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0. Introduction.

(0.1) Let (R,m) be a two-dimensional regular local domain with infinite

residue field R/m. Associated to an m-primary ideal I in R is its Hilbert

polynomial

PI(n) = e0(I)

(
n+ 1

2

)
− e1(I)n+ e2(I) ,

the integer-valued polynomial giving the length of the R-module R/In for

sufficiently large positive integers n. The coefficient e0 is well known to be a

positive integer, the multiplicity of I, and in our context, the coefficients e1

and e2 are known to be nonnegative integers.

A well-known result of Rees [Re1, Theorem 3.2] implies that for each m-

primary ideal I of R the integral closure of I is the unique largest ideal

containing I and having the same multiplicity. A result of Shah in [Sh,

Theorem 1] implies the existence of a unique largest ideal I{1} containing I
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and having the same coefficients e0 and e1 of its Hilbert polynomial. We call

I{1} the e1-ideal associated with I. If I = I{1}, we call I a first coefficient

ideal or an e1-ideal.

There is an interplay between the internal structure of the ideals in R

and the external structure of certain birational extensions of R. In this

connection, for an m-primary ideal I, the blowup of I,

B(I) = Proj(R[It]) = {R[I/a]P : a ∈ I − 0, P ∈ Spec(R[I/a])} ,

is the projective model over R (in the sense of [ZS, page 120]) consisting of

the local domains containing R that are minimal with respect to domination

among all the local domains containing R in which the extension of I is prin-

cipal. There is a nonempty finite subset of B(I) consisting of local domains

in which I generates an ideal primary for the maximal ideal; each of these lo-

cal domains is one-dimensional and their intersection D is a one-dimensional

semilocal domain called the first coefficient domain of I. As noted in [HJL,

(1.3) and (3.2)], we have ID∩R = I{1}; indeed, since all powers In of I have

the same blowup, we have InD ∩R = (In){1}, for each positive integer n.

Our goal in this paper is a better understanding of e1-ideals and their

first coefficient domains over a two-dimensional regular local domain. The

situation where the first coefficient domain is a semilocal PID is well under-

stood in view of the Zariski theory concerning complete ideals and prime

divisors on R (see, e.g., [Z], [ZS, Appendix 5] or [Hu]). In particular, if V is

a DVR birationally dominating R which is a spot over R (i.e., in Zariski’s

terminology a prime divisor of the second kind on R; in [A2] a hidden prime

divisor of R), then the ideals of R contracted from V form a descending

chain m = a0 > a1 > a2 > . . . of complete m-primary ideals, the valu-

ation ideals of R with respect to V . The Zariski theory associates to the

prime divisor of the second kind V a unique simple (i.e., not factorable into

a product of proper ideals) complete ideal b. One way of characterizing b

is that b is maximal among m-primary ideals c of R with the property that

all powers of c are contracted from V . We have b = an for some n. For

example, b = m if and only if V is the ord-valuation domain R[y/x]mR[y/x]

where m = (x, y)R. If n > 0, then certain of the ideals a0, . . .an−1 are also
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simple complete ideals. If we label the simple complete ideals in this chain

as b0 = m, b1, . . . , bs = b = an, then Zariski proves that each of the valua-

tion ideals ai, i ≥ 0, is a product of powers of b0, . . . ,bs [ZS, page 392]. For

example, if m = (x, y)R and V is the integral closure of R[x2/y3]mR[x2/y3],

then b = (x2, xy2, y3)R is the simple complete ideal associated to V , and

m = a0 > a1 = b1 = (x, y2)R > a2 = m2 > b is the beginning of the chain

of ideals {ai} of R contracted from V . The result of Zariski just mentioned

implies that each ai is a power product of m,b1 and b. More detailed in-

formation as to which products of the bj are actually contracted from V is

given by Noh in [No, Theorem 3.1].

(0.2) To describe the same situation from a different starting point, let

I be a complete m-primary ideal of R. The first coefficient domain D of

I is then a semilocal PID which is the intersection of the Rees valuation

domains of I, i.e., the DVR’s on B(I) that dominate R. In this case, D is

uniquely determined as the largest one-dimensional semilocal subdomain E

of the fraction field of R having the property that all the powers of I are

contracted from E (see (3.4) below). If V1, . . . , Vn are the Rees valuation

domains of I, then the Zariski theory implies that I has the form

(∗) br11 . . .brnn

where the rj are positive integers and bj is the simple complete ideal of R

associated to Vj , j = 1, . . . , n.

In the present paper we pursue the study of e1-ideals and first coefficient

domains begun in [HJL]. In particular, we consider implications of the Zariski

theory for these broader classes of ideals and integral domains. Our objec-

tive, only partially realized, is to identify the first coefficient domains over a

two-dimensional regular local domain and the ideals of which they are first

coefficient domains.

In Section 1 we illustrate with several examples properties that one-

dimensional spots birationally dominating a two-dimensional regular local

domain may have or fail to have. We also observe in Proposition 1.1 that

the condition of being a spot descends from an integral extension.
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In Section 2 we consider implications of residual transcendence. As part of

Theorem 2.2, we prove that if R is a two-dimensional RLR of characteristic

p > 0 with algebraically closed residue field and D is a one-dimensional local

domain birationally dominating R such that the integral closure of D is a

prime divisor on R, then D is the first coefficient domain of an ideal of R.

In Section 3 we examine asymptotic behavior of ideals and implications for

first coefficient domains. Suppose (R,m) is a local domain that is the inter-

section of its localizations at height-one primes and D is a one-dimensional

semilocal domain birationally dominating R. In Theorem 3.3 we prove that

if J is an m-primary ideal of R such that JD is principal and JnD∩R = Jn

for each positive integer n, then the first coefficient domain of J is a localiza-

tion of D. In particular, if D is local, then D is the first coefficient domain

of J .

As usual, we abbreviate “regular local domain” by RLR and “rank-one

discrete valuation domain” by DVR. The words “local” and “semilocal” in-

clude the hypothesis of Noetherian. The symbol < between sets denotes

proper inclusion. For an ideal I in a Noetherian domain R the blowup of I

and the first coefficient domain of I are defined as in (0.1) above. The Rees

valuation domains of I are the localizations of the integral closure of the first

coefficient domain of I at its maximal ideals. It is convenient to extend some

familiar terminology to the case of rings that are not necessarily Noetherian

or that have more than one maximal ideal: A ring D containing a domain

R having a unique maximal ideal m is said to birationally dominate R if D

is contained in the fraction field of R and for each maximal ideal N of D,

N ∩ R = m. An extension ring D of a ring R is said to be affine over R

if D is finitely generated as an algebra over R. We say that a ring D with

finitely many maximal ideals is a semispot over a subring R if D is a ring of

fractions of a ring containing and affine over R. If such a D has only one

maximal ideal, then we call it a spot over R.

1. One-dimensional birational spots.

We are interested in considering one-dimensional semilocal domains D

that birationally dominate a two-dimensional RLR R. A DVR V birationally
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dominating R is a spot over R if and only if the the residue field of V

is not algebraic as an extension of R/m [A1, Proposition 3, page 336]. An

interesting property of such a DVR V (also proved in [A1]) is that the residue

field F of V is ruled as an extension field of R/m, i.e., F is obtained as a

simple transcendental extension of a field intermediate between R/m and F .

In view of the fact that R is a two-dimensional RLR, it follows that F is a

simple transcendental extension of a finite algebraic extension of R/m.

In general, if D is a one-dimensional semilocal domain birationally dom-

inating R, then the integral closure D′ of D is a semilocal PID birationally

dominating R. If R is complete, then D′ is necessarily a semispot over R;

but for certain R (such as R = k[x, y](x,y)k[x,y] where x, y are indeterminates

over the field k) there exist DVR’s birationally dominating R that are not

spots over R (cf., e.g., [HRS]).

We begin by proving a result (Corollary 1.3) that implies that if D is a

one-dimensional semilocal domain birationally dominating a two-dimensional

RLR R and if the integral closure D′ of D is a semispot over R, then D is a

semispot over R and D′ is a finitely generated D-module.

Proposition 1.1. Let R be a Noetherian ring, and let V be a semispot over

R. Suppose R ⊆ D ⊆ V with D quasilocal and V integral over D. Then D

is a spot over R and V is a finitely generated D-module.

Proof. Since V is a semispot over R, there exist elements a1, . . . , an ∈ V such

that V is a ring of fractions of R[a1, . . . , an]. Let b1, . . . , bm be the coefficients

of monic polynomials over D satisfied by a1, . . . , an; set B = R[b1, . . . , bm]

and A = B[a1, . . . , an]. Let Q be the center of D on B, and let A1 and B1 be

the rings of fractions of A and B at the multiplicative set B−Q. Then B1 is

local, with maximal ideal Q1 = QB1, and A1 is a finite integral extension of

B1. Hence A1 has only finitely many maximal ideals. Let P1, . . . , Pr denote

the centers on A1 of the maximal ideals of V , and let S = A1 − (
⋃r
i=1 Pi).

Since V is a ring of fractions of R[a1, . . . , an], we have S−1A1 = V . Choose

a ∈ S such that a is in each maximal ideal of A1 distinct from P1, . . . , Pr (if

any — otherwise let a = 1). Then 1/a is in V and hence is integral over D.

Let c1, . . . , cp be the coefficients of a monic polynomial over D satisfied by
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1/a; let (B2, Q2) be the localization of B1[c1, . . . , cp] at the center of D on

this ring, and set A2 = B2[1/a, A1].

We claim that A2 = V . To see this, it suffices to show each s in S is

a unit in A2: Assume by way of contradiction that s in S is in a maximal

ideal M of A2. Since A2 is integral over B2, we have M ∩B2 = Q2, and so

Q1 = M ∩ B1 = (M ∩ A1) ∩ B1. Since A1 is integral over B1, M ∩ A1 is

maximal in A1. Moreover, M ∩A1 survives in A2 , so our choice of a assures

that M ∩A1 is the center on A1 of one of the maximal ideals of V . But this

yields s ∈ S ⊆ A1 − (M ∩A1), a contradiction.

Therefore, V is an affine extension of B2 and hence a finitely generated

D-module. Thus, by Artin-Tate [Ku, Lemma 3.3, page 16], D is an affine

extension of B2 and hence a spot over R. �

To extend this result to the case where D has finitely many maximal

ideals, we use:

Proposition 1.2. Let R be an integral domain. Suppose D is an extension

domain of R having only finitely many maximal ideals N1, . . . , Nr and having

the property that DNi is a spot over R for each i = 1, . . . , r. Then D is a

semispot over R.

Proof. For each maximal ideal Ni of D there is a finite subset Ti of DNi such

that DNi is a localization of R[Ti]. And there is an element si of D − Ni
for which siTi ⊆ D. Let A = R[(

⋃r
i=1 siTi) ∪ {s1, . . . , sr}]. If Pi denotes the

center of DNi on A, then A ⊆ D ⊆ DNi = APi ; so D is the ring of fractions

of A at the complement of the union of the Pi’s. �

As an immediate corollary of Propositions 1.1 and 1.2, we have:

Corollary 1.3. Let D be a semilocal extension domain of a Noetherian

domain R, and let V be a domain integral over D. If V is a semispot over

R, then D is also a semispot over R. �

(1.4) It follows from Corollary 1.3 that a one-dimensional semilocal domain

D that birationally dominates a two-dimensional RLR R is a semispot over

R if and only the integral closure of D is an intersection of prime divisors of
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the second kind on R, or equivalently, if and only if each DVR birationally

containing D is a prime divisor of the second kind on R.

We are interested in the question of which one-dimensional semilocal do-

mains birationally dominating R are first coefficient domains of ideals of

R. The first coefficient domains of complete ideals of R are well under-

stood. They are precisely the one-dimensional semilocal PID’s birationally

dominating R that are semispots over R. Moreover, if I and J are complete

m-primary ideals of R with first coefficient domains DI and DJ , respectively,

then DI ∩DJ is a PID semispot over R and is the first coefficient domain of

IJ . More generally, by the Theorem on Independence of Valuations (e.g., [N,

(11.11)] or [ZS, Theorem 18, p. 45]) the intersection of two semilocal PID’s

birationally dominating a local domain is again a semilocal PID birationally

dominating the local domain. But for arbitrary m-primary ideals I and J of

R, the relation of DI and DJ with the first coefficient domain of IJ is more

delicate. It is not necessarily DI ∩DJ ; indeed, in Example 1.5 we show that

DI ∩DJ need not be a first coefficient domain of R. In this example we make

use of the description of the first coefficient domain of an ideal generated by

a regular sequence given in [HJL, (3.8)].

Example 1.5. Let k be a field of characteristic 0 and x, y be indeterminates

over k; set R = k[x, y](x,y). Then the first coefficient domains of the ideals

(x2, y2)R and (x2, xy + y2)R are

D1 = k((y/x)2) +M and D2 = k((y/x) + (y/x)2) +M ,

respectively, where M is the maximal ideal of the ord-valuation domain V =

R[y/x]mR[y/x] = k(y/x)+M over R. (The maximal ideals M1 and M2 of D1

andD2, respectively, are contained inM , and a module basis for V over either

D1 or D2 is 1, y/x. Since Mi(y/x) ⊆ Di and MiV = M , we have Mi = M .)

Since k is of characteristic zero, we have k((y/x)2) ∩ k((y/x) + (y/x)2) = k.

It follows that the residue field of D1 ∩ D2 at the center of V on D1 ∩ D2

is not residually transcendental over the residue field k of R, so D1 ∩D2 is

not a semispot over R by (1.4) and hence is not the first coefficient domain

of an ideal of R.
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(1.6) Suppose I and J are m-primary ideals of R, where (R,m) is a two-

dimensional RLR, or more generally, a quasi-unmixed analytically unramified

local domain. We want to relate the first coefficient domain D of IJ to the

first coefficient domains DI and DJ of I and J . A first remark is that since

the set of Rees valuation domains of IJ is the union of the sets of Rees

valuation domains of I and J , the integral closure of D is the intersection of

the integral closures of DI and DJ . With each DVR V that is a localization

of the integral closure of DI (of which there are only finitely many) we

associate a one-dimensional semilocal domain DV = (DI)P [B], where P is

the center of V on DI and B is the unique local domain on the blowup

of J that is dominated by V . In an analogous way we construct DW for

each DVR W that is a localization of the integral closure of DJ . The first

coefficient domain D of IJ is the the intersection of the one-dimensional

semilocal domains DV and DW as V and W vary over the sets of the Rees

valuation domains of I and J respectively.

(1.7) The proofs of several results below rely on Theorem 3.12 of [HJL];

and on rereading the proof of that result, we feel one point deserves a fuller

discussion. The relevant hypotheses in that result are as follows: R is a

normal, analytically unramified, quasi-unmixed, local domain with infinite

residue field, I is an ideal primary for the maximal ideal of R, D is the first

coefficient domain of I, E is a domain birational and integral over D, and a

is an element of I for which ID = aD. In the proof, we set S = R[1/a] ∩D
and T = R[1/a] ∩ E, and we assert that D,E are rings of fractions of S, T

respectively. This is true under the hypothesis of Theorem 3.12 of [HJL], but

in Example 1.8 below we show that for a ∈m with aD 6= ID it can happen

that D is not a ring of fractions of S = R[1/a]∩D. So we felt these assertions

should be given a more explicit justification: The hypothesis that D is the

first coefficient domain of I means that there exists an element b of I such

that D is an intersection of a finite number of one-dimensional localizations

of R[I/b] and hence is itself a ring of fractions of R[I/b]. Moreover, bD =

ID = aD. Thus, b/a is an element of R[I/a] that is not in any of the prime

ideals of D, so the ring of fractions of R[I/a] with respect to the complement
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in R[I/a] of the union of the primes in D contains R[I/b] and hence is all of

D. Since S = R[1/a] ∩D ⊇ R[I/a], we see that D is also a ring of fractions

of S. Now we turn to T = R[1/a] ∩ E, which is almost integral over S

since there is a nonzero conductor from E into D (because R is analytically

unramified [Re2, Theorem 1.2]). Since

S = ∩{R[I/a]P : P is a height-one prime }

and since R[I/a] is universally catenary, S is contained in the integral closure

of R[I/a]. Moreover, the fact that R is analytically unramified implies that

the integral closure ofR[I/a] is a finitely generated R[I/a]-module. Therefore

S is Noetherian and hence T is integral over S. Since D is a ring of fractions

of S, the maximal ideals of D are centered on height-one primes of S. It

follows that the maximal ideals of E are centered on height-one primes of T .

Since the essential valuation domains of R[1/a] are all localizations of S and

of T , it follows that E is a ring of fractions of T .

Example 1.8. Let R = k[x, y](x,y)k[x,y], where k is a field and x, y are

indeterminates over k. Let V = k(y/x)[x](x) be the ord-valuation domain

of R. Then V = k(y/x) + M , where M is the maximal ideal of V . Let

D = k((y2 +x2)/xy) +M . Then D is the first coefficient domain of the ideal

(xy, y2 + x2)R, a one-dimensional local domain that birationally dominates

R, and V is the integral closure ofD. Let T = R[1/x]∩V and S = R[1/x]∩D.

Then T = R[y/x], so S = R[y/x]∩D. Using that k[y/x]∩k((y2+x2)/xy) = k

and considering the unique expression of each element of a subdomain of

V as the sum of an element of k(y/x) and an element of M , we see that

S = k + (M ∩R[y/x]). Hence D is centered on a maximal ideal of S and is

not a localization of S. We also have in this example that S is not Noetherian

and T is almost integral but not integral over S. The localization of S at

each of its height-one primes contains R[1/x].

2. Residually transcendental elements.

Let (R,m) be a two-dimensional RLR with residue field k = R/m. A

first coefficient domain of an m-primary ideal of R is a one-dimensional

semispot birationally dominating R. As a partial converse, we observe in
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Proposition 2.1 that a domain satisfying these hypotheses is at least a ring

of fractions of a first coefficient domain of R.

Proposition 2.1. Let (R,m) be a two-dimensional RLR and E be a one-

dimensional semispot birationally dominating R. Then there exists a first

coefficient domain D of R such that E is a ring of fractions of D.

Proof. Let a1, . . . , an, b be elements of R such that E is a ring of fractions of

R[a1/b, . . . , an/b]. We may assume that a1, . . . , an, b have no common factor

in R, so that the ideal I = (a1, . . . , an, b)R is m-primary. Let D0 denote the

first coefficient domain of I. Since E is a semispot over R, the dimension

formula [M, (14.D)] shows that for each maximal ideal N of E the image of

at least one of the quotients ai/b in E/N is transcendental over R/m. Thus,

the center of N on R[a1/b, . . . , an/b] is one-dimensional, so that D0 ⊆ EN .

Since this holds for each maximal ideal N of E, D0 ⊆ E. But there may be

prime divisors dominating R that contain D0 but not E. The intersection

D of all these prime divisors and E is an integral extension of D0 and hence

a first coefficient domain (of an ideal integral over a power of I) by [HJL,

Theorem 3.12]. We have D ⊆ E are one-dimensional semilocal domains

with E birational over D and D integrally closed in E. Forming the ring

of fractions of D with respect to the elements of D that are units of E and

applying [N, (33.1)], we see that E is a ring of fractions of D. �

A variant of the process used in this proof is as follows: With R, E,

etc. as in Proposition 2.1 and its proof, let (c, d)R be a reduction of I =

(a1, . . . , an, b)R (or of a power of I if the residue field of R is finite and I

fails to have a 2-generated reduction). For each maximal ideal N of E, the

image of c/d in E/N is transcendental over R/m, so N ∩R[c/d] = mR[c/d].

It follows that E is a localization of the integral closure of R[c/d]mR[c/d] in

E. To realize E itself as a first coefficient domain in this manner amounts to

answering in the affirmative the following question: Does there exist a single

element a/b of E such that J = (a, b)R is a reduction of a complete ideal

of the form (∗) in (0.2) above, where the rj are positive integers and the bj

are the simple complete ideals corresponding to the DVR localizations of the

integral closure of E? If so, then E and R[a/b]mR[a/b] have the same integral
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closure. Thus, E is integral over R[a/b]mR[a/b] and hence a first coefficient

domain in its own right. The proof of Theorem 2.2 below is essentially the

construction of such an element a/b in a special case.

In the proof of Theorem 2.2 is a reference to R(t), where t is an indeter-

minate over R. In general, for a ring A, the symbol A(t) denotes the ring

of fractions of the polynomial ring A[t] with respect to the multiplicative

system of polynomials whose coefficients generate the unit ideal in A (cf.

[N, page 18]). In the present local case, this means only that not all of the

coefficients of the polynomial are in m. There is a natural epimorphism

from R(t) onto the simple transcendental field extension k(t) of k, with ker-

nel generated by m; images under this epimorphism (as well as under other

extensions of the epimorphism R→ k) are denoted by overbars (vincula).

Theorem 2.2. Let D be a one-dimensional local domain birationally dom-

inating a two-dimensional RLR R. Assume that k = R/m is algebraically

closed, that the integral closure D′ of D is a prime divisor on R, and that

either (1) R has nonzero characteristic or (2) D contains the maximal ideal

of D′. Then there is an m-primary ideal of which D is the first coefficient

domain.

Proof. By (1.1), D is a spot over R and D′ is a finitely generated D-module.

In view of the last sentence of General Example 3.8 and Theorem 3.12 of

[HJL], it is enough to find a 2-generated m-primary ideal (a, b)R of R for

which a/b ∈ D and the integral closure of R[a/b]mR[a/b] is D′. Also, since

D′ is a prime divisor of the second kind of R, there is a simple complete

m-primary ideal b with which D′ is associated, in the sense of the Zariski

theory. It will suffice to find elements a, b of R so that a/b ∈ D and the ideal

(a, b)R is a reduction of a power of b.

Let (c, d)R be a minimal reduction of b (or of a power of b). Then the

residue field of D′ is of transcendence degree 1 over k, generated by the

image c/d of c/d (because k is algebraically closed [HuS, Remark 3.5]), but

algebraic over the residue field of D, and for any other prime divisor of the

second kind of R, either c/d is not in that prime divisor or its image in

the residue field is not transcendental over the image of k (i.e., c/d is not
11



“residually transcendental” for any other prime divisor of the second kind).

Thus, for an element z of D of which the image z in the residue field of D

(or D′) is transcendental over k, there is an element ϕ(t) of R(t) such that

if ϕ(t) ∈ k(t) is the image of ϕ(t) in R(t)/mR(t), then z = ϕ(c/d). We may

assume that the numerator and denominator of ϕ(t) are relatively prime

polynomials over k. Now z − ϕ(c/d) is in the maximal ideal of D′, so under

assumption (2) of the statement, we immediately have that ϕ(c/d) ∈ D. To

reach a similar (though not identical) conclusion under assumption (1), we

note that since D′ is local and is a finitely generated D-module, the maximal

ideal of D contains a power of the maximal ideal of D′; so we can raise

z − ϕ(c/d) to a sufficiently high power q, a power of the characteristic of R,

to conclude that ϕ(c/d)q ∈ D. Multiplying the numerator and denominator

of ϕ or ϕq by the same power of d, we convert them into forms a = a(c, d)

and b = b(c, d) in c, d of the same degree n such that their images in the

degree-n piece of the fiber ring F ((c, d)) = R[(c, d)t]⊗R R/m, a polynomial

ring in two variables over k, are relatively prime.

We show that (a, b) is a reduction of (c, d)n, which will complete the proof.

It suffices to show that (a, b)(c, d)n = (c, d)2n, and by Nakayama’s Lemma it

suffices to show that the k-vector spaces [(a, b)(c, d)n + m(c, d)2n]/m(c, d)2n

and (c, d)2n/m(c, d)2n have the same dimension. The latter is the degree-2n

piece of the fiber ring F ((c, d)); its dimension is 2n + 1. The images of the

products acidn−i, i = 0, . . . , n, span a subspace of the former of dimension

n+1, and similarly with b in place of a; and since the images of a, b are rela-

tively prime, the intersection of these two subspaces is spanned by the image

of ab, so it is one-dimensional. Thus, [(a, b)(c, d)n+m(c, d)2n]/m(c, d)2n has

dimension 2(n+ 1)− 1 = 2n+ 1 as required. �

3. Principal extensions and contracted powers.

(3.1) Suppose D is a one-dimensional semispot birationally dominating

a quasi-unmixed, analytically unramified, normal local domain (R,m). In

this section we seek conditions for D to be the first coefficient domain of an

ideal I of R. If D is the first coefficient domain of I, then ID is principal,

and replacing I by the associated e1-ideal of a high power of I, we obtain
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an m-primary ideal J such that JD is principal and JnD∩R = Jn for each

positive integer n [HJLS, Theorem 3.17]. Thus a necessary condition for D

to be a first coefficient domain is the existence of an m-primary ideal J of R

with the two properties: (1) JD is principal, and (2) JnD∩R = Jn for each

positive integer n. If D is local, we prove in Theorem 3.3 that this necessary

condition is also sufficient, and that D is in fact the first coefficient domain

of each ideal J with these two properties.

The case in which V is a prime divisor birationally dominating a two-

dimensional RLR (R,m) is illustrative. Suppose a is a nonzero element of

m and consider the descending chain Jn = anV ∩ R, n = 1, 2, . . . , of ideals

of R. As noted in the introduction, each Jn is a complete ideal of R, and

from the Zariski theory it follows that Jn is a product of powers of the simple

complete ideals associated with the finitely many prime divisors that “come

out” on the sequence of quadratic transformations of R along V . Let b be

the simple complete ideal of R associated to V , and suppose the V -values

of a and b are p and q respectively. Then Jq = bp. Since all powers of

b are contracted from V , for each positive integer r we have Jrq = Jqr, or

equivalently the powers of Jq are contracted from V . Moreover, Jq has V as

its first coefficient domain.

(3.2) It was noted in [HJL, (3.7)] that the first coefficient domain of an

ideal I of R can be described using the minimal primes of IR[It] of the Rees

algebra R[It] or the minimal primes of t−1R[t−1, It] of the extended Rees

algebra R[t−1, It] of I (where t is an indeterminate over R). These primes are

in one-to-one correspondence with the maximal ideals of the first coefficient

domain D of I: If P is one of these minimal primes, then P does not contain

the degree-1 piece of the Rees algebra (or extended Rees algebra), say bt /∈ P
where b ∈ I. Then the localization of the (extended) Rees algebra at P is

also a localization of R[I/b][bt, (bt)−1] and has the form DN (bt) (cf. the

paragraph before Theorem 2.2) for the maximal ideal N of D corresponding

to P . [Note: The V (t) in the equations on the last line of [HJL, (3.7)] should

be V (bt), for b as above.]

Theorem 3.3. Let (R,m) be a local domain that is the intersection of its
13



localizations at height-one primes, and let D be a one-dimensional semilocal

domain that birationally dominates R. Suppose J is an m-primary ideal of

R such that JD is principal and JnD ∩R = Jn for each positive integer n.

Then the first coefficient domain of J is a localization of D. In particular,

if D is local, then D is the first coefficient domain of J .

Proof. Replacing J , if necessary, by a power of J , we may assume that

JD = aD where a ∈ J . Let A = R[t−1, Jt] be the extended Rees algebra

of the ideal J of R; let D(at) denote the localization of the polynomial

ring D[at] at the complement of the union of the extension to D[at] of the

maximal ideals of D; and let K be the fraction field of R. Since D[at, (at)−1]

is Cohen-Macaulay, it is the intersection of its localizations at height-one

primes. It follows that D[at, (at)−1] = K[at, (at)−1]∩D(at), and hence that

R[t, t−1] ∩D[at, (at)−1] = R[t, t−1] ∩K[at, (at)−1] ∩D(at)

= R[t, t−1] ∩D(at) = A .

Let P be a minimal prime of t−1A and let S = A − P . Then AP =

S−1(R[t, t−1] ∩ D(at)) = S−1(R[t, t−1]) ∩ S−1D(at). Since R[t, t−1] is the

locally finite intersection of its localizations at height-one primes, to show

S−1(R[t, t−1]) = K(t), it suffices to show S meets each height-one prime Q

of R[t, t−1]: If Q ∩ S = ∅, then Q ∩ A ⊆ P . Since Q ∩ A 6= 0, we must have

Q∩A = P . But P ∩R = m and Q∩R < m, a contradiction. Thus S meets

each height-one prime of R[t, t−1], so AP = S−1D(at).

Let E be the first coefficient domain of J . The maximal ideals N of E

are in one-to-one correspondence with the minimal primes P of t−1A, where

AP = EN (at). Since each AP is a localization of D(at), the intersection

E(at) of the AP ’s is a ring of fractions of D(at). Intersecting with K shows

that E is a ring of fractions of D. �

The following corollary implies the uniqueness property of the intersection

of the Rees valuation domains of an ideal mentioned in (0.2).

Corollary 3.4. Let (R,m) be a quasi-unmixed, analytically unramified, nor-

mal local domain, and let I be an m-primary ideal of R. The first coefficient
14



domain E of I is the unique largest one-dimensional semilocal domain D

birationally dominating R and having the properties that ID is principal and

InD ∩R is contained in the e1-ideal of In for each positive integer n.

Proof. By [HJLS, Theorem 3.17] for all sufficiently large positive integers r,

the ideal J = IrE ∩R has the property that E is the first coefficient domain

of J and for each positive integer n we have JnE∩R = Jn = IrnE∩R is the

e1-ideal associated to Irn. Therefore JnD is principal and JnD ∩ R = Jn

for each n. By Theorem 3.3, E is a localization of D. �

Corollary 3.5. Let D be a one-dimensional spot birationally dominating a

two-dimensional RLR (R,m). If J is an m-primary ideal in R such that

JD is principal and all the powers of J are contracted from D, then D is

the first coefficient domain of J , and the integral closure of J is a product

of powers of the simple complete ideals associated to the localizations of the

integral closure of D.

Proposition 3.6. Let (R,m) be a quasi-unmixed analytically unramified

local domain of dimension d ≥ 2, and let J be an m-primary ideal of R. Let

D be a one-dimensional semilocal domain birationally dominating R, and let

V be a finitely generated birational integral extension of D. If all the powers

of J are contracted from D, then for each positive integer n, JnV ∩ R is

integral over Jn. In particular, if I = JD ∩ R is a normal ideal (i.e., the

powers of I are integrally closed), then all the powers of I are contracted

from V .

Remark. The hypothesis in Proposition 3.6 (and in Proposition 3.7 be-

low) that V is a finitely generated D-module is necessary (cf., e.g., [HRS,

(1.27)]). But if D (or V , by Corollary 1.3) is a (birational) semispot over R,

the hypothesis on R assures that V is a finitely generated D-module [Re2,

Theorem 1.2].

Proof. For the first assertion, it suffices to show that I is integral over J .

Since J is contained in each nonzero prime ideal of D, there exists a positive

integer c such that Jc is contained in the conductor of V into D. Thus, for
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all positive integers n, we have

In+c ⊆ In+cV ∩R = Jn+cV ∩R ⊆ JnD ∩R = Jn ⊆ In.

It follows that the length of R/Jn is between those of R/In and R/In+c.

Now, for n sufficiently large, the length of In/In+c is a polynomial in n

of degree d − 1, while the lengths of R/In and R/Jn are polynomials in n

of degree d. Therefore the Hilbert polynomials of I and J have the same

highest degree coefficient, i.e., I and J have the same multiplicity. By [Re1,

Theorem 3.2], I is integral over J .

For the second assertion, note that Jn ⊆ In ⊆ InV ∩ R = JnV ∩ R;

the last ideal is integral over Jn, so if In is integrally closed, it is equal to

InV ∩R. �

Proposition 3.7. Let (R,m) be a normal, quasi-unmixed, analytically un-

ramified local domain of dimension d ≥ 2, and J be an m-primary ideal of

R. Let D be a one-dimensional semilocal domain birationally dominating R

such that the integral closure V of D is a finitely generated D-module. Sup-

pose that JnD ∩ R = Jn for each positive integer n, and let In = JnV ∩ R
for each n.

(1) For sufficiently large r, all the powers of Ir are contracted from V .

(2) Therefore V is contained in each of the Rees valuation domains of J ,

and so D is contained in the integral closure of the first coefficient

domain of J .

Proof. (1) By [Re2, Theorem 1.4], for sufficiently large r, Ir is a normal

ideal, so by Proposition 3.6 all the powers of Ir are contracted from V .

(2) Since the intersection of the Rees valuation domains is the unique largest

one-dimensional semilocal subdomain E of the fraction field of R with the

property that the integral closure of Jn is JnE∩R for each n, V is contained

in each of the Rees valuation domains of J . �

(3.8) Let (R,m) be a two-dimensional RLR, let D be a one-dimensional

semispot birationally dominating R, and let V be the integral closure of D.

Let b1, . . . ,bn be the simple complete ideals of R associated to the DVR’s
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which are localizations of V . Then the associated e1-ideal of an m-primary

ideal I of R has the form (∗) as in (0.2) above, where the rj are positive

integers, if and only if V is the first coefficient domain of I. By [HJL,

Theorem 3.12], D is a first coefficient domain if and only if there exists an

ideal J of R such that JD is principal and such that the integral closure of

J is of the form (∗). Thus, for example, if V is the ord-valuation domain of

R, then D is a first coefficient domain if and only if there exists an ideal J

such that JD is principal and such that the integral closure of J is a power

of m.

(3.9) With R,D as in Corollary 3.5, there always exist m-primary ideals J

with the property that all their powers are contracted from D (for, if J is the

product of the simple complete ideals associated to the DVR localizations of

the integral closure of D, then all the powers of J are contracted from the

integral closure of D and hence also from D). Thus, in this case the issue is

whether there exists such a J with JD principal. However, if one passes to a

more general situation where R is a two-dimensional excellent normal local

domain, then there may exist birationally dominating DVR spots V over R

for which there does not exist an ideal J of R such that all the powers of J

are contracted from V . By definition, an excellent two-dimensional normal

local domain (R,m) with the property that each prime divisor of the second

kind on R is the first coefficient domain of an m-primary ideal is said to

satisfy Muhly’s condition (N) (cf. [HL, page 291]). If R is a two-dimensional

complete normal local domain, Cutkosky proves in [C, Theorem 4] that R

satisfies condition (N) if and only if R has torsion divisor class group. Thus,

for example, R = C[[x, y, z]], where x3 + y3 + z3 = 0, has prime divisors of

the second kind which are not first coefficient domains of an ideal of R.

(3.10) Let (R,m) be a two-dimensional RLR and let D be the first coef-

ficient domain of an ideal I of R. If D is a prime divisor of R and a ∈ m is

a nonzero element, then there exists a positive integer n such that D is the

first coefficient domain of anD ∩ R (cf. (3.1)). The case of a general first

coefficient domain, however, is different: In Example 1.8, there is no posi-

tive integer m for which D is the first coefficient domain of xmD ∩R. This
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phenomenon is the reef on which founders the following naive approach to

realizing a one-dimensional semispot E birationally dominating R as a first

coefficient domain. Let b1, . . . ,bs be the distinct simple complete ideals of

R associated with the prime divisors obtained as localizations of the inte-

gral closure E′ of E, and let a ∈ R be such that aE′ ∩ R = b1 . . .bs. Let

A = R[t−1, t] ∩ E(at). Then A = R[t−1, I1t, I2t
2, . . . ], where In = anE ∩ R.

The integral closure of A is A′ = R[t−1, (I1)′t, (I2)′t2, . . . ], while the domain

A′′ = R[t−1, t] ∩ E′(at) is almost integral over A since there is a nonzero

conductor from E′ to E. The following conditions are equivalent: (1) A is

Noetherian. (2) A is affine over R. (3) A′ = A′′. When these conditions

hold, (I1)′ = b1 . . .bs and E is the first coefficient domain of an ideal inte-

gral over a power of I1. In Example 1.8, however, for E = D and a = x, we

have A′ < A′′. When we have A′ < A′′, there is no positive integer m for

which the powers of Im are contracted from E, nor for which E is the first

coefficient domain of Im.
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