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ABSTRACT. For an ideal I of a Noetherian local ring (R, m) we consider prop-
erties of I and its powers as reflected in the fiber cone F'(I) of I. In particular,
we examine behavior of the fiber cone under homomorphic image R — R/J = R’
as related to analytic spread and generators for the kernel of the induced map
on fiber cones ¢ : Fr(I) — Fr/(IR’). We consider the structure of fiber cones
F(I) for which kerv; # 0 for each nonzero ideal J of R. If dim F(I) = d > 0,
u(I) = d+1 and there exists a minimal reduction J of I generated by a regular
sequence, we prove that if grade(G4(I)) > d — 1, then F(I) is Cohen-Macaulay
and thus a hypersurface.

1. INTRODUCTION

For an ideal I in a Noetherian local ring (R, m), the fiber cone of I is the graded

ring
F(I) =P F, =P I"/mI" = R[It]/ mR[It],
n>0 n>0

where R[It] is the Rees ring of I and F,, = I"/ mI"™. We sometimes write Fr(I) to
indicate we are considering the fiber cone of the ideal I of the ring R. In terms of the
height, ht(I), of I and the dimension, dim R, of R, one always has the inequalities
ht(I) < dim F(I) < dim R.

For an arbitrary ideal I C m of (R, m), the fiber cone F'(I) has the attractive
property of being a finitely generated graded ring over the residue field k := R/ m
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that is generated in degree one, i.e., F,, = F}* for each positive integer n, so F(I) =
k[Fy].

It is well known in this setting that the Hilbert function Hp(n) giving the di-
mension of I/ m I™ as a vector space over k is defined for n sufficiently large by a
polynomial hr(X) € Q[X], the Hilbert polynomial of F(I) [Mat, Corollary, page 95],
[AM, Corollary 11.2]. A simple application of Nakayama’s lemma, [Mat, Theorem
2.2], shows that the cardinality of a minimal set of generators of I", u(I™), is equal
to AM(I"™/mI"), the value of the Hilbert function Hp(n) of F(I).

An interesting invariant of the ideal I is its analytic spread, denoted ¢(I), where
the analytic spread of I is by definition the dimension of the fiber cone, ¢(I) =
dim F(I) [NR]. The analytic spread measures the asymptotic growth of the minimal
number of generators of I" as a function of n. In relation to the degree of the Hilbert
polynomial, we have the equality ¢(I) = 1+ deghp(X). An ideal J C I is said to
be a reduction of I if there exists a positive integer n such that JI™ = "t It
then follows that J'I™ = I™*? for every postive integer i. If J is a reduction of I,
then J requires at least ¢(I) generators. If the residue field R/ m is infinite, then
minimal reductions of I correspond to Noether normalizations of F(I) in the sense
that ai,...,a, € I —I? generate a minimal reduction of I if and only if their images
a; € I/m1I C F(I) are algebraically independent over R/ m and F(I) is integral
over the polynomial ring (R/ m)[ag,...,a;|. In particular, if R/ m is infinite, then
there exist ¢(I)-generated reductions of I,

For a positive integer s, the fiber cone F(I°) of the ideal I* embeds in the fiber
cone F(I) = @22 F, of I by means of F(I®) = &> (F,s. This isomorphism makes
F(I) a finitely generated integral extension of F'(I*). Thus dim F(I) = dim F'(I®)
and (1) = £(I?).

We are particularly interested in conditions that imply the fiber cone F(I) is a
hypersurface. Suppose dim F'(I) = d > 0 and pu(l) = d + 1. If I has a reduction
generated by a regular sequence and if grade(G4(I)) > d — 1, we prove in Theo-
rem 5.6 that F'(I) is a hypersurface. We have learned from Bernd Ulrich that this
result also follows from results in the paper [CGPU] of Corso-Ghezzi-Polini-Ulrich.

A useful property of the analytic spread £([) is that it gives an upper bound on the
number of elements needed to generate I up to radical. This property of generation
up to radical behaves well with respect to analytic spread of a homomorphic image

in the following sense:

Lemma 1.1. Suppose I C m is an ideal of a Noetherian local ring (R, m), where
R/m is infinite. Let a € I and let R’ := R/aR and I' :== IR'. Ifd},...,a, € R
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are such that rad(a),...,a5)R’ = radI’ and if a; € R is a preimage of a}, then

rad I = rad(aq,...,as,a)R. In particular, if £(I') = s, then I can be generated up

to radical by s + 1 elements.

Proof. Assume that rad(a,...,a,)R’ =radI'. If z € rad I, then for some positive
integer n, we have 2" = y € I. Hence the image ' of y in R’ is in rad(a,...,a,)R’.
Therefore y and hence also z is in rad(ay,...,as,a)R. O

Examples given by Huckaba in [Hu, Examples 3.1 and 3.2] establish the surprising
fact of the existence of 3-generated height-2 prime ideals I of a 3-dimensional regular
local ring R for which dim F(I) = 3 = dim R and for which there exists a principal
ideal J = zR C I such that if R’ := R/xR and I’ := IR/, then dim Fp/(I') = 1 <
dim R’ = dim R — 1. This result of Huckaba shows that a statement analogous to
Lemma 1.1 for reductions, rather than generators up to radical, is false, that is, it
is possible that I’ = I /aR has an s-generated reduction while every reduction of I
requires at least s + 2 generators.

These interesting examples are the original motivation for our interest in the

behavior of analytic spread in a homomorphic image.

2. BEHAVIOR OF THE FIBER CONE UNDER HOMOMORPHIC IMAGE.

Setting 2.1. Let J C m be an ideal of a Noetherian local ring (R, m), let R := R/ J,
and let m' =m /J . For an ideal I Cm of R let I' = (I + J)/J = IR’ denote the

image of I in R'. There is a canonical surjective ring homomorphism of the fiber
cone Fr(I) of I onto the fiber cone Fgr/(I').

We have R[It] = @,,5( I"t" and R'[I't] = @P,,5((I')"t". Since
(I ="+ J)/J=1/(I1"nJ),

there is a canonical surjective homomorphism of graded rings ¢ : R[It] — R'[I't],
with ker ¢ 5 = @,,~o(I" N J)t™.

Since Fr(I) ziR[It]/mR[It] and Fg/(I') = R'[I't]/m’ R'[I't], the homomor-
phism ¢ : R[It] — R'[I't] induces a surjective homomorphism 1y : Fr(I) — Fr/(I')
which preserves grading. This is displayed in the following commutative diagram

for which the rows are exact and the column maps are surjective:



0 —— @Bpso(I"NI)" —— R[] —22% R[] — 0

| | |

(I"NJ)+m I R[It] by R/'[I't] 0
mIn m R[] m’ R/[I']

Since we are interested in the behavior of the fiber cone under homomorphic

0 —— ®n>o

image, we are especially interested in
(I"NnJ)+mI"
m "

ker ¢ = @p>o0

Remark 2.2. Let (R,m) be a Noetherian local ring and let I C m be an ideal
of R. Suppose J; C Jo C m are ideals of R. Let R; := R/J;, i = 1,2, and let
i« Fr(I) — Fgr,(IR;) denote the canonical surjective homomorphisms on fiber
cones as in (2.1). Then Ry = Ry/J', where J' = Jy/J1, and there exists a canonical

surjective homomorphism ' : Fr,(IR1) — Fr,(IRy) such that o = ¢’ 0 1y.

With notation as in (2.1), if J is a nilpotent ideal of R, then ker ) is a nilpotent
ideal of Fr(I). For suppose x € J is such that 2* = 0. If T € (Inmm‘])# = F, is
the image of x in F'(I), then by definition Z*° is the image of z* in F§,, so ¥ = 0.
Thus for J a nilpotent ideal of R, we have dim Fr(I) = dim Fr/(I') and ¢(I) = £(I").

Applying this to the situation considered in (2.2), if s is a positive integer, J; = J*
and Jp = J, then with ¢’ : Fr, (IR1) — Fg,(IR2) as in (2.2), it follows that ker ¢ is
a nilpotent ideal and in this situation dim Fg, (IR;) = dim Fg,(IR2). In particular
for the examples of Huckaba [Hu, Examples 3.1 and 3.2] mentioned in the end of
Section 1, going modulo a power z" R of the ideal xR also reduces the dimension of

the fiber cone F(I) from 3 to 1.

Proposition 2.3. With notation as in Setting 2.1, we have the following implica-
tions of Remark 2.2.
(1) If J' C J are ideals of R and if kervy = 0, then ker ¢y = 0.
(2) keryy =0 if and only if ker oz = 0 for each x € J.
(3) For x € m, we have ker ¢pyr = 0 if and only if (I" : ) = (mI™ : x) for each
n > 0.

Proof. Statements (1) and (2) are clear in view of (2.2) and the description of
kert s given in (2.1). For statement (3), we use that I" NzR = z(I" : z). Thus
0 =keryp = @nzow < (I"NzR) CmlI" for each n <— z(I":
) CmlI" for each n <= (I":xz) C (mI™: x) for each n. This last statement is

equivalent to (I : z) = (m I™ : x) for each n. O
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Proposition 2.4. Let (R,m) be a Noetherian local ring and let I C m be an
ideal of R. Suppose Ji and Jo are ideals of R such that rad J; = rad Jy. Let
R;:=R/J;, i = 1,2, and let v; : Fr(I) — Fg,(IR;) denote the canonical surjective
homomorphisms on fiber cones as in (2.1). Then dim Fg,(IR;) = dim Fg,(IR3)
and L(IRy) = {(IR3).

Proof. Since rad(J; + J2) = rad J; = rad Ja, it suffices to consider the case where
J1 C Jo. With notation as in (2.2), ker ¢/’ is a nilpotent ideal. Thus dim Fr, (IR;) =
dim Fr,(IRy) and ¢(IRy) = {(IR3). O

As we remarked in Section 1, the dimension of the fiber cone F(I) of an ideal I is
the same as the dimension of the fiber cone F'(I™) of a power I" of I. Hence, with
notation as in (2.1), we have dim Fr/(IR') = dim Fg/(I"R’) and ¢(IR') = {(I"R’)

for each positive integer n.

3. THE ASSOCIATED GRADED RING AND THE FIBER CONE.

The associated graded ring of the ideal I plays a role in the behavior of the fiber
cone of the image of I modulo a principal ideal as we illustrate in Proposition 3.1

and Example 3.2.

Proposition 3.1. Let I C m be an ideal of a Noetherian local ring (R, m). For x €
m, let x* denote the image of x in the associated graded ring G(I) = R[It]/IR|[It]
and let T denote the image of x in the fiber cone F(I). If x* is a regular element of

G(I), then F(I)/zF(I) = Fg/(I'), where R' = R/xR and I' = IR'.

Proof. There exists a positive integer s such that x € I* — I**1. Since z* is a
regular element of G(I) with degz® = s, we have (I" NzR) = xI"® for every
n > 0, where I % := R if n — s < 0. Hence we have

(I"NzR)+mI* zI"*4+mlI"
[ker Yorln = m " - m "

for every n > 0. Therefore F(I)/ZF(I) = Fr(I'). O

= [ZF(D)]n,

With notation as in Proposition 3.1, the following example shows that for z €
I—m I such that 7 is a regular element of F'(I), it may happen that ZF'(I) C ker ¢, r
and Fr(I') % Fr(I)/TF(I), where R" = R/xR and I' = IR'. Proposition 3.1

implies that for such an example z* € G(I) is necessarily a zero divisor.

Example 3.2. Let k be a field and consider the subring R := k[[t3,t%,¢%]] of the
formal power series ring k[[t]]. Thus R = k + t*k[[t]] is a complete Cohen-Macaulay



6

one-dimensional local domain. Let I = (#3,¢*)R. An easy computation implies
I? = t3I%. Hence t?R is a principal reduction of I. Since I is 2-generated, it
follows from [DGH, Proposition 3.5] that F'(I) is Cohen-Macaulay and in fact a
complete intersection. Let X,Y be indeterminates over k£ and define a k-algebra
homomorphism ¢ : k[X,Y] — F(I) by setting ¢(X) = 3 and ¢(Y) = t*. Then
ker ¢ = Y3k[X,Y] and F(I) = k[X,Y]/Y3k[X,Y]. Thus #3 is a regular element
of F(I) and F(I)/B3F(I) = k[Y]/Y3k[Y]. Let J = t°R, R' = R/J and I' = IR’
Since t® € (I2 N J), we have ¢(Y?) = 8 € ker¢; and Fr/(I') = k[Y]/Y2k[Y]. Thus
F(I)/t3F(I) % Fr/(I'). In fact, we have kerv; = (¢3,48)F(I) and 8 & t3F(I).

We list several observations and questions concerning the dimension of fiber cones

and their behavior under homomorphic image.

Discussion 3.3. Let I C m be an ideal of a Noetherian local ring (R, m). If / C m
is an ideal of R and R’ = R/J, then there exists a surjective ring homomorphism
xJ : Gr(I) = R[It]/IR[It] = Gr/(IR') of the associated graded ring Gg(I) of I
onto the associted graded ring Gr/(IR’) of IR’ [K, page 150].

We have the following commutative diagram involving the associated graded rings

and fiber cones for which the vertical maps a and 3 are surjective:

Gr(I) = RIIH)/IRIt] = @nsol™/I"=" X2 R[I'M/I'RI'] = &)/ (1)

| gl

Fr(I) = R[It]/ m R[It] ®p>0 ["/ mI™ AN R'[I't]/ m' R'[I'] = ®&p>o(I")"/ m(I')"

If J is nonzero, then ker x; # 0. It can happen, however, that J is nonzero and
yet kervy; = 0. This is possible even in the case where I is m-primary. In an
example exhibiting this behavior, commutativity of the diagram above implies one

must have ker xj C ker a.

Example 3.4. Let k be a field and let R = k[z, 9], where z?2 = zy = 0. Let

I =yRandlet J =zR. Thenkertp; = @, UL DERE 0 but J = 2R 0.

A reason for the existence of examples such as Example 3.4 is given in Proposi-

tion 3.5.

Proposition 3.5. Suppose (R,m) is a Noetherian local ring and I is an m-primary

ideal. If the fiber cone F(I) is an integral domain, then ker; = 0 for every ideal
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J of R such that dim(R/J) = dim R. In particular, if I is m-primary and F(I) is

an integral domain, then there exists a prime ideal J of R such that kery; = 0.

Proof. Let R’ := R/J. Since I is m-primary, dim F(IR') = dim R’. Thus dim R’ =
dim R implies dim F(IR') = dim F(I). Since F(I) is an integral domain, it follows
that kert; = 0. The last statement follows becaues there exists a prime ideal J of
R such that dim R = dim(R/J). O

Propositon 3.5 and Example 3.4 show that with notation as in (3.1), it can happen
that * € G(I) is not a regular element and yet ker ¢, p = TF(I).

In Section 4 we consider fiber cones F(I) such that kert; # 0 for each nonzero
ideal J.

4. MAXIMAL FIBER CONES WITH RESPECT TO HOMOMORPHIC IMAGE.

Suppose (R, m) is a Noetherian local ring and I C m is an ideal of R. If J is a
nonzero ideal of R such that kery; = @, 5, (Jmm")# is the zero ideal of F(I),
then we have Fr(I) = Fr/(IR'), where R’ = R/ J; so the fiber cone F(I) is realized
as a fiber cone of a proper homomorphic image R’ of R. If there fails to exist such
an ideal J, i.e., if kert; # 0 for each nonzero ideal J, then we say that F'(I) is a
maximal fiber cone of R.

We record in Remark 4.1 some immediate consequences of the inequality dim Fg/ (IR') <

dim R'.

Remark 4.1. With notation as in (2.1), we have:
(1) If J is such that dim R’ < dim R and if dim Fg(I) = dim R, then ker¢; # 0.

(2) If I is m-primary and J is not contained in a minimal prime of R, then
ker s # 0.

(3) If R is an integral domain and dim F'(I) = dim R, then F(I) is a maximal
fiber cone.

(4) If R is an integral domain, then F(I) is a maximal fiber cone for every

m-primary ideal I of R.

We are interested in describing all the maximal fiber cones of R. Thus we are
interested in conditions on I and R in order that there exist a nonzero ideal J of
R such that kert; = 0. In considering this question, by Proposition 2.3, one may
assume that J = xR is a nonzero principal ideal. Thus the question can also be

phrased:
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Question 4.2. Under what conditions on I and R does it follow for each nonzero
element x € m that ker ¢, # 07

Discussion 4.3. Information about Question 4.2 is provided by the work of Rees in
[R]. In particular, [R, Theorem 2.1] implies that if x € m is such that (I" : x) = I"
for each positive integer n, then Fr(I) = Fg/(I'), where R’ := R/zR and I' := IR’
Thus for z € m a sufficient condition for ker ¢y, = 0 is that (I" : ) = I" for each
positive integer n. It is readily seen that this colon condition on z is equivalent to
x ¢ I and the image of z in the associated graded ring G(I) = R[It]/IR[It] is a
regular element. More generally, if x € I* — I**! and if the image z* of z in G(I) is
a regular element, then by Proposition 3.1 ker ¢,z = TF(I). Thus if we also have
x € mI? then kerv,r = 0. Example 3.4 shows that this sufficient condition for

ker ¢, r = 0 is not a necessary condition.

Proposition 2.3 gives a necessary and sufficient condition on a principal ideal
J = xR in order that keriy,r = 0, namely that (I” : ) = (mI" : z) for each
integer n > 0. By Proposition 2.3, if ker ¢,z = 0, then also ker ¢y,gr = 0 for every
y € R.

If I = yR is a non-nilpotent principal ideal of R, we give in Corollary 4.5 necessary

and sufficient conditions for F'(I) to be a maximal fiber cone.

Proposition 4.4. Suppose (R, m) is a Noetherian local ring and I = yR C m is a
non-nilpotent principal ideal of R. For x € m, we have ker,g =0 <— y" & xR

for each positive integer n.

Proof. We have ker¢,g =0 <= (y"RNaR) C my"R for each positive integer
n,and y" ¢ tR < (y"RNzR) Cy"R <— (y"RNzR) C my"R. O

Corollary 4.5. Let (R,m) be a Noetherian local ring and I = yR C m be a non-
nilpotent principal ideal of R. Then F(I) is a maximal fiber cone if and only if R

s a one-dimensional integral domain.

Proof. By Proposition 4.4, for x € m we have y € radzR <= kery,r # 0.
Suppose F(I) is a maximal fiber cone. Then by definition, ker¢,r # 0 for each
nonzero x € m. Since y is not nilpotent, there exists a minimal prime P of R such
that y &€ P. It follows that P = 0, for if not, then there exists a nonzero x € P and
y €radxR C P implies y € P. Thus R is an integral domain. Moreover, this same
argument implies y is in every nonzero prime of R. Since R is Noetherian, it follows

that dim R = 1. For yR has only finitely many minimal primes and every minimal
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prime of yR has height one by the Altitude Theorem of Krull [N, page 26] or [Mat,
page 100]. If there exists P € Spec R with ht P > 1, then the Altitude Theorem of
Krull implies P is the union of the height-one primes contained in P. This implies
there exist infinitely many height-one primes contained in P. Since y is contained
in only finitely many height-one primes, this is impossible. Thus dim R = 1. Since
R is local, m is the only nonzero prime of R.

Conversely, if R is a one-dimensional Noetherian local integral domain, then (4.1)
implies that F'(I) is a maximal fiber cone for every non-nilpotent principal ideal
I=yRCm. O

Question 4.6. If F(I) is a maximal fiber cone of R, does it follow that dim F'(I) =
dim R?

Proposition 4.7. Suppose (R, m) is a Noetherian local ring and I C m is an ideal
of R. If dimF(I):=n = ht(I) < dim R and if F(I) is an integral domain, then
F(I) is not a mazimal fiber cone. In particular, if I is of the principal class, i.e.,
I = (a1,...,an)R, where ht(I) = n, and if ht(I) < dim R, then F(I) is not a

mazximal fiber cone of R.

Proof. Choose x € m such that x is not in any minimal prime of I. Then L :=
(I, )R has height n+ 1. Let T denote the image of = in the fiber cone Fr(L). Then
Fr(L) is a homomorphic image of a polynomial ring in one variable Fgr(I)[z] over
Fr(I) by means of a homomorphism mapping z — Z. Since dim F'(I) = n and F(I)
is an integral domain, it follows that F'(I)[z] = F(L) by means of an isomorphism
taking z — T. Let J = zR and R’ := R/J. Then ht(/R') = ht(L/zR) = n,
so dim Fr/(IR') > n. Since ¢y : Fr(I) — Fr/(IR') is surjective and Fg([) is
an n-dimensional integral domain, it follows that ¢; : Fr(I) — Fr/(IR') is an
isomorphism. In particular, if I is of the principal class, then F'(I) is a polynomial
ring in n variables over the field R/ m, so F'(I) is an integral domain with dim F'(I) =

ht(I). O
If I is generated by a regular sequence, then I is of the principal class. Thus
if F(I) is a maximal fiber cone and I is generated by a regular sequence, then by
Proposition 4.7, dim F'(I) = dim R.
We observe in Proposition 4.8 a situation where the integral domain hypothesis

of Proposition 4.7 applies.

Proposition 4.8. Let A = k[X1, Xo, -, Xq] = @, An be a polynomial ring in
d wvariables over a field k and let m = (X1, Xa,--- ,X4)A denote its homogeneous
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mazimal ideal. Suppose I = (f1, fa, -+, fn)A, where fi1, fo, -+, fn are homogeneous
polynomials all of the same degree t. Let R = Apy,. Then F(IR) is an integral
domain. Thus if F(IR) is a maximal fiber cone, then dim F(IR) = d.

Proof. We have
k[flquu"' 7fn]:k@-[1@-[2@,
where I; = I'N Ay for i > 0. Since I /mI* = I*N Ay for i > 0, we have the following

isomorphisms:
klfis for oo, fo] 2 @201/ mI') = &2 (I'R/m I'R) = F(IR).

Therefore F(IR) is an integral domain. The result now follows from Proposition
4.7. a

Corollary 4.9. With notation as in Proposition 4.8, if dim F(I) = ht I and F(IR)

is a maximal fiber cone, then I is m-primary.

Proof. We have dim F'(IR) = d by Proposition 4.8. Since I is homogeneous ideal
and ht I = d, m is the unique homogeneous minimal prime of I, Therefore I is

m-primary. O

Question 4.10. Let (R,m) be a Noetherian local ring and let / C m be an ideal
of R. If dim F(I) = ht I and F(I) is a maximal fiber cone, does it follow that I is

m-primary?

Remark 4.11. Without the assumption in Question 4.10 that dim F'(I) = ht1,
it is easy to give examples where F(I) is a maximal fiber cone and yet I is not
m-primary. For example, with notation as in Proposition 4.8, if d > 1 and I =
(X2, X1Xo,...,X1X4)A, then ht(IR) = 1, but dim F(IR) = d and F(IR) is a

maximal fiber cone.

5. WHEN IS THE FIBER CONE A HYPERSURFACE?

Setting 5.1. Let I C m be an ideal of a Noetherian local ring (R,m). In this
section we consider the structure of the fiber cone F'(I) = @p>0F, in the case
where dimF(I) = d > 0 and p(I) = d+ 1. If a1,... ,a44+1 is a basis for F; =
I/m1 as a vector space over the field k£ := R/ m, then there exists a presentation
¢ k[X1,...,X4+1] — F(I) of F(I) as a graded k-algebra homomorphic image
of a polynomial ring in d 4 1 variables over k defined by setting ¢(X;) = a;, for
i=1,...,d+ 1. Moreover, F(I) is a hypersurface if and only if ker ¢ is a principal
ideal [K, Examples 1.2].
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Lemma 5.2. Let (R,m) be a Noetherian local ring having infinite residue field
R/m =k, and let I C m be an ideal of R such that dim F(I) =d > 0 and p(I) =
d+1. Let r = r(I) denote the reduction number of I and let ¢ : k[X1,... , Xg41] —
F(I) be a presentation of the fiber cone F(I) as in Setting 5.1. Then the minimal

degree of a nonzero form f € ker¢ is r+ 1.

Proof. The map ¢ from the graded ring A = k[X1,...,X4r1] = Gn>0dn onto
the graded ring F(I) = ®&p>0F, = ®n>0(I"/ mI") is a surjective graded k-algebra
homomorphism of degree 0. Let K := ker ¢ = @,,>0K,,. For each positive integer n

we have a short exact sequence
0—>K,—A,—>F,—0

of finite-dimensional vector spaces over k. Since I has reduction number r, it follows
from [ES, Theorem, page 440] that dimy F; = p(I*) = (i';d) fori =0,1,... ,r and
dimg Fpq = p(I™1) < ("9, Since dimA; = (‘1Y) for all 4, it follows that
K;=0fori=0,...,r and K,1; # 0. Hence the minimal degree of a nonzero form
fEkerpisr+1. O

Remark 5.3. Let A = k[X},...,X,] be apolynomial ring in n variables X, ... , X,
over a field k. For an ideal K of A, it is well known that ht(X) = 1 if and only if
dim(A/K) =n—1 [K, Corollary 3.6, page 53]. Moreover, K is principal if and only
if ht(P) = 1 for each associated prime P of K. If K = (¢1,... ,9m)A and g is a
greatest common divisor of gi,... ,gm, then K = gJ, where ht(J) > 1. Thus K is
principal if and only if J = A. If K is homogeneous, then g1, ... , g, may be taken
to be homogeneous; it then follows that g is homogeneous and K = gJ, where J is
homogeneous with ht(J) > 1. If K = rad K, then each associated prime of K is a
minimal prime and K is principal if and only if ht(P) = 1 for each minimal prime
P of K.

Proposition 5.4. Let (R,m) be a Noetherian local ring with infinite residue field
k=R/m and let I C m be an ideal of R such that dim F(I) =d > 0 and u(l) =
d+1. Let ¢ : A =k[X1,...,Xa41] = F(I) be a presentation of F(I) as a graded
homomorphic image of a polynomial ring as in Setting 5.1. Let f € K :=ker ¢ be a
nonzero homogeneous form of minimal degree. Then the following are equivalent.
(1) kerop = fA, i.e., F(I) is a hypersurface.
(2) ht P =1 for each P € Ass K.
(3) F(I) is a Cohen-Macaulay ring.
(4) deg f =e(F(I)), the multiplicity of F(I).
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Proof. That (1) is equivalent to (2) is observed in Remark 5.2. It is clear that
(1) implies (3) and it follows from [BH, (2.2.15) and (2.1.14)] that (3) implies (2).
To see the equivalence of (3) and (4), we use [DRV, Theorem 2.1]. By Lemma 5.2,
deg f = r + 1, where r is the reduction number of I.

Since dim F'(I) = d, there exists a minimal reduction J = (z1,... ,24)R of I and
y € I such that I = J + yR. By [DRV, Theorem 2.1], F(I) is Cohen-Macaulay if
and only if

T
ITL
P = 2 MG )
n=0
Since for 0 < n < r, )‘(m+:mln) = 1, the sum on the right hand side of the

displayed equation is r + 1 = deg f. This proves the equivalence of (3) and (4). O

Remark 5.5. With notation as in Proposition 5.4, we have the following inequality
e(F(I)) < deg f, where e(F(I)) is the multiplicity of F'(I). Hence by Proposition 5.4,
F(I) is not Cohen-Macaulay <= e(F(I)) < deg f.

Proof. Let J = (z1,... ,x24)R be a minimal reduction of I. Then JF(I) is gener-

ated by a homogeneous system of parameters for F'(I) and
F(I) . I
M—%) = AM——).
STk ; G rmr)
Let M denote the maximal homogeneous ideal of F(I). Then
F(I)m F(I)
F(I) = e(F(Dp) < Mooy = A(— L),
Thus e(F(I)) < degf = r + 1. Hence by Proposition 5.4, F'(I) is not Cohen-

Macaulay if and only if e(F(I)) < deg f. O

Theorem 5.6. Let (R,m) be a Noetherian local ring with infinite residue field
k= R/m and let I C m be an ideal of R such that dim F(I) = d > 0 and
w(I) = d+1. Suppose there exists a minimal reduction J of I generated by a regular
sequence. Assume that grade(G4(I)) > d — 1. Then F(I) is Cohen-Macaulay and

thus a hypersurface.

Proof. For z € R, let * denote the image of z in G(I) and let T denote the image

of z in F(I). There exists a minimal reduction J = (x1,... ,24) C I and z441 €
such that

(I) {z1,... ,z4} is a regular sequence in R.

(I1) {z1,... ,%4,T4+1} is a minimal set of generators of I.

(IIT) {7,...,x;_,} is a regular sequence in G(I).
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Let R = R/(x1,... ,24-1)R, let m" = m /(z1,... ,24_1)R and let I’ = IR'. By
Condition II, I" is a 2-generated ideal having a principal reduction generated by the
image z/, of z4. Condition I implies that z/, is a regular element of R'. Hence by
[DGH, Proposition 3.5], Fr/(I’) is Cohen-Macaulay.

As observed in (2.1), the kernel of the canonical map ¢ : Fg(I) — Fr/(I') is

(In N (1‘1,. .. ,(Ed_l)) +mlI"”

On20 m "
Condition IIT and Proposition 3.1 imply
z1,... 2" mIt _
kerq/):@nzo( ! dni)fn = (ml,... ,l‘d_l)F(I).
Hence
F(I)
———— Z Fr I
({L‘l,... ,.’L‘dfl) ( )
and to show F'(I) is Cohen-Macaulay, it suffices to show {Z71,... ,Tg_1} is a regular

sequence in F'(I). By the generalized Vallabrega-Valla criterion of Cortadellas and
Zarzuela [CZ, Theorem 2.8], to show {Z1,... ,Tq_1} is a regular sequence in F(I),

it suffices to show
(z1,...,24-1) NmI" ™ = (z1,... ,zq_1)mI", for all n > 0.

“ D" is clear. We prove “ C” by induction on n.

(Casei) n=0: Let u € (z1,... ,24—1) NmI. Thus u = Z?;ll ri%; = Zgi} a;xj,

where r; € R and o; € m. Therefore

(r1—oq)zr + -+ (rg—1 — @g—1)Td—1 — A4Tq — 0g+1%44+1 = 0.

Since {x1,...,Z4+1} is a minimal generating set for I, each r; — o; € m. Since
d—1
a; €m, r; € m. Hence w =) ;| riz; € m(xy,...,2q-1).

(Case ii ) 1 < m < r, where r = ry(I) is the reduction number of I with re-

spect to J: We have (x1,...,24_1) N mI"™! = (2q,... ;24 1) N (I" N m ")
= ((z1,. y2q_1) NI Nm I = ((21,... ,24_1)I"Nm " the last equality
by Condition III.

Hence u € (x1,... ,24_1) Nm I" ! implies u € ((z1,... ,24_1)I" Nm I"!. Thus

U= Z?;ll x;9;, where g; € I" and w = H(x1,... ,x4+1), where H(Xy,... ,X441) €
R[X1,...,X4+1] is a homogeneous polynomial with coefficients in m of degree n+1.
Let Gi(X1,...,X441) € R[X1,...,X441] be a homogeneous polynomial of degree
n such that G;(x1,... ,Z4+1) = ¢

Let 7 : R[X1,...,X4+1] — R[It], where 7(X;) = z;t be a presentation of the

Rees algebra R[It]. Consider the following commutative diagram.
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T

0 —— ker(r) ——  R[Xi,...,Xq11] —— R[It] —— 0

o o |

0 —— ker(¢) —— (R/m)[X1,..., Xas1] —— F(I) — 0

Since Z?;ll xigi — H(x1,... ,2411) = 0, the homogeneous polynomial

d—1
ZXiGi(Xla R ,Xd+1) — H(Xl,. .. ,Xd+1) € ker .
=1

Since H(X1,...,Xg4+1) has coefficients in m, we have
d—1 d—1 d—1
0=m37(D>_ X;Gi — H) = ¢pmy()_ XiG; — H) = ¢m(D>_ X,Gy).
i=1 i=1 i=1

Hence 772(2?:_11 X;G;) € ker¢. Since Zf:_ll X;G; is of degree n +1 < r, Lemma
5.2 implies Wg(zztll X;G;) = 0. Therefore the coefficients of Z?;ll X;G; are in

m. Evaluating this polynomial by mapping X; — x; gives u = Zf:_ll T;9; €

(x1,... ,xq)mI"
( Case iii ) n > r : Since n > r, we have I"*! = JI" = (x1,... ,x4)I".
Let u € (21,...,24-1) NmI"™ = (z1,... ,24.1) Nm(zy,... ,24)I". Thus u =

Zf:_ll T = 2?21 ajxj, where each r; € R and each a; € mI™. Hence agzq =
Z?;ll(ri — oy)x; and this implies ag € ((z1,... ,24-1) : ®q) = (1,... ,x4-1), the

last equality because of Condition I. Hence
ag € (z1,... ,xg_1)NmI" = (z1,... ,2q_1) mI" L

the last equality because of our inductive hypothesis. Thus u = Z?Zl

Z?;% ajritogry € (T, ... ,xq-1) mI"+(z1,. .. JTgo)m I = (2q,... ,24_1)mI".

Oéj(Ej =

This completes the proof that {Z1,... ,ZTq_1} is a regular sequence in F'(I), and thus
the proof of Theorem 5.6 O

6. THE COHEN-MACAULAY PROPERTY OF ONE-DIMENSIONAL FIBER CONES

We record in this short section several consequences of a result of D’Cruz, Ragha-
van and Verma [DRV, Theorem 2.1] for the Cohen-Macaulay property of the fiber

cone of a regular ideal having a principal reduction.

Proposition 6.1. Let (R,m) be a Noetherian local ring and let I C m be a regular
ideal having a principal reduction aR. Let r = rqr(I) be the reduction number of I

with respect to aR. Then the following are equivalent.
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(1) F(I) is a Cohen-Macaulay ring.

(2) A(elmIy = \(L5)  forl<n<r—1.

Proof. (1) = (2). Suppose F(I) is a Cohen-Macaulay ring. Then a(=a+m1I)is a
regular element of F'(I) with dega = 1. Let F'(I) = ®p>0F,, where F, = I"/m1I",
and consider the graded k-algebra homomorphism ¢z : F,, — F, 1 given by ¢g(T) =
T - @, for every T € F),. Since a is a regular element of F'(I), dimy, F,, = dimg(aF},).
For 1 <n <r—1, we have
n n+1 n n
M) = Nl nre)

(2) = (1). Suppose that )\(%) = ML5), for 1 < n < r—1. Since
a is a non-zero-divisor R, I"*"/mI™"*" = ["/mI", for every n > 1. Hence
e(F(I)) = A(I"/mI"). To see the Cohen-Macaulay property of F'(I), we use [DRV,
Theorem 2.1]. We have the following:

o)) = dimg(@F,) = dimg(F,) = A(

In
;A(alnl—kmln +Z aln= 1+mI”)
R al™ '+ mlI"
(@) Z ) )
R In—l
m +Z mIn o (mIn—l)]
IT’
=e(F(I)).
Hence by [DRV, Theorem 2.1, F'(I) is a Cohen-Macaulay ring. O

As an immediate consequence of Proposition 6.1 we have

Corollary 6.2. Let (R,m) be a Noetherian local ring and I be a regular ideal having
a principal reduction aR with ror(I) = 2. If u(I) = n, then

al + mI?

F(I) is Cohen-Macaulay < X( 2 ) =n.
m

Example 6.3 shows that Proposition 6.1 and Corollary 6.2 may fail to be true

without the assumption on the length of %

Example 6.3. Let k be a field and consider the subring R = k[[t3,t7,t11]] of the
formal power series ring k[[t]. Let I = (t5,¢7,t'')R. An easy computation implies
5T # 1% and t51% = I3. Hence rur(I) = 2. Note that tSF(I) is a homogeneous
system of parameter of F(I). But t5t11 = (t% + mI)(t"' + m1I) = t'" + mI? =
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0, and hence F(I) is not a Cohen-Macaulay ring. And )\(M) = A(

2
t6I+m12) =2<3.

A

[AM]

(BH]

m 2 r1{212) -
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