of S minus two. In the previous case rx(£) = 3 and

in this case rx(€) = 2.

6. THE QUASI-GORENSTEIN PROPERTY FOR R'(J-')

Let (R,m) be a d-dimensional Gorenstein local ring and let F = {Fj};cz be an
Fi-good filtration in R, where ht(F;) = g > 0. Assume there exists a reduction J
of F with p(J) = g and reduction number u := r;(F). In Theorem 6.1, we prove
that the extended Rees algebra R (F) is quasi-Gorenstein with a-invariant b if and
only if J" : Fyy = Fyyp—utg—1 for every n € Z. If G(F) is Cohen-Macaulay, we prove
in Theorem 6.2 that the maximal degree of a homogeneous minimal generator of

the canonical module wg(r) is at most g and that of the canonical module w (F) is
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at most g — 1. With the same hypothesis, we prove in Theorem 6.3 that R’ (F) is
Gorenstein if and only if J* : F,, = F,.

Theorem 6.1. Let (R,m) be a d-dimensional Gorenstein local ring and let F =
{F;}iez be an Fi-good filtration of ideals in R. Let Fy be an equimultiple ideal of R
with ht F1 = g > 0 and J = (x1,22,-- ,x4)R C Fy be a minimal reduction of F.
Let R'(F) = @,y Fit'. Then the following assertions are true.

(1) R'(F) has the canonical module W (F) = @ZEZ(JH‘“ c E )t
(2) R'(F) is quasi-Gorenstein with a-invariant b <= J' : F, = itb—utg—1 for
all i € Z.

Proof. (1) Let K := Quot(R) denote the total ring of quotients of R. Let A :=
R[Jt,t7'] C C := R(F) = @,cz Fit'. Notice that G(J) = A/t~'A, where ¢!
is a homogeneous A-regular element of degree -1. Since J = (x1,%2, - ,24)R
is generated by a regular sequence, G(J) = (R/J)[X1, X2, -+, X, is a standard
graded polynomial ring in g-variables over a Gorenstein local ring R/J, whence A
is Gorenstein and wa = A(—g + 1) = At9~L. Since C is a finite extension of A and

Quot(A) = Quot(C) = K(t) (. g > 0), we have that

we =2 Ext (C,wa) = Homa(C, A(—g + 1))
>~ Homy (C, At971)
= HomA(C,A)tg*1
> (A e OOt
= (A ‘R[t,t—1] C)tg_lv

where the last equality holds because
Aigy CC Ay ACACR[L .

We have @,y [welit’ = @,;cz[A R[] Cl;t+9~1. Since J is complete intersection

and JiHI+1 . J = Ji*J for all i and j, we have

weli = [A gpe-1 Cli = N;(J7 : Fy) = JT 1 F,
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for all i € Z. Therefore we = @,y welit’ = @y (ST F )91
(2) C is quasi-Gorenstein with b := a(C) if and only if

b) = @[WC]iti = @[C]Hbti

iE€EZ iE€EZ

— @ JZ+’LL : terg 1 @E-{-bt
€L €L
@ tz-i—(g 1)—u @Eti—b
€L €L

<~ JZ F, = i+b+(g—1)—u forall 1€Z.

This completes the proof of Theorem 6.1. g

Theorem 6.2. Let (R,m) be a d-dimensional Gorenstein local ring and let F =
{F;}iez be an Fy-good filtration of ideals in R, where Fy is an equimultiple ideal with
htFi =g >0and J = (x1,22, -+ ,x4)R C Fy is a minimal reduction of F. Assume
that the associated graded ring G(F) is Cohen-Macaulay. Then :

(1) The maximal degree of a homogeneous minimal generator of wg(F) 18 < g

(2) The maximal degree of a homogeneous minimal generator of w () is < g—1.

Proof. (1) Since J = (x1,22, -+ ,24)R is an R-regular sequence, (R/J,m/J) is
a Gorenstein local ring of dimension d — g. We may assume that (R/J,m/J) is
complete. By Cohen’s Structure Theorem [BH, Theorem A.21, page 373], there
exists a regular local ring 7' that maps surjectively onto R/.J, say T 2, R/J, and
hence R/J =2 T /K, where K = ker ¢. Let

c:=codimK =dim7 —dim7/K = dimT — dim R/ J.

Then dimT = (d—g)+c. Notice that G(J) = @yn0 Ji/Tip1 = (R/T)[X1, Xz, -+ , X,]
is a polynimial ring in g-variables over R/J. Let S = T[X1, Xa,--- , X4]. Then we
have

S — G(J) — G(F).

Since G(F) is a finite G(J)-module, G(F) is a finite S-module and by assumption
G(F) is Cohen-Macaulay. The graded version of the Auslander-Buchbaum formula

implies that pdg G(F) = ¢. Let He be a homogeneous minimal free resolution of
G(F) over S

He:0 —H,— H..y — -+ — H — Hy — G(F) — 0.
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Notice that H. # 0. Let E, := Homg(H,,ws) = Homg(H,, S(—g)). It follows [BH,
Corollary 3.3.9] that

E.:0—>EC—>EC_1—>---—>E1—>E0—>wg(}—) — 0.
is a homogeneous minimal free resolution of wg(F) over S, where
E; = Homg(H.—;,ws) = Homg(H.—;, S(—g))

for 0 <i <. Since H. = @gmite S(—4)%i (# 0), we have

finite finite
Ey = Homg(H.,S(—g)) = €P Homg(S,9)(j — 9)* = @ S — 9)".
j j

Thus the maximal degree of a homogeneous minimal generator of wg(r) is < g — j
and this is < g since 57 > 0.

(2) Let C = R'(F). Since G(F) = C/t~'C and ¢! is a non-zero-divisor of C, we
have

G(F) is Cohen-Macaulay <= C is Cohen-Macaulay.
By [BH, Corollary 3.6.14], we have

Wa(F) = we e = (WC/flbch) (degt™") = (w/t*lw(z)(—l)-
That is, we have
Pl = (we/t™we)(=1) =@ [we/t we)(=1)] = @) [we/t we]. 1
i€z i€z ' ez "
Letting o(—) denote maximal degree of a minimal homogeneous generator, by (1),
we have

o(wgr) < g = Q(wc/t_lwc> <g-1

Since ¢! is a non-zero-divisor on we, the graded version of Nakayama’s lemma ([BH,

Exercise 1.5.24])implies that ¢ (w¢) < g — 1. O

Theorem 6.3. Let (R,m) be a d-dimensional Gorenstein local ring and let F =
{F;}iez be an Fi-good filtration of ideals in R. Let Fy be an equimultiple ideal of R
with ht F1 = g > 0, let J = (z1,--- ,24)R C F1 be a minimal reduction of F, and
let w := r;(F) be the reduction number of the filtration F with respect to J. Let
C:=R(F)= @D,y Fit'. If G(F) is Cohen-Macaulay, then the following conditions
are equivalent.

(1) R'(F) is quasi-Gorenstein.

(2) R'(F) is Gorenstein.

(3) J*: F, =F,.
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Proof. Since G(F) is Cohen-Macaulay, items (1) and (2) are equivalent.
(1) = (3) : Since G(F) is Cohen-Macaulay and G(F) = C/t~1C, we have
a(G(F)) = a(C) + deg(t™!) = b— 1. By [HZ, Theorem 3.8], u = r;(F) = a(G(F)) +
U(F)=b—1+4 g, where {(F) is analytic spread of F. By Theorem 6.1 (2), we have
that J' : F, = F; for all i € Z. In particular, J* : F,, = F,,.
(3) = (1) : Suppose that J*: F,, = F,. Let b = a(C). Then we have
C(b) = @[C]ierti _ @[C]i+b+(g—l)ti+(g_l) — @[C]i+uti+(9—l) — @E_’_uti-i-(g—l).
i€Z i€Z i€Z i€Z
By Theorem 6.1 (1), we have
we = @(JH“ : Fu)tH(g*l).
1€Z

To see we = C(b), we use :
Claim 6.4. : J'™%: F, = F; ., for alli € Z.

Proof of Claim. D : For all ¢ € Z, we have Fjy, - Fyy C Fiiyqu = JHuR, C it
and hence Fj,, C Jt%: F,.
C : We have three cases : (Case i) i < —u, (Case ii) —u+ 1 < i < —1, and (Case
iii) 7 > 0.
Case i : Suppose that i < —u. Then we have J**%: F, = R: F, = R= F,,,.
Case ii : Suppose that —u+1 < i < —1. It is enough to show that J* 7 : F,, C F,_;
for 1 < j < u—1. In fact, let a € Ju=i . F, for some j with 1 < 5 < u—1.
Then we have aF, C J* 7, and hence aJ?F, C JIJ*J = J* Thus we have
aJ) C J*: F, = F,, by assumption (3). Therefore we have
aeF,:J

CF,-F,:J'F, for n>>u (.J'F,=F,, foral j>0)

C Fuint Fjin

C F,—; by Lemma 2.4.
Case iii : Suppose that ¢ > 0. It is clear for the case where ¢ = 0, by assumption.

To complete the case (iii), we use :
Claim 6.5. : J**: F, C J{(J": F,) for all i > 1.

Proof of Claim. Since we is a finite C-module and C is a finite A := R[Jt,t71]-
module, we have that we is a finite A-module. Let {aj, 9, - ,ap} be a minimal

set of homogeneous generator of we over A and let dega; = n; for 1 < j < h. By
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Theorem 6.2 (2), dega; < g — 1 for 1 < j < h. That is, (9 — 1) —n; > 0 for
1 < j < h. Hence we have

h
welg-1 =3 [Alig-1)-n, Z Jlo=D=nig
j=1
h
lwelg = ) [Alg-n, 05 = Z‘]g D7 Jay _JZJg D7y = Jlwelg1,
Jj=1 j=1 j=1

h
lwelgri = > [Al(g+i-n; @ Zﬂg b J”lZJg D7tay = T wely-
j=1 j=1 J=1

Thus [we(g—1)+i = J'[welg—1 for all i > 0, and hence J™* : F,, = J'(J* : F,), which
completes the proof of Claim 6.5. The Claim 6.4 implies that

@(JiJru . ter g—1) @FZert

1EL 1E€EL
Thus we = C(b), where b = a(C). This completes the proof of Theorem 6.3.

g

Corollary 6.6. Let (R,m) be a d-dimensional Gorenstein local ring and let F =
{Fi}icz be an Fi-good filtration of ideals in R such that Fy is an equimultiple ideal
with ht F1 = g > 0 and J = (x1,--- ,24)R C Fy is a minimal reduction of F
with u == r;(F). Let C := R (F) = @D,cz Fit'. Then the following conditions are
equivalent.

(1) G(F) is Gorenstein.

(2) R'(F) is Gorenstein.

(3) G(F) is Cohen-Macaulay and J* : F,, = F,.

Proof. Since G(F) = C /t~1 C and t~! is a non-zero-divizor of C, we have (1) <= (2),
and Theorem 6.3 implies (2) <= (3). O

Taking the I-adic fitration F = {I'};cz, we get the usual definition of reduction
number with respect to a minimal reduction of the ideal( i.e., r;(I) = r;(F)). As

another consequence of Theorem 6.3, we obtain a result of Goto and Iai.

Corollary 6.7. ([GI, Theorem 1.4]) Assume that (R,m) is a Gorenstein local ring
and let I be an equmultiple ideal with ht I > 1. Let r = r;(I) be a reduction number
with respect to a minimal reduction J of I. Then the following two conditions are

equualent.
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(1) G(I) is a Gorenstein ring.
(2) G(I) is a Cohen-Macaulay ring and J" : I" = 1I".

Remark 6.8. Let (R, m) be a Cohen-Macaulay local ring with dim R = 1 and let [
be an m-primary ideal. As described in Example 2.5, the Ratliff-Rush filtration F =
{ﬁ}ieZ is an I (and I)-good filtration. Since the ideals I' are Ratiliff-Rush ideals,
G(F)+ = Dix 1:3/[/13:1 contains a non-zero-divisor, and hence, since dim G(F) = 1,
G(F) is Cohen-Macaulay. Let J = xR be a principal reduction of I. The reduction
number r7(F) is independent of the principal reduction J by [HZ, Proposition 3.6].
Let s;(I) = min{i | I'*! C J} denote the index of nilpotency of I with respect to
J. An easy computation shows that r;(I) > r;(F) > s;(I).

For R of dimension one, we have the following corollary to Theorem 6.3.

Corollary 6.9. Let (R,m) be a Gorenstein local ring with dim R =1 , let I be an
m-primary ideal, and let F = {INi}iez denote the Ratliff-Rush filtration associated
to I. Let J = xR be a principal reduction of I and set r = rj(I) and u = r;(F).
Then the following conditions are equivalent.

(1) G(}') = @Dofi/ﬁ:ﬁ is Gorenstein.
(2) C:=R(F) = Dicz it is Gorenstein.
(3) CJu — ]u
Proof. (1) <= (2) : Notice that G(F) = C /t~1C and t~! is a non-zero-divisor of C.
(2) <= (3) : Apply Corollary 6.6.
(2) = (4) : Suppose that C = @D, I’t" is Gorenstein. Then C is quasi-Gorenstein
with a(C) = rj(F) = u. We have that

we @ Jerr ]7“ _ @(JiJrr : Ir)ti,

1E€EL 1€Z

since I' = I’ for all i > r. Hence J" : I" = [7+b=" = [ where u = a(C) =b.
(4) = (2) : Suppose that J" : I" = I*. We have that

we = @I It = P I

i€Z €L
To see that C is Gorenstein, it suffices to show that we = C(u). That is, we need to

prove the following claim :

Claim 6.10. : J*" : [" = [i+u for alli € 7.
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Proof of Claim : Notice that r := r;(I) > u := r;(F). There is nothing to show in

the case where r = u, and hence we consider only the case where r > u.

O : Since [itu]" = Jitur C [itutr — [itutr — Jitre C it e have [ite C
JHT I for all i € Z.

C: Let p:=r—wu > 1. We have four cases : (Case i) i < —r, (Case ii)
—r+1<i<—r+p(=-u), (Caseiii) —u+1<1i< -1, and (Case iv) i > 0.

Case i : Suppose that i < —r. Then J*7" : I" = R: I" = R = 't since r > w.
Case ii : Suppose that —r+1 < i < —r+p. It is enough to show that J7 : I" C [J+u-r
forall 1 < j <p. In fact, let « € J7 : I" for all 1 < j < p. Then al” C J7, and
hence aJ" 71" C J'=7J3 = J". Thus we have aJ" 7 C J" : I" = ﬁ, by assumption
(4). Therefore

aelu: Jr=i cqurr . gr=igr

C [utr: Jrip

— JutT. IQr—j

C [i+u=r by the fact : IF = Upsy (1" : ™).
Case iii : Suppose that —u+1 < i < —1. It is enough to show that J" =7 : I" C Ju=i
forall 1 < j <wu—1. Infact,let « € J7 7 :I"foralll < j < u— 1. Then
al” C J"J, and hence aJ7I" C J3J7=3 = J”. Thus we have aJ? C J" : I" = F,
by assumption (4). Therefore
aelv: i CIu : jr

C Jutr . Jifm

=Tt

- Ju—i by the fact : Ik — Unzl(I"“‘“‘ IM).
Case iv : Suppose that ¢ > 0. The claim is clear in the case where ¢ = 0. For ¢ > 0,
we have
JHT T = JiJT T

= JiJu by assumption (4)

= [itu,
This completes the proof of Claim 6.10.

By Claim 6.10, we have

we =@ 1)t = @ 1+t = PlClivat’ = Clu).

IeZ 1€Z 1E€EL
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Thus C = @, it is quasi-Gorenstein with a(C) = u. This completes the proof of
Corollary 6.9. O

7. EXAMPLES OF FILTRATIONS

We first present three examples of one-dimensional Gorenstein local domains con-
structed as follows. Let k be a field and let 0 < n; < ne < ng be integers with
GCD(n1,n2,n3) = 1. Consider the subring R = k[[s™,s"2,s™]] of the formal
power series ring k[[s]]. Notice that R is a numerical semigroup ring associated to
the numerical semigroup H = (ni,na,n3). The Frobenius number of a numerical
semigroup H is the largest integer not in H.

We consider the Gorenstein property of the associated graded ring G(F;) for
1 =0,1,2, where

(1) Fo := {mi};>0 is the integral closure filtration associated to m,

(2) F1:= {Ijlvli}izo is the Ratliff-Rush filtration associated to m,

(3) Fg:={m'};>¢ is the m-adic filtration.
The examples below will demonstrate that these filtrations are independent of each
other, as far as the Gorenstein property of their associated graded rings is concerned.
Notice that m! € m¢ C m' for all i > 0 and G(F2) = G(m) = @,;5om’ /m'*!. In
Examples 7.1, 7.3 and 7.4, we let S = k[[z,y, 2]] be the formal power series ring in

three variables z, y, z over a field k and n := (z,y, 2)S.

Example 7.1. ([GHK, Example 5.5]) Let R = k[[s*™, s3mF! s6m+3]] where 2 <
m € Z and define a homomorphism of k-algebras
3Im

— 83m+1 — 86m+3'

o(y) ;and  o(2)

p:S— R by o)=s
Then the ideal I = ker ¢ is generated by f = zo —y3 and g = 2™ — 22™*!, whence
R is a complete intersection of dimension one. We have G(n) = k[X,Y, Z] and [* =
(XZ,2m,Yy3zm=1ySzm=2 ... y3m=1z y3m)GQ(n). Since VI*: Z = (X,Y, Z),

the associated graded ring

G(m) = k[X,Y, Z]/(XZ, 2™, Y3zm 1 ySzm=2 ... y3m=1) z y3m)
is not Cohen-Macaulay, see also [GHK, Theorem 5.1], and hence is not Gorenstein.
Thus F # F1, by [HLS, (1.2)]. The reduction number of m = (s3™, s3m+1 6m+3)p
with respect to the principal reduction J = ()R is 3m — 1 and the blowup

of m is R[Z55] = % ([HLS, Fact 2.1]). Since s = s /s%" € B the
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blowup of m is R = k[[s]], the integral closure of R. Hence F; = Fo, by [HLS,
Corollary 2.7]. Notice that mi = (s3™)ek[[s]] N R for all i > 0. We observe that the
reduction number r;(F1) of F1 with respect to the principal reduction J = (s™)R
is 2m. For a € kl[s]], we denote by ord(«) the order of o as a power series in s.
Since mi = {a € R|ord(a) > (3m)i}, and the Frobenius number of the numerical
semigroup of R is 6m? — 1, we have r?l;r1 C J and Jmé = r;;:l for every ¢ > 2m.
Furthermore, s6m’+3m=1 ¢ 1?1\271, but s6m*+3m=1 — dmgbm*~1 ¢ J which shows

m?m ¢ J. Hence r;(F1) = 2m.
Claim 7.2. G(F1) is a Gorenstein ring.

Proof of Claim. By Corollary 6.9, it suffices to show that

JU:m"=mY where u:=r;(Fy).

Since u := r;(F1) = 2m, the inclusion “2” is clear. To show the reverse inclusion,
it suffices to prove : 3 € R\r/r;QT/” = B¢ (J: r?lin/”b) Let 5 € R\r?ﬁ”/””, that is,
B € R with ord(8) < 6m?. Let ng := ord(3), where 0 < ng < 6m?. Then o :=
§Om?+6m*—ns—1 o 1?1\271, since ord(c) = 6m? + (6m* —ng) —1 > 6m? +1—1 = 6m?.
Hence o = s . om*+6m?—ng—1 _ (6m?+(6m?—1) _ (3m)2m . 6m*—1 ¢ j2m gince

the Frobenius number of the numerical semigroup of R is 6m? — 1.

Example 7.3. Let R = k[[s*, 5%, s7]] and define a homomorphism of k-algebras

4

p: 85— R by o@)=s, ’

o(y) =55 and  p(z) =s".

2 _ 2%y, whence R

Then the ideal I = ker ¢ is generated by f = 2% —y% and g = =
is a complete intersection of dimension one. We have G(n) = k[X,Y, Z] and I* =
(Y2,7?). Hence G(m) = k[X,Y,Z]/(Y?, Z?) is a Gorenstein ring. In particular

Fo = F;1 by [HLS, (1.2)]. The reduction number of m = (s*, 5, s7) R with respect

l’l’l2

to the principal reduction J = (s*)R is 2 and the blowup of m is R[%] = & =
K[[s?, s3]], which is not equal to the integral closure R = k[[s]] of R . Hence F1 # Fo,
by [HLS, Corollary 2.7]. Notice that mé = (s*)'k[[s]]N R for all i > 0. The reduction
number 7;(Fg) of Fo with respect to the principal reduction J = (s*)R is 3. Indeed,
since m’ = {a € R|ord(a) > 4i} we conclude that mi+1 C .J for every ¢ > 3 and
hence Jm? = mitl. On the other hand s'® € m3\.Jm2. Therefore r;(Fy) = 3.
Since 5% € (J : m2)\(J + m?), we have J : m2 # J + m2. Thus G(Fy) is not
Gorenstein by Theorem 4.3.

We thank YiHuang Shen for suggesting to us Example 7.4.
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Example 7.4. Let R = k[[s%,s'!, s?7]] and define a homomorphism of k-algebras

6

p:5—R by o@)=s" o) =s" and @z)=s".

Then the ideal I = ker ¢ is generated by f = 22 — 2” and g = zz — y>, whence
R is a complete intersection of dimension one. We have G(n) = k[X,Y, Z] and
I*=(2%2,ZX,2Y3,Y"). Since VI* : X = (X,Y, Z), the associated graded ring

G(m) 2 k[X,Y,Z]/(Z* ZX,ZY3,Y")

is not a Cohen-Macaulay ring, also see [GHK, Theorem 5.1], and hence is not a
Gorenstein ring. Furthermore Fy # F1 by [HLS, (1.2)]. The reduction number of
m = (5% s s2") R with respect to the principal reduction J = (s®)R is 5 and the
blowup of m is R[] = ;“TS = k[[s°, s%]], which is not equal to the integral closure
R = k][[s]] of R. Hence F; # Fo by [HLS, Corollary 2.7]. We observe that

m? = ks®" + m?

m? = ks*® 4 ks* + m?

m* = ks* + m* and

m! =m’

for every i > 5.

The reduction number r;(F1) of F; with respect to the principal reduction J =
(s)R is 4, since Jmi = mi+! for every i > 4, but s ¢ I/I’\IZ\JI’I/\I/:S. We have
that J +m2 C J : m3 C m, where the first inclusion holds since r;(F;) = 4.
Furthermore A(m /J + 1,1’\1/2) = 1, because m = ks'! + J + m?2. Since the Frobenius
number of the numerical semigroup of R is 43 we have s''s3® = 5653 ¢ J, and
therefore s'! ¢ J : m3. Hence G(F1) is Gorenstein by Theorem 4.3. The reduction
number 7;(F) of Fo with respect to the principal reduction J = (s%)R is 6, since
Jmi = mi*! for every i > 6, but s € m6\Jm?. As 57 € (J : m?)\(J + m3), we

obtain J : m* O J + m3. Therefore G(F) is not Gorenstein by Theorem 4.3.

YiHuang Shen proves in [S, Theorem 4.12] that if (R, m) is a numerical semigroup
ring with p(m) = 3 such that r;(m) = s;(m), then the associated graded ring G(m)
is Cohen-Macaulay. The following example given by Lance Bryant shows that this
does not hold for one-dimension Gorenstein local rings of embedding dimension

three.

Example 7.5. Let (S,n) be a 3-dimensional regular local ring with n = (z,y, 2)S
and S/n = k. Let I = (f,g), where f = 2% + 2% and g = 2%y + 22%. Put R:= S/I

and m := n/I. Then (R,m) is an 1-dimensional Gorenstein local ring. We have
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Gn) =k[X,Y,Z], f*= X3, and g* = X2Y. Let h = —yf +xg, &4, = 23f — xh, and
& =239 —yh. Then h* = X223 ¢ = XY Z5 and & = Y?22° + X Z5. let
K= (X3X%Y, X223 Xy Z2°,Y? 25 + X 75 C I*.
Then the Hilbert series of the graded ring G(n)/K is

1+ 2t + 3t2 4 23 4 2t* 4+ ¢° 4 2t6
1—t

and these values are the same as those in the Hilbert series of G(m) = G(n)/I*,

=14+3t+62+8t3+10t* + 1165+ 13¢5+ 13" +- - -

so that K = I*. Since (I* : X) is primary to the unique homogeneous maximal
ideal (X,Y, Z)G(n), G(m) is not Cohen-Macaulay and hence not Gorenstein. Thus
Fo # F1 by [HLS, (1.2)]. Let J = (y — 2)R. Then J is a minimal reduction of m.
A computation shows that r;(F2) = r;(F1) = s;(F2) = 6. By Corollary 6.9, to see
that G(F1) is Gorenstein, it suffices to show that (J% : m%) = m®. To check this, it
is enough to show that A\(R/m®) = 39 = w, where 13 = e(R) is the multiplicity
of R.

Since R is not reduced, the filtration Fy is not a good filtration ([SH, Theo-
rem 9.1.2]) so, in particular, Fy # Fi.

We present examples of 2-dimensonal Gorenstein local rings (R, m) and consider

the Gorenstein property of the associated graded rings G(F;) for i =0, 1,2, 3, where

(1) Fo := {mi};>0 is the integral closure filtration associated to m,

(2) F1:={(m")g1}}iz0 is the ei-closure filtration associated to m,

(3) Fq:= {ljlvli}izo is the Ratliff-Rush filtration associated to m,

(4) F3:={m'};>¢ is the m-adic filtration.
Notice that m’ C mi C (m')y C mi for all i > 0 and G(F3) = G(m) =
@izo m* /mi+1.

Lemma 7.6 is useful in considering the ej-closure filtration in a 2-dimensional

Noetherian local ring (R,m). For an m-primary ideal F' of R, let Pr(s) denote
the Hilbert-Samuel polynomial having the property that A(R/F?®) = Pr(s) for all

5 >> 0. We write
Pr(s) = eo(F) <5 ; 1> —ei(F) <i> +ea(F).

Lemma 7.6. Let (R,m) be a 2-dimensional Noetherian local ring and let F =
{F;}iez be an Fi-good filtration, where Fy is an m-primary ideal. If there ezists a
positive integer ¢ such that \(F;/F}) < ¢ for all i > 0, then the Hilbert coefficients
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of the polynomials PFli(S) and Pp,(s) satisfy
eo(F) = eo(F;) and ei(F{) = ei(F;) forall i>0.

Therefore (Ff){l} = (Fi)q1y for alli>0.

Proof. Fix i > 1, we have (F})* C (F;)® C Fy, for all s > 1. Our hypothesis implies
¢ > NFis/(F{)*) 2 M(F)*/(F{)*) 20 forall s>1.

For all sufficiently large s, we have
¢ > M(F)*/(F])*) = MR/ (F])*) = MR/(F})°)
= Pri(s) — P, (s).

1
Thus PFli(S) — Pg,(s) is a constant polynomial, which implies eo(F}) = eo(F;) and
e1(F) = e1(F). O

Example 7.7. Let k be a field of characteristic other than 2 and set S = k[[z, y, z, w]]
and n = (x,y, z,w)S, where x,y, z,w are indeterminates over k. Let

2 4
f:il? —w,

g=uxy—2°.
Let I = (f,9)S, R=S/I, and m = n/I. Since f,g is a regular sequence, R is a
2-dimensional Gorenstein local ring. We have:
(1) Fs=Fa# F1=Fo.
(2) G(F3) is not Gorenstein and r;(F3) = 5, where J = (y, w)R.
(3) G(Fo) is Gorenstein and r;(Fp) = 4, where J = (y, w)R.

Proof. The associated graded ring G := gr,,(S) = k[X,Y, Z, W] is a polynomial ring
in 4 variables over the field k, and G(F3) = G(m) = G/I*, where I* is the leading
form ideal of I in G = gr,(S). One computes that

I" = (X2, XY, X723, 7% + Y’WhHG.

Thus G/I* = G(m) is a 2-dimensional standard graded ring of depth one. Notice
that W is G(m)-regular. The ring G(m) is not Cohen-Macaulay, and hence G(m)
is not Gorenstein. We also have F3 = Fa by [HLS, (1.2)], and r;(m) = 5, where
J = (y,w)R.
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Set
T — k[x7 y’ Z’ w]
(22 —wh, 2y — 23)
Ly = ((y,z,w) + (2))T,
Ly = ((y, 2,w)* + (2))T.
Ly = ((y, 2,w)* + 2(2,w))T,
Ln = ((y, z,0)" + zw" 4 (z,w)?)T, forall n > 4.

Then T is 2-dimensional, Gorenstein, excellent and reduced, since the characteristic
of the field k is other than 2. The ring T" becomes a positively graded k-algebra if

we set

deg(z) =2, deg(y) = deg(z) = deg(w) = 1.

With this grading it turns out that L, = B;5,[T];, for all n > 1. In particular
LY C Ly, and since the image in T of z is integral over L3 it follows that L, is
integral over LY. As T is reduced, the ideal L,, = P;,[T]; is integrally closed, and
since T is excellent, L, R remains integrally closed in R, the completion of T" with
respect to the homogeneous maximal ideal. We conclude that m™ = L?—R = L,R
for every n > 1

The reduction number r;(Fo) of Fy with respect to J = (y,w)R is 4, since
Jm’ = mit! for all i > 4, whereas 122 € @\J@. We have that J+m2 C .J : m3 C
J +m, where the first inclusion holds because 7;(Fg) = 4. Notice that .J + m?2 =
(z,y,w,2%)R and J + M = (z,y,w, z)R. This implies that \(J + m/J —i—@) =1.
Since z-xz ¢ J and 2z € m3, z ¢ J : m3 and hence .J : m® = J+m?2. Thus G(Fy) is
a Gorenstein ring, by Theorem 4.3. One computes that A(m?/ m’) < 3 for all i > 0.
By Lemma 7.6, we have (m')() = (E){l} for all i > 1. Since mi C (E){l} C E,
it follows that (m’);y = mé for all 4 > 1. That is, F; = Fo. Since G(Fy) is
Gorenstein, but G(F3) is not, we also deduce that Fy # Fs. O

Example 7.8. Let S = k[[z,y, z,w|] be a formal power series ring over a field k

and n = (z,y, z,w)S, where z,y, z,w are indeterminates over k. Let



THE COHEN-MACAULAY AND GORENSTEIN PROPERTIES OF FILTRATION 35

Let I = (f,9)S, R =S/I, and m = n/I. Since f,g is a regular sequence, R is a

2-dimensional Gorenstein local ring. Set F = {F;}i>0, where

Fy =R,

Fi =m,

Fy = ((y,2,w)* + (2))R,

By = ((y,2,w)* + z(z,w))R,

Fi = ((y, z,w)" + zw' ™ 4(z,w)>)R, forall i>4.

Then :

(1) Fis a Fi-good filtration.

(2) G(m) is not Gorenstein and r;(m) = 5, where J = (y, w)R.

(3) G(F) is Gorenstein and r;(F) = 4, where J = (y,w)R and G(F) is not
reduced.

(4) F = {(m"){13 }izo is the ej-closure filtration associated to m.

Proof. The associated graded ring G := gr,,(S) = k[X,Y, Z, W] is a polynomial ring
in 4 variables over the field k, and G(m) = G/I*, where I* is the leading form ideal
of I in G = gr,(S). One computes that

I = (X2, XY, X73,75G.

Thus G/I* = G(m) is a 2-dimensional standard graded ring of depth one. Notice
that W is G(m)-regular. The ring G(m) is not Cohen-Macaulay, and hence G(m) is
not Gorenstein. Also we have m’ = m for all i > 1, by [HLS, (1.2)] and r7(m) = 5,
where J = (y,w)R. One computes that F1Fy C Fy and F;F; = Fyj forall 4,5 > 1

2 = w® and zy = 2% in R. Hence F is a

with ¢ + 7 > 3, by using the relations x
Fi-good filtration. The reduction number r;(F) of F with respect to J = (y,w)R
is 4 and G(F) is a Gorenstein ring, by the same argument in the proof of Example
7.7. G(F) is not reduced, since x* € Fy/F3 is a non-zero nilpotent element in G(F).
For z € F\F3, (%)% = 22 + F5 = w® + F5 = 0, since w® € F5. One computes
that A\(F;/F{) < 3 for all i > 0. By Lemma 7.6, we have (Ff){l} = (Fi)qy for all
i > 1. Since G(F) is Cohen-Macaulay, the extended Rees ring R'(F) is Cohen-
Macaulay and hence satisfies (S2). Therefore by [CPV, Theorem 4.2], we have

Fy = (Fy)qy = (Fl)y = (m") gy for all ¢ > 1. O
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Example 7.9. ([CHRR, Example 5.1]) Let k be a field of characteristic other than
2 or 3 and set S = k[[z,y,z,w]] and n = (z,y, z,w)S, where x,y, z, w are indeter-

minates over k. Let
f=2"= @+,
g=w?— (% —y’).
Let I = (f,9)S, R =S/I, and m = n/I. Since f,g is a regular sequence, R is a
2-dimensional Gorenstein local ring. Notice that R is also a normal domain. We
have:
(1) Fg=Fy=F1 # Fo.
(2) G(F3) is Gorenstein and r;(F3) = 2, where J = (z,y)R.
(3) G(Fo) is not Gorenstein and r;(Fy) = 3, where J = (z,y)R.

Proof. The associated graded ring G(n) = k[X,Y, Z,W] is a polynomial ring in 4
variables over the field k, and the associated graded ring G(F3) = G(m) = G/I*,
where I* is the leading form ideal of I in G. One computes that I* = (Z2 W?)G.
Thus G/I* = G(m) is Gorenstein. In particular the extended Rees ring R/'(F) is
Cohen-Macaulay, and hence by [CPV, Theorem 4.2], F3 = F9 = F;. Also we have
r;(m) = 2, where J = (z,9)R, since zw € m?\Jm and Jm? = m3.

Set

T klx,y, z, w]

(22 = (2% + y3),w? — (2% — y3))’
L= ((x,y) + (sz))Tv
Ly = ((z,y)((z,y) + (z,w)) + (2w))T,

Ly = ((z,9)" ((2,y) + (z,w0) + (2,9)" 7 (2w))T forall n >3,
The ring T becomes a positively graded k-algebra if we set

deg(x) =deg(y) =2 and deg(z) = deg(w) = 3.

Since the characteristic of the field k£ is not equal to 2 or 3, the ring T is a 2-

dimensional Gorenstein excellent normal domain. Notice that

[Tlo =k, [Th = (0), [T]2 = (z,9), [T]s = (z,w), [Tl =(z,y)°
Tlan-1 = (&, 9)" 2z w), [Tl = (5" + (5,3 (zw) forall n >3,
where |*] denotes the floor function, (x) stands for k vector space spanned by ,
and power denotes symmetric power. From this one sees that L, = @,~,,[T];. In
particular L? C L, and since the image in T of zw is integral over L} it f;llows that

L, is integral over L}. We deduce, as in the proof of Example 7.7, that L_? = L,,



THE COHEN-MACAULAY AND GORENSTEIN PROPERTIES OF FILTRATION 37

and then m” = L, R for every n > 1. The reduction number r;(Fg) of Fy with
respect to J = (z,y)R is 3, since Jmi = mit! for all i > 3, but zw € F\J@.
Since z and w are in J : m?2, we obtain J : m? = m. We have J+m? = (z,y,2zw)R,
whereas .J : m2 = m because z and w are in .J : m2. Therefore J + m2 C J : m2,
and then Theorem 4.3 shows that G(Fy) is not Gorenstein. In particular F3 # F

since G(F3) is Gorenstein. O

Remark 7.10. Let (R, m) be a 2-dimensional regular local ring.

(1) Let F = {F,}iez be an Fi-good filtration, where F is m-primary. If G(F) is
Gorenstein, then F is the F-adic filtration and F} is a complete intersection.

(2) Let I be an m-primary ideal. If G(I) is Gorenstein, then the coefficient ideal
filtrations F3 C Fo C F1 C Fy associated to I are all the same.

Proof. (1): We may assume that the residue field of R is infinite., in which case
F has a reduction J which is a complete intersection. If G(F) is Cohen-Macaulay
then r7(F) < 1 according to Proposition 3.8, hence F is the Fj-adic filtration by
Remark 3.4. If in addition G(F) is Gorenstein, we claim that r;(I) # 1 for I = F}.
Indeed, suppose r;(I) = 1. In this case Theorem 4.3 implies that J : I = I, hence
LI = L However, £f = Homg(R/I, R/J) = Ext}(R/I, R), and using a minimal
free R-resolution of R/I one sees that the minimal number of generators of the latter
module is p(I) — 1. On the other hand, u(I/J) = p(Il) — 2 since J is a minimal
reduction of I. This contradiction proves that r;(I) = 0, hence I = J is a complete
intersection.

(2): We apply part (1) to the filtration F = {F}z‘ez and use the fact that a

complete intersection has no proper reduction. ]
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