IDEAL THEORY IN TWO-DIMENSIONAL REGULAR LOCAL DOMAINS AND BIRATIONAL EXTENSIONS

WILLIAM HEINZER AND DAVID LANTZ

Department of Mathematics, Purdue University, West Lafayette, IN 47907. E-mail: heinzer@math.purdue.edu

Department of Mathematics, Colgate University, 13 Oak Drive, Hamilton, NY 13346-1398. E-mail: dlantz@center.colgate.edu

0. Introduction.

(0.1) Let (R, \mathbf{m}) be a two-dimensional regular local domain with infinite residue field R/\mathbf{m} . Associated to an **m**-primary ideal I in R is its Hilbert polynomial

$$P_I(n) = e_0(I) {\binom{n+1}{2}} - e_1(I)n + e_2(I) ,$$

the integer-valued polynomial giving the length of the *R*-module R/I^n for sufficiently large positive integers *n*. The coefficient e_0 is well known to be a positive integer, the *multiplicity* of *I*, and in our context, the coefficients e_1 and e_2 are known to be nonnegative integers.

A well-known result of Rees [Re1, Theorem 3.2] implies that for each mprimary ideal I of R the integral closure of I is the unique largest ideal containing I and having the same multiplicity. A result of Shah in [Sh, Theorem 1] implies the existence of a unique largest ideal $I_{\{1\}}$ containing I and having the same coefficients e_0 and e_1 of its Hilbert polynomial. We call $I_{\{1\}}$ the e_1 -ideal associated with I. If $I = I_{\{1\}}$, we call I a first coefficient ideal or an e_1 -ideal.

There is an interplay between the internal structure of the ideals in Rand the external structure of certain birational extensions of R. In this connection, for an **m**-primary ideal I, the *blowup* of I,

$$\mathcal{B}(I) = \operatorname{Proj}(R[It]) = \{R[I/a]_P : a \in I - 0, P \in \operatorname{Spec}(R[I/a])\},\$$

is the projective model over R (in the sense of [ZS, page 120]) consisting of the local domains containing R that are minimal with respect to domination among all the local domains containing R in which the extension of I is principal. There is a nonempty finite subset of $\mathcal{B}(I)$ consisting of local domains in which I generates an ideal primary for the maximal ideal; each of these local domains is one-dimensional and their intersection D is a one-dimensional semilocal domain called the *first coefficient domain* of I. As noted in [HJL, (1.3) and (3.2)], we have $ID \cap R = I_{\{1\}}$; indeed, since all powers I^n of I have the same blowup, we have $I^nD \cap R = (I^n)_{\{1\}}$, for each positive integer n.

Our goal in this paper is a better understanding of e_1 -ideals and their first coefficient domains over a two-dimensional regular local domain. The situation where the first coefficient domain is a semilocal PID is well understood in view of the Zariski theory concerning complete ideals and prime divisors on R (see, e.g., [Z], [ZS, Appendix 5] or [Hu]). In particular, if V is a DVR birationally dominating R which is a spot over R (i.e., in Zariski's terminology a prime divisor of the second kind on R; in [A2] a hidden prime divisor of R), then the ideals of R contracted from V form a descending chain $\mathbf{m} = \mathbf{a}_0 > \mathbf{a}_1 > \mathbf{a}_2 > \dots$ of complete **m**-primary ideals, the valuation ideals of R with respect to V. The Zariski theory associates to the prime divisor of the second kind V a unique simple (i.e., not factorable into a product of proper ideals) complete ideal **b**. One way of characterizing **b** is that **b** is maximal among **m**-primary ideals **c** of R with the property that all powers of **c** are contracted from V. We have $\mathbf{b} = \mathbf{a}_n$ for some n. For example, $\mathbf{b} = \mathbf{m}$ if and only if V is the ord-valuation domain $R[y/x]_{\mathbf{m}R[y/x]}$ where $\mathbf{m} = (x, y)R$. If n > 0, then certain of the ideals $\mathbf{a}_0, \ldots, \mathbf{a}_{n-1}$ are also simple complete ideals. If we label the simple complete ideals in this chain as $\mathbf{b}_0 = \mathbf{m}, \mathbf{b}_1, \ldots, \mathbf{b}_s = \mathbf{b} = \mathbf{a}_n$, then Zariski proves that each of the valuation ideals $\mathbf{a}_i, i \ge 0$, is a product of powers of $\mathbf{b}_0, \ldots, \mathbf{b}_s$ [ZS, page 392]. For example, if $\mathbf{m} = (x, y)R$ and V is the integral closure of $R[x^2/y^3]_{\mathbf{m}R[x^2/y^3]}$, then $\mathbf{b} = (x^2, xy^2, y^3)R$ is the simple complete ideal associated to V, and $\mathbf{m} = \mathbf{a}_0 > \mathbf{a}_1 = \mathbf{b}_1 = (x, y^2)R > \mathbf{a}_2 = \mathbf{m}^2 > \mathbf{b}$ is the beginning of the chain of ideals $\{\mathbf{a}_i\}$ of R contracted from V. The result of Zariski just mentioned implies that each \mathbf{a}_i is a power product of \mathbf{m}, \mathbf{b}_1 and \mathbf{b} . More detailed information as to which products of the \mathbf{b}_j are actually contracted from V is given by Noh in [No, Theorem 3.1].

(0.2) To describe the same situation from a different starting point, let I be a complete **m**-primary ideal of R. The first coefficient domain D of I is then a semilocal PID which is the intersection of the Rees valuation domains of I, i.e., the DVR's on $\mathcal{B}(I)$ that dominate R. In this case, D is uniquely determined as the largest one-dimensional semilocal subdomain E of the fraction field of R having the property that all the powers of I are contracted from E (see (3.4) below). If V_1, \ldots, V_n are the Rees valuation domains of I, then the Zariski theory implies that I has the form

$$(*) \mathbf{b}_1^{r_1} \dots \mathbf{b}_n^{r_n}$$

where the r_j are positive integers and \mathbf{b}_j is the simple complete ideal of R associated to V_j , j = 1, ..., n.

In the present paper we pursue the study of e_1 -ideals and first coefficient domains begun in [HJL]. In particular, we consider implications of the Zariski theory for these broader classes of ideals and integral domains. Our objective, only partially realized, is to identify the first coefficient domains over a two-dimensional regular local domain and the ideals of which they are first coefficient domains.

In Section 1 we illustrate with several examples properties that onedimensional spots birationally dominating a two-dimensional regular local domain may have or fail to have. We also observe in Proposition 1.1 that the condition of being a spot descends from an integral extension. In Section 2 we consider implications of residual transcendence. As part of Theorem 2.2, we prove that if R is a two-dimensional RLR of characteristic p > 0 with algebraically closed residue field and D is a one-dimensional local domain birationally dominating R such that the integral closure of D is a prime divisor on R, then D is the first coefficient domain of an ideal of R.

In Section 3 we examine asymptotic behavior of ideals and implications for first coefficient domains. Suppose (R, \mathbf{m}) is a local domain that is the intersection of its localizations at height-one primes and D is a one-dimensional semilocal domain birationally dominating R. In Theorem 3.3 we prove that if J is an \mathbf{m} -primary ideal of R such that JD is principal and $J^n D \cap R = J^n$ for each positive integer n, then the first coefficient domain of J is a localization of D. In particular, if D is local, then D is the first coefficient domain of J.

As usual, we abbreviate "regular local domain" by RLR and "rank-one discrete valuation domain" by DVR. The words "local" and "semilocal" include the hypothesis of Noetherian. The symbol < between sets denotes proper inclusion. For an ideal I in a Noetherian domain R the blowup of Iand the first coefficient domain of I are defined as in (0.1) above. The Rees valuation domains of I are the localizations of the integral closure of the first coefficient domain of I at its maximal ideals. It is convenient to extend some familiar terminology to the case of rings that are not necessarily Noetherian or that have more than one maximal ideal: A ring D containing a domain R having a unique maximal ideal **m** is said to birationally dominate R if D is contained in the fraction field of R and for each maximal ideal N of D, $N \cap R = \mathbf{m}$. An extension ring D of a ring R is said to be affine over R if D is finitely generated as an algebra over R. We say that a ring D with finitely many maximal ideals is a *semispot* over a subring R if D is a ring of fractions of a ring containing and affine over R. If such a D has only one maximal ideal, then we call it a *spot* over R.

1. One-dimensional birational spots.

We are interested in considering one-dimensional semilocal domains D that birationally dominate a two-dimensional RLR R. A DVR V birationally

dominating R is a spot over R if and only if the the residue field of V is not algebraic as an extension of R/\mathbf{m} [A1, Proposition 3, page 336]. An interesting property of such a DVR V (also proved in [A1]) is that the residue field F of V is ruled as an extension field of R/\mathbf{m} , i.e., F is obtained as a simple transcendental extension of a field intermediate between R/\mathbf{m} and F. In view of the fact that R is a two-dimensional RLR, it follows that F is a simple transcendental extension of a finite algebraic extension of R/\mathbf{m} .

In general, if D is a one-dimensional semilocal domain birationally dominating R, then the integral closure D' of D is a semilocal PID birationally dominating R. If R is complete, then D' is necessarily a semispot over R; but for certain R (such as $R = k[x, y]_{(x,y)k[x,y]}$ where x, y are indeterminates over the field k) there exist DVR's birationally dominating R that are not spots over R (cf., e.g., [HRS]).

We begin by proving a result (Corollary 1.3) that implies that if D is a one-dimensional semilocal domain birationally dominating a two-dimensional RLR R and if the integral closure D' of D is a semispot over R, then D is a semispot over R and D' is a finitely generated D-module.

Proposition 1.1. Let R be a Noetherian ring, and let V be a semispot over R. Suppose $R \subseteq D \subseteq V$ with D quasilocal and V integral over D. Then D is a spot over R and V is a finitely generated D-module.

Proof. Since V is a semispot over R, there exist elements $a_1, \ldots, a_n \in V$ such that V is a ring of fractions of $R[a_1, \ldots, a_n]$. Let b_1, \ldots, b_m be the coefficients of monic polynomials over D satisfied by a_1, \ldots, a_n ; set $B = R[b_1, \ldots, b_m]$ and $A = B[a_1, \ldots, a_n]$. Let Q be the center of D on B, and let A_1 and B_1 be the rings of fractions of A and B at the multiplicative set B - Q. Then B_1 is local, with maximal ideal $Q_1 = QB_1$, and A_1 is a finite integral extension of B_1 . Hence A_1 has only finitely many maximal ideals. Let P_1, \ldots, P_r denote the centers on A_1 of the maximal ideals of V, and let $S = A_1 - (\bigcup_{i=1}^r P_i)$. Since V is a ring of fractions of $R[a_1, \ldots, a_n]$, we have $S^{-1}A_1 = V$. Choose $a \in S$ such that a is in each maximal ideal of A_1 distinct from P_1, \ldots, P_r (if any — otherwise let a = 1). Then 1/a is in V and hence is integral over D. Let c_1, \ldots, c_p be the coefficients of a monic polynomial over D satisfied by

1/a; let (B_2, Q_2) be the localization of $B_1[c_1, \ldots, c_p]$ at the center of D on this ring, and set $A_2 = B_2[1/a, A_1]$.

We claim that $A_2 = V$. To see this, it suffices to show each s in S is a unit in A_2 : Assume by way of contradiction that s in S is in a maximal ideal M of A_2 . Since A_2 is integral over B_2 , we have $M \cap B_2 = Q_2$, and so $Q_1 = M \cap B_1 = (M \cap A_1) \cap B_1$. Since A_1 is integral over B_1 , $M \cap A_1$ is maximal in A_1 . Moreover, $M \cap A_1$ survives in A_2 , so our choice of a assures that $M \cap A_1$ is the center on A_1 of one of the maximal ideals of V. But this yields $s \in S \subseteq A_1 - (M \cap A_1)$, a contradiction.

Therefore, V is an affine extension of B_2 and hence a finitely generated D-module. Thus, by Artin-Tate [Ku, Lemma 3.3, page 16], D is an affine extension of B_2 and hence a spot over R. \Box

To extend this result to the case where D has finitely many maximal ideals, we use:

Proposition 1.2. Let R be an integral domain. Suppose D is an extension domain of R having only finitely many maximal ideals N_1, \ldots, N_r and having the property that D_{N_i} is a spot over R for each $i = 1, \ldots, r$. Then D is a semispot over R.

Proof. For each maximal ideal N_i of D there is a finite subset T_i of D_{N_i} such that D_{N_i} is a localization of $R[T_i]$. And there is an element s_i of $D - N_i$ for which $s_i T_i \subseteq D$. Let $A = R[(\bigcup_{i=1}^r s_i T_i) \cup \{s_1, \ldots, s_r\}]$. If P_i denotes the center of D_{N_i} on A, then $A \subseteq D \subseteq D_{N_i} = A_{P_i}$; so D is the ring of fractions of A at the complement of the union of the P_i 's. \Box

As an immediate corollary of Propositions 1.1 and 1.2, we have:

Corollary 1.3. Let D be a semilocal extension domain of a Noetherian domain R, and let V be a domain integral over D. If V is a semispot over R, then D is also a semispot over R. \Box

(1.4) It follows from Corollary 1.3 that a one-dimensional semilocal domain D that birationally dominates a two-dimensional RLR R is a semispot over R if and only the integral closure of D is an intersection of prime divisors of

the second kind on R, or equivalently, if and only if each DVR birationally containing D is a prime divisor of the second kind on R.

We are interested in the question of which one-dimensional semilocal domains birationally dominating R are first coefficient domains of ideals of R. The first coefficient domains of complete ideals of R are well understood. They are precisely the one-dimensional semilocal PID's birationally dominating R that are semispots over R. Moreover, if I and J are complete **m**-primary ideals of R with first coefficient domains D_I and D_J , respectively, then $D_I \cap D_J$ is a PID semispot over R and is the first coefficient domain of IJ. More generally, by the Theorem on Independence of Valuations (e.g., [N, (11.11)] or [ZS, Theorem 18, p. 45]) the intersection of two semilocal PID's birationally dominating a local domain is again a semilocal PID birationally dominating the local domain. But for arbitrary **m**-primary ideals I and J of R, the relation of D_I and D_J with the first coefficient domain of IJ is more delicate. It is not necessarily $D_I \cap D_J$; indeed, in Example 1.5 we show that $D_I \cap D_J$ need not be a first coefficient domain of R. In this example we make use of the description of the first coefficient domain of an ideal generated by a regular sequence given in [HJL, (3.8)].

Example 1.5. Let k be a field of characteristic 0 and x, y be indeterminates over k; set $R = k[x, y]_{(x,y)}$. Then the first coefficient domains of the ideals $(x^2, y^2)R$ and $(x^2, xy + y^2)R$ are

$$D_1 = k((y/x)^2) + M$$
 and $D_2 = k((y/x) + (y/x)^2) + M$,

respectively, where M is the maximal ideal of the ord-valuation domain $V = R[y/x]_{\mathbf{m}R[y/x]} = k(y/x) + M$ over R. (The maximal ideals M_1 and M_2 of D_1 and D_2 , respectively, are contained in M, and a module basis for V over either D_1 or D_2 is 1, y/x. Since $M_i(y/x) \subseteq D_i$ and $M_iV = M$, we have $M_i = M$.) Since k is of characteristic zero, we have $k((y/x)^2) \cap k((y/x) + (y/x)^2) = k$. It follows that the residue field of $D_1 \cap D_2$ at the center of V on $D_1 \cap D_2$ is not residually transcendental over the residue field k of R, so $D_1 \cap D_2$ is not a semispot over R by (1.4) and hence is not the first coefficient domain of an ideal of R. (1.6) Suppose I and J are **m**-primary ideals of R, where (R, \mathbf{m}) is a twodimensional RLR, or more generally, a quasi-unmixed analytically unramified local domain. We want to relate the first coefficient domain D of IJ to the first coefficient domains D_I and D_J of I and J. A first remark is that since the set of Rees valuation domains of IJ is the union of the sets of Rees valuation domains of I and J, the integral closure of D is the intersection of the integral closures of D_I and D_J . With each DVR V that is a localization of the integral closure of D_I (of which there are only finitely many) we associate a one-dimensional semilocal domain $D_V = (D_I)_P[B]$, where P is the center of V on D_I and B is the unique local domain on the blowup of J that is dominated by V. In an analogous way we construct D_W for each DVR W that is a localization of the integral closure of D_J . The first coefficient domain D of IJ is the the intersection of the one-dimensional semilocal domains D_V and D_W as V and W vary over the sets of the Rees valuation domains of I and J respectively.

(1.7) The proofs of several results below rely on Theorem 3.12 of [HJL]; and on rereading the proof of that result, we feel one point deserves a fuller discussion. The relevant hypotheses in that result are as follows: R is a normal, analytically unramified, quasi-unmixed, local domain with infinite residue field, I is an ideal primary for the maximal ideal of R, D is the first coefficient domain of I, E is a domain birational and integral over D, and ais an element of I for which ID = aD. In the proof, we set $S = R[1/a] \cap D$ and $T = R[1/a] \cap E$, and we assert that D, E are rings of fractions of S, Trespectively. This is true under the hypothesis of Theorem 3.12 of [HJL], but in Example 1.8 below we show that for $a \in \mathbf{m}$ with $aD \neq ID$ it can happen that D is not a ring of fractions of $S = R[1/a] \cap D$. So we felt these assertions should be given a more explicit justification: The hypothesis that D is the first coefficient domain of I means that there exists an element b of I such that D is an intersection of a finite number of one-dimensional localizations of R[I/b] and hence is itself a ring of fractions of R[I/b]. Moreover, bD =ID = aD. Thus, b/a is an element of R[I/a] that is not in any of the prime ideals of D, so the ring of fractions of R[I/a] with respect to the complement in R[I/a] of the union of the primes in D contains R[I/b] and hence is all of D. Since $S = R[1/a] \cap D \supseteq R[I/a]$, we see that D is also a ring of fractions of S. Now we turn to $T = R[1/a] \cap E$, which is almost integral over S since there is a nonzero conductor from E into D (because R is analytically unramified [Re2, Theorem 1.2]). Since

$$S = \cap \{R[I/a]_P : P \text{ is a height-one prime }\}$$

and since R[I/a] is universally catenary, S is contained in the integral closure of R[I/a]. Moreover, the fact that R is analytically unramified implies that the integral closure of R[I/a] is a finitely generated R[I/a]-module. Therefore S is Noetherian and hence T is integral over S. Since D is a ring of fractions of S, the maximal ideals of D are centered on height-one primes of S. It follows that the maximal ideals of E are centered on height-one primes of T. Since the essential valuation domains of R[1/a] are all localizations of S and of T, it follows that E is a ring of fractions of T.

Example 1.8. Let $R = k[x, y]_{(x,y)k[x,y]}$, where k is a field and x, y are indeterminates over k. Let $V = k(y/x)[x]_{(x)}$ be the ord-valuation domain of R. Then V = k(y/x) + M, where M is the maximal ideal of V. Let $D = k((y^2 + x^2)/xy) + M$. Then D is the first coefficient domain of the ideal $(xy, y^2 + x^2)R$, a one-dimensional local domain that birationally dominates R, and V is the integral closure of D. Let $T = R[1/x] \cap V$ and $S = R[1/x] \cap D$. Then T = R[y/x], so $S = R[y/x] \cap D$. Using that $k[y/x] \cap k((y^2 + x^2)/xy) = k$ and considering the unique expression of each element of a subdomain of V as the sum of an element of k(y/x) and an element of M, we see that $S = k + (M \cap R[y/x])$. Hence D is centered on a maximal ideal of S and is not a localization of S. We also have in this example that S is not Noetherian and T is almost integral but not integral over S. The localization of S at each of its height-one primes contains R[1/x].

2. Residually transcendental elements.

Let (R, \mathbf{m}) be a two-dimensional RLR with residue field $k = R/\mathbf{m}$. A first coefficient domain of an **m**-primary ideal of R is a one-dimensional semispot birationally dominating R. As a partial converse, we observe in

Proposition 2.1 that a domain satisfying these hypotheses is at least a ring of fractions of a first coefficient domain of R.

Proposition 2.1. Let (R, \mathbf{m}) be a two-dimensional RLR and E be a onedimensional semispot birationally dominating R. Then there exists a first coefficient domain D of R such that E is a ring of fractions of D.

Proof. Let a_1, \ldots, a_n, b be elements of R such that E is a ring of fractions of $R[a_1/b,\ldots,a_n/b]$. We may assume that a_1,\ldots,a_n,b have no common factor in R, so that the ideal $I = (a_1, \ldots, a_n, b)R$ is **m**-primary. Let D_0 denote the first coefficient domain of I. Since E is a semispot over R, the dimension formula [M, (14.D)] shows that for each maximal ideal N of E the image of at least one of the quotients a_i/b in E/N is transcendental over R/\mathbf{m} . Thus, the center of N on $R[a_1/b, \ldots, a_n/b]$ is one-dimensional, so that $D_0 \subseteq E_N$. Since this holds for each maximal ideal N of $E, D_0 \subseteq E$. But there may be prime divisors dominating R that contain D_0 but not E. The intersection D of all these prime divisors and E is an integral extension of D_0 and hence a first coefficient domain (of an ideal integral over a power of I) by [HJL, Theorem 3.12]. We have $D \subseteq E$ are one-dimensional semilocal domains with E birational over D and D integrally closed in E. Forming the ring of fractions of D with respect to the elements of D that are units of E and applying [N, (33.1)], we see that E is a ring of fractions of D.

A variant of the process used in this proof is as follows: With R, E, etc. as in Proposition 2.1 and its proof, let (c, d)R be a reduction of $I = (a_1, \ldots, a_n, b)R$ (or of a power of I if the residue field of R is finite and Ifails to have a 2-generated reduction). For each maximal ideal N of E, the image of c/d in E/N is transcendental over R/\mathbf{m} , so $N \cap R[c/d] = \mathbf{m}R[c/d]$. It follows that E is a localization of the integral closure of $R[c/d]_{\mathbf{m}R[c/d]}$ in E. To realize E itself as a first coefficient domain in this manner amounts to answering in the affirmative the following question: Does there exist a single element a/b of E such that J = (a, b)R is a reduction of a complete ideal of the form (*) in (0.2) above, where the r_j are positive integers and the \mathbf{b}_j are the simple complete ideals corresponding to the DVR localizations of the integral closure of E? If so, then E and $R[a/b]_{\mathbf{m}R[a/b]}$ have the same integral closure. Thus, E is integral over $R[a/b]_{\mathbf{m}R[a/b]}$ and hence a first coefficient domain in its own right. The proof of Theorem 2.2 below is essentially the construction of such an element a/b in a special case.

In the proof of Theorem 2.2 is a reference to R(t), where t is an indeterminate over R. In general, for a ring A, the symbol A(t) denotes the ring of fractions of the polynomial ring A[t] with respect to the multiplicative system of polynomials whose coefficients generate the unit ideal in A (cf. [N, page 18]). In the present local case, this means only that not all of the coefficients of the polynomial are in **m**. There is a natural epimorphism from R(t) onto the simple transcendental field extension k(t) of k, with kernel generated by **m**; images under this epimorphism (as well as under other extensions of the epimorphism $R \to k$) are denoted by overbars (vincula).

Theorem 2.2. Let D be a one-dimensional local domain birationally dominating a two-dimensional RLR R. Assume that $k = R/\mathbf{m}$ is algebraically closed, that the integral closure D' of D is a prime divisor on R, and that either (1) R has nonzero characteristic or (2) D contains the maximal ideal of D'. Then there is an \mathbf{m} -primary ideal of which D is the first coefficient domain.

Proof. By (1.1), D is a spot over R and D' is a finitely generated D-module. In view of the last sentence of General Example 3.8 and Theorem 3.12 of [HJL], it is enough to find a 2-generated **m**-primary ideal (a, b)R of R for which $a/b \in D$ and the integral closure of $R[a/b]_{\mathbf{m}R[a/b]}$ is D'. Also, since D' is a prime divisor of the second kind of R, there is a simple complete **m**-primary ideal **b** with which D' is associated, in the sense of the Zariski theory. It will suffice to find elements a, b of R so that $a/b \in D$ and the ideal (a, b)R is a reduction of a power of **b**.

Let (c, d)R be a minimal reduction of **b** (or of a power of **b**). Then the residue field of D' is of transcendence degree 1 over k, generated by the image $\overline{c/d}$ of c/d (because k is algebraically closed [HuS, Remark 3.5]), but algebraic over the residue field of D, and for any other prime divisor of the second kind of R, either c/d is not in that prime divisor or its image in the residue field is not transcendental over the image of k (i.e., c/d is not

"residually transcendental" for any other prime divisor of the second kind). Thus, for an element z of D of which the image \overline{z} in the residue field of D (or D') is transcendental over k, there is an element $\varphi(t)$ of R(t) such that if $\overline{\varphi}(t) \in k(t)$ is the image of $\varphi(t)$ in $R(t)/\mathbf{m}R(t)$, then $\overline{z} = \overline{\varphi}(\overline{c/d})$. We may assume that the numerator and denominator of $\overline{\varphi}(t)$ are relatively prime polynomials over k. Now $z - \varphi(c/d)$ is in the maximal ideal of D', so under assumption (2) of the statement, we immediately have that $\varphi(c/d) \in D$. To reach a similar (though not identical) conclusion under assumption (1), we note that since D' is local and is a finitely generated D-module, the maximal ideal of D contains a power of the maximal ideal of D'; so we can raise $z - \varphi(c/d)$ to a sufficiently high power q, a power of the characteristic of R, to conclude that $\varphi(c/d)^q \in D$. Multiplying the numerator and denominator of φ or φ^q by the same power of d, we convert them into forms a = a(c, d)and b = b(c, d) in c, d of the same degree n such that their images in the degree-*n* piece of the fiber ring $F((c,d)) = R[(c,d)t] \otimes_R R/\mathbf{m}$, a polynomial ring in two variables over k, are relatively prime.

We show that (a, b) is a reduction of $(c, d)^n$, which will complete the proof. It suffices to show that $(a, b)(c, d)^n = (c, d)^{2n}$, and by Nakayama's Lemma it suffices to show that the k-vector spaces $[(a, b)(c, d)^n + \mathbf{m}(c, d)^{2n}]/\mathbf{m}(c, d)^{2n}$ and $(c, d)^{2n}/\mathbf{m}(c, d)^{2n}$ have the same dimension. The latter is the degree-2npiece of the fiber ring F((c, d)); its dimension is 2n + 1. The images of the products $ac^i d^{n-i}$, $i = 0, \ldots, n$, span a subspace of the former of dimension n+1, and similarly with b in place of a; and since the images of a, b are relatively prime, the intersection of these two subspaces is spanned by the image of ab, so it is one-dimensional. Thus, $[(a, b)(c, d)^n + \mathbf{m}(c, d)^{2n}]/\mathbf{m}(c, d)^{2n}$ has dimension 2(n+1) - 1 = 2n + 1 as required. \Box

3. Principal extensions and contracted powers.

(3.1) Suppose D is a one-dimensional semispot birationally dominating a quasi-unmixed, analytically unramified, normal local domain (R, \mathbf{m}) . In this section we seek conditions for D to be the first coefficient domain of an ideal I of R. If D is the first coefficient domain of I, then ID is principal, and replacing I by the associated e_1 -ideal of a high power of I, we obtain an **m**-primary ideal J such that JD is principal and $J^nD \cap R = J^n$ for each positive integer n [HJLS, Theorem 3.17]. Thus a necessary condition for Dto be a first coefficient domain is the existence of an **m**-primary ideal J of Rwith the two properties: (1) JD is principal, and (2) $J^nD \cap R = J^n$ for each positive integer n. If D is local, we prove in Theorem 3.3 that this necessary condition is also sufficient, and that D is in fact the first coefficient domain of each ideal J with these two properties.

The case in which V is a prime divisor birationally dominating a twodimensional RLR (R, \mathbf{m}) is illustrative. Suppose a is a nonzero element of \mathbf{m} and consider the descending chain $J_n = a^n V \cap R$, $n = 1, 2, \ldots$, of ideals of R. As noted in the introduction, each J_n is a complete ideal of R, and from the Zariski theory it follows that J_n is a product of powers of the simple complete ideals associated with the finitely many prime divisors that "come out" on the sequence of quadratic transformations of R along V. Let **b** be the simple complete ideal of R associated to V, and suppose the V-values of a and **b** are p and q respectively. Then $J_q = \mathbf{b}^p$. Since all powers of **b** are contracted from V, for each positive integer r we have $J_q^r = J_{qr}$, or equivalently the powers of J_q are contracted from V. Moreover, J_q has V as its first coefficient domain.

(3.2) It was noted in [HJL, (3.7)] that the first coefficient domain of an ideal I of R can be described using the minimal primes of IR[It] of the Rees algebra R[It] or the minimal primes of $t^{-1}R[t^{-1}, It]$ of the extended Rees algebra $R[t^{-1}, It]$ of I (where t is an indeterminate over R). These primes are in one-to-one correspondence with the maximal ideals of the first coefficient domain D of I: If P is one of these minimal primes, then P does not contain the degree-1 piece of the Rees algebra (or extended Rees algebra), say $bt \notin P$ where $b \in I$. Then the localization of the (extended) Rees algebra at P is also a localization of $R[I/b][bt, (bt)^{-1}]$ and has the form $D_N(bt)$ (cf. the paragraph before Theorem 2.2) for the maximal ideal N of D corresponding to P. [Note: The V(t) in the equations on the last line of [HJL, (3.7)] should be V(bt), for b as above.]

Theorem 3.3. Let (R, \mathbf{m}) be a local domain that is the intersection of its

localizations at height-one primes, and let D be a one-dimensional semilocal domain that birationally dominates R. Suppose J is an \mathbf{m} -primary ideal of R such that JD is principal and $J^n D \cap R = J^n$ for each positive integer n. Then the first coefficient domain of J is a localization of D. In particular, if D is local, then D is the first coefficient domain of J.

Proof. Replacing J, if necessary, by a power of J, we may assume that JD = aD where $a \in J$. Let $A = R[t^{-1}, Jt]$ be the extended Rees algebra of the ideal J of R; let D(at) denote the localization of the polynomial ring D[at] at the complement of the union of the extension to D[at] of the maximal ideals of D; and let K be the fraction field of R. Since $D[at, (at)^{-1}]$ is Cohen-Macaulay, it is the intersection of its localizations at height-one primes. It follows that $D[at, (at)^{-1}] = K[at, (at)^{-1}] \cap D(at)$, and hence that

$$\begin{split} R[t,t^{-1}] \cap D[at,(at)^{-1}] &= R[t,t^{-1}] \cap K[at,(at)^{-1}] \cap D(at) \\ &= R[t,t^{-1}] \cap D(at) = A \; . \end{split}$$

Let P be a minimal prime of $t^{-1}A$ and let S = A - P. Then $A_P = S^{-1}(R[t,t^{-1}] \cap D(at)) = S^{-1}(R[t,t^{-1}]) \cap S^{-1}D(at)$. Since $R[t,t^{-1}]$ is the locally finite intersection of its localizations at height-one primes, to show $S^{-1}(R[t,t^{-1}]) = K(t)$, it suffices to show S meets each height-one prime Q of $R[t,t^{-1}]$: If $Q \cap S = \emptyset$, then $Q \cap A \subseteq P$. Since $Q \cap A \neq 0$, we must have $Q \cap A = P$. But $P \cap R = \mathbf{m}$ and $Q \cap R < \mathbf{m}$, a contradiction. Thus S meets each height-one prime of $R[t,t^{-1}]$, so $A_P = S^{-1}D(at)$.

Let E be the first coefficient domain of J. The maximal ideals N of E are in one-to-one correspondence with the minimal primes P of $t^{-1}A$, where $A_P = E_N(at)$. Since each A_P is a localization of D(at), the intersection E(at) of the A_P 's is a ring of fractions of D(at). Intersecting with K shows that E is a ring of fractions of D. \Box

The following corollary implies the uniqueness property of the intersection of the Rees valuation domains of an ideal mentioned in (0.2).

Corollary 3.4. Let (R, \mathbf{m}) be a quasi-unmixed, analytically unramified, normal local domain, and let I be an \mathbf{m} -primary ideal of R. The first coefficient domain E of I is the unique largest one-dimensional semilocal domain D birationally dominating R and having the properties that ID is principal and $I^n D \cap R$ is contained in the e_1 -ideal of I^n for each positive integer n.

Proof. By [HJLS, Theorem 3.17] for all sufficiently large positive integers r, the ideal $J = I^r E \cap R$ has the property that E is the first coefficient domain of J and for each positive integer n we have $J^n E \cap R = J^n = I^{rn} E \cap R$ is the e_1 -ideal associated to I^{rn} . Therefore $J^n D$ is principal and $J^n D \cap R = J^n$ for each n. By Theorem 3.3, E is a localization of D. \Box

Corollary 3.5. Let D be a one-dimensional spot birationally dominating a two-dimensional RLR (R, \mathbf{m}) . If J is an \mathbf{m} -primary ideal in R such that JD is principal and all the powers of J are contracted from D, then D is the first coefficient domain of J, and the integral closure of J is a product of powers of the simple complete ideals associated to the localizations of the integral closure of D.

Proposition 3.6. Let (R, \mathbf{m}) be a quasi-unmixed analytically unramified local domain of dimension $d \ge 2$, and let J be an \mathbf{m} -primary ideal of R. Let D be a one-dimensional semilocal domain birationally dominating R, and let V be a finitely generated birational integral extension of D. If all the powers of J are contracted from D, then for each positive integer n, $J^n V \cap R$ is integral over J^n . In particular, if $I = JD \cap R$ is a normal ideal (i.e., the powers of I are integrally closed), then all the powers of I are contracted from V.

Remark. The hypothesis in Proposition 3.6 (and in Proposition 3.7 below) that V is a finitely generated D-module is necessary (cf., e.g., [HRS, (1.27)]). But if D (or V, by Corollary 1.3) is a (birational) semispot over R, the hypothesis on R assures that V is a finitely generated D-module [Re2, Theorem 1.2].

Proof. For the first assertion, it suffices to show that I is integral over J. Since J is contained in each nonzero prime ideal of D, there exists a positive integer c such that J^c is contained in the conductor of V into D. Thus, for all positive integers n, we have

$$I^{n+c} \subseteq I^{n+c}V \cap R = J^{n+c}V \cap R \subseteq J^nD \cap R = J^n \subseteq I^n.$$

It follows that the length of R/J^n is between those of R/I^n and R/I^{n+c} . Now, for *n* sufficiently large, the length of I^n/I^{n+c} is a polynomial in *n* of degree d-1, while the lengths of R/I^n and R/J^n are polynomials in *n* of degree *d*. Therefore the Hilbert polynomials of *I* and *J* have the same highest degree coefficient, i.e., *I* and *J* have the same multiplicity. By [Re1, Theorem 3.2], *I* is integral over *J*.

For the second assertion, note that $J^n \subseteq I^n \subseteq I^n V \cap R = J^n V \cap R$; the last ideal is integral over J^n , so if I^n is integrally closed, it is equal to $I^n V \cap R$. \Box

Proposition 3.7. Let (R, \mathbf{m}) be a normal, quasi-unmixed, analytically unramified local domain of dimension $d \ge 2$, and J be an \mathbf{m} -primary ideal of R. Let D be a one-dimensional semilocal domain birationally dominating Rsuch that the integral closure V of D is a finitely generated D-module. Suppose that $J^n D \cap R = J^n$ for each positive integer n, and let $I_n = J^n V \cap R$ for each n.

- (1) For sufficiently large r, all the powers of I_r are contracted from V.
- (2) Therefore V is contained in each of the Rees valuation domains of J, and so D is contained in the integral closure of the first coefficient domain of J.

Proof. (1) By [Re2, Theorem 1.4], for sufficiently large r, I_r is a normal ideal, so by Proposition 3.6 all the powers of I_r are contracted from V. (2) Since the intersection of the Rees valuation domains is the unique largest one-dimensional semilocal subdomain E of the fraction field of R with the property that the integral closure of J^n is $J^n E \cap R$ for each n, V is contained in each of the Rees valuation domains of J. \Box

(3.8) Let (R, \mathbf{m}) be a two-dimensional RLR, let D be a one-dimensional semispot birationally dominating R, and let V be the integral closure of D. Let $\mathbf{b}_1, \ldots, \mathbf{b}_n$ be the simple complete ideals of R associated to the DVR's

which are localizations of V. Then the associated e_1 -ideal of an **m**-primary ideal I of R has the form (*) as in (0.2) above, where the r_j are positive integers, if and only if V is the first coefficient domain of I. By [HJL, Theorem 3.12], D is a first coefficient domain if and only if there exists an ideal J of R such that JD is principal and such that the integral closure of J is of the form (*). Thus, for example, if V is the ord-valuation domain of R, then D is a first coefficient domain if and only if there exists an ideal Jsuch that JD is principal and such that the integral closure of J is a power of **m**.

(3.9) With R, D as in Corollary 3.5, there always exist **m**-primary ideals J with the property that all their powers are contracted from D (for, if J is the product of the simple complete ideals associated to the DVR localizations of the integral closure of D, then all the powers of J are contracted from the integral closure of D and hence also from D). Thus, in this case the issue is whether there exists such a J with JD principal. However, if one passes to a more general situation where R is a two-dimensional excellent normal local domain, then there may exist birationally dominating DVR spots V over Rfor which there does not exist an ideal J of R such that all the powers of J are contracted from V. By definition, an excellent two-dimensional normal local domain (R, \mathbf{m}) with the property that each prime divisor of the second kind on R is the first coefficient domain of an **m**-primary ideal is said to satisfy Muhly's condition (N) (cf. [HL, page 291]). If R is a two-dimensional complete normal local domain, Cutkosky proves in [C, Theorem 4] that Rsatisfies condition (N) if and only if R has torsion divisor class group. Thus, for example, $R = \mathbb{C}[[x, y, z]]$, where $x^3 + y^3 + z^3 = 0$, has prime divisors of the second kind which are not first coefficient domains of an ideal of R.

(3.10) Let (R, \mathbf{m}) be a two-dimensional RLR and let D be the first coefficient domain of an ideal I of R. If D is a prime divisor of R and $a \in \mathbf{m}$ is a nonzero element, then there exists a positive integer n such that D is the first coefficient domain of $a^n D \cap R$ (cf. (3.1)). The case of a general first coefficient domain, however, is different: In Example 1.8, there is no positive integer m for which D is the first coefficient domain of $x^m D \cap R$. This

phenomenon is the reef on which founders the following naive approach to realizing a one-dimensional semispot E birationally dominating R as a first coefficient domain. Let $\mathbf{b}_1, \ldots, \mathbf{b}_s$ be the distinct simple complete ideals of R associated with the prime divisors obtained as localizations of the integral closure E' of E, and let $a \in R$ be such that $aE' \cap R = \mathbf{b}_1 \ldots \mathbf{b}_s$. Let $A = R[t^{-1}, t] \cap E(at)$. Then $A = R[t^{-1}, I_1t, I_2t^2, \ldots]$, where $I_n = a^n E \cap R$. The integral closure of A is $A' = R[t^{-1}, (I_1)'t, (I_2)'t^2, \ldots]$, while the domain $A'' = R[t^{-1}, t] \cap E'(at)$ is almost integral over A since there is a nonzero conductor from E' to E. The following conditions are equivalent: (1) A is Noetherian. (2) A is affine over R. (3) A' = A''. When these conditions hold, $(I_1)' = \mathbf{b}_1 \ldots \mathbf{b}_s$ and E is the first coefficient domain of an ideal integral over a power of I_1 . In Example 1.8, however, for E = D and a = x, we have A' < A''. When we have A' < A'', there is no positive integer m for which the powers of I_m are contracted from E, nor for which E is the first coefficient domain of I_m .

ACKNOWLEDGEMENT

This work is the outgrowth of a project with Bernard Johnston. We would like to acknowledge his penetrating questions which initiated the present paper. We also thank the referee for a careful reading of the paper.

REFERENCES

- [A1] S. Abhyankar, On the valuations centered in a local domain, Amer. J. Math. 78 (1956), 321–348.
- [A2] S. Abhyankar, Quasi-rational singularities, Amer. J. Math. 100 (1978), 267–300.
- S. Cutkosky, On unique and almost unique factorization of complete ideals II, Invent. Math. 98 (1989), 59–74.
- [HJL] W. Heinzer, B. Johnston and D. Lantz, First coefficient domains and ideals of reduction number one, Comm. Algebra 21 (1993), 3797–3827.
- [HJLS] W. Heinzer, B. Johnston, D. Lantz and K. Shah, Coefficient ideals in and blowups of a commutative Noetherian domain, J. Algebra 162 (1993), 355–391.
- [HL] W. Heinzer and D. Lantz, Exceptional prime divisors of two-dimensional local domains, Commutative Algebra: Proceedings of a Microprogram Held June 15– July 2, 1987, Springer-Verlag, New York, 1989.
- [HRS] W. Heinzer, C. Rotthaus and J. Sally, Formal fibers and birational extensions, Nagoya Math. J. 131 (1993), 1–38.
- [Hu] C. Huneke, Complete ideals in two-dimensional regular local rings, Commutative

Algebra: Proceedings of a Microprogram Held June 15–July 2, 1987, Springer-Verlag, New York, 1989.

- [HuS] C. Huneke and J. Sally, Birational extensions in dimension two and integrally closed ideals, J. Algebra 115 (1988), 481–500.
- [Ku] E. Kunz, Introduction to Commutative Algebra and Algebraic Geometry, Birkhäuser, Boston, 1985.
- [M] H. Matsumura, Commutative Algebra, Second Edition, Benjamin/Cummings, Reading, Massachusetts, 1980.
- [N] M. Nagata, *Local Rings*, Interscience, New York, 1962.
- [No] S. Noh, Sequence of valuation ideals of prime divisors of the second kind in 2dimensional regular local rings, J. Algebra 158 (1993), 31–49.
- [Re1] D. Rees, a-transforms of local rings and a theorem on multiplicities of ideals, Proc. Cambridge Phil. Soc. 57 (1961), 8–17.
- [Re2] D. Rees, A note on analytically unramified rings, J. London Math. Soc. 36 (1961), 24–28.
- [Sh] K. Shah, *Coefficient ideals*, Trans. Amer. Math. Soc. **327** (1991), 373–384.
- [Z] O. Zariski, Polynomial ideals defined by infinitely near base points, Amer. J. Math.
 60 (1938), 151–204.
- [ZS] O. Zariski and P. Samuel, Commutative Algebra, Vol. II, Springer-Verlag, New York, 1975.