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Let x1, . . . , xd be indeterminates over an infinite field F , let R denote the polynomial ring

F [x1, . . . , xd], and let M denote the maximal ideal (x1, . . . , xd)R. If I is an M -primary ideal the

Hilbert polynomial

PI(n) = e0(I)

(
n+ d− 1

d

)
− e1(I)

(
n+ d− 2

d− 1

)
+ · · ·+ (−1)ded(I)

gives the length of the R-module R/In for sufficiently large positive integers n. The integral

closure I ′ of I is the unique largest ideal of R containing I and having the same coefficient e0 (i.e.,

multiplicity) as I, and the Ratliff-Rush ideal Ĩ of I is the unique largest ideal containing I and

having the same Hilbert polynomial as I. Kishor Shah has shown in [S1] that there exists a unique

chain of ideals1

I ⊆ Ĩ = I{d} ⊆ · · · ⊆ I{k} ⊆ · · · ⊆ I{0} = I ′ ,

where, for 0 ≤ k ≤ d, the ideal I{k} is maximal with the property of having the same coefficients

e0, . . . , ek of its Hilbert polynomial as those of I. The ideal I{k} is called the k-th coefficient ideal

of I. If I = I{k}, we say I is an ek-ideal.

We are particularly interested in the case where R is of dimension two. In this setting, an

M -primary ideal I has reduction number at most one (i.e., if J is a minimal reduction of I,

then JI = I2) if and only if the Rees algebra R[It] is Cohen-Macaulay [HM, Prop. 2.6],[JV,

Theorem 4.1], or [S2, Corollary 4(f)]. Moreover, the coefficients e1(I) and e2(I) are nonnegative,

and it follows from [Hu, Theorem 2.1] that I has reduction number at most one if and only if

λ(R/I) = e0(I) − e1(I), and if this holds, then e2(I) = 0. We say that an ideal with these

1The existence of this unique chain of ideals is shown in [S1, Theorem 1] for an ideal primary for the maximal ideal

of a quasi-unmixed local ring with infinite residue field. Since RM is regular and so, in particular, quasi-unmixed,

and since the length of R/In is equal to the length of RM/I
nRM , Shah’s result also applies in our setting.
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properties is stable. Thus, I is stable if and only if I = Ĩ and e2(I) = 0. Stable ideals are e1-

ideals, but it is shown in [HJL, Example 5.4] that there exist e1-ideals I for which e2(I) > 0. We

are interested in a better understanding of the features of e1-ideals and the distinguishing aspects

between e1-ideals and the more restrictive subset of stable ideals.

Our purpose in this paper is:

(1) to present examples of first coefficient and stable ideals in dimension 2,

(2) to compare the description of the coefficient ideals given by Shah in [S1, Theorems 2 and

3] with that given in [HJLS, Theorem 3.17] involving the blowup of I,

(3) to present examples of coefficient ideals in higher dimensions,

(4) to present two results on the existence of stable ideals in dimension 2, and to prove the

e1-closure of certain monomial ideals in dimension 2 are stable ideals.

In particular, in connection with (3) we present in more detail and with typographical corrections

[HJLS, Example 3.22] that establishes the existence of examples of ideals I in dimension d such

that for all sufficiently large positive integers n one has

In = Ĩn = (In){d} < · · · < (In){k} < · · · < (In){0} = (In)′ ,

and thus gives examples where all the associated coefficient ideals are distinct. Also in Section 3 we

use a suggestion made to us by Karen Smith to observe that if I is a monomial M -primary ideal,

then all the associated coefficient ideals I{k} of I are monomial ideals.

1. Examples of coefficient ideals in dimension 2.

Let x and y be indeterminates over the field F , let R = F [x, y], and let M = (x, y)R. The

following examples illustrate the associated coefficient ideals of various ideals I:

Consider the ideal I = (x6, x2y4, y6)R. The form ring G(I) of R with respect to I has depth

one (as we have checked with Macaulay via the Rees algebra R[It]), so I and all its powers are

Ratliff-Rush ideals [HLS, (1.2)]. We have the following data, including the differences Hd between

the Hilbert function and the Hilbert polynomial as far as we have computed them:

Ideal Generators e0 e1 e2 Hd

I = Ĩ x6, x2y4, y6 36 12 4 [0, 0, 0, 0, 0, 0, 0, 0, . . . ]

I{1} I, x4y2 36 12 0 [0, 0, 0, 0, 0, 0, . . . ]

I ′ = M6 36 15 0 [0, 0, 0, 0, 0, 0, . . . ]

Since e2(I{1}) = 0, this ideal is stable.
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To obtain a strict inclusion between I and Ĩ, as well as between the coefficient ideals, we modify

as follows: Consider the ideals

Ideal Generators e0 e1 e2 Hd

I x12, x8y4, x6y6, x2y10, y12 144 60 4 [4, 0, 0, 0, 0, 0, . . . ]

Ĩ I, x4y8 144 60 4 [0, 0, 0, 0, 0, 0, 0, . . . ]

I{1} Ĩ , x10y2 144 60 0 [0, 0, 0, 0, 0, 0, . . . ]

I ′ = M12 144 66 0 [0, 0, 0, 0, 0, 0, . . . ]

Note that we have I2 =
(
Ĩ
)2

= (̃I2). Also, we have again that the e1-closure I{1} of I is a stable

ideal.

Let us turn to an inspection of M -primary ideals of R which have e1-closure not stable. Since

the set of stable ideals integral over a given ideal is closed under intersection [HJL, Corollary 4.4],

we can speak of the stable closure of the ideal I, which we denote s(I). Again consider the ideals:

I x7, x5y3 + x3y5, y7 49 10 1 [1, 0, 0, 0, 0, 0, . . . ]

Ĩ = I{1} I, x6y4 49 10 1 [0, 0, 0, 0, 0, 0, . . . ]

Our verification that I{1} = (I, x6y4) is by using Macaulay, see [HJL, Example 5.4].2

Another element of (I : M)− I is x6y2 + x4y4 + x2y6, not in Ĩ. Question: Is there a way to tell

which elements of (I : M) are in Ĩ? In this example, (I : M) is not even contained in s(I), since:

s(I) Ĩ, all monomials of degree 9 49 11 0 [0, 0, 0, 0, 0, 0, . . . ]

It follows from Result 4.1 that this ideal is stable. To see that this is indeed the stable closure, we

note that there is no intervening ideal with Hilbert coefficients 4,10,0, since I{1} is an e1-ideal; so

the Hilbert polynomial of this ideal is the next possible for a stable ideal. (It is also true that the

set of e1-ideals integral over a given ideal is closed under intersection [HJL, Prop. 4.5].)

Another ideal having the property that its Ratliff-Rush closure is an e1-ideal that is not stable

is

I x8, y8, x6y3 + x3y6 64 14 1 [1, 0, 0, 0, 0, 0, . . . ]

If we adjoin to I the element x7y4, we get the same Hilbert polynomial; and we can verify that the

resulting ideal and all its powers are Ratliff-Rush. Thus:

Ĩ I, x7y4 64 14 1 [0, 0, 0, 0, 0, 0, . . . ]

As in Example 5.4 of [HJL], we have shown using Macaulay that Ĩ = I{1}. Now we would like to

2In Example 5.4 of [HJL], I = J . The element x6y4 is in (I : M), the preimage of the socle in R/I (as is x4y6,

with the same image in R/I .
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know s(I); we first thought it might be

K Ĩ, x5y5 64 15 1 [0, 0, 0, 0, 0, 0, . . . ]

But the ideal K is not stable. However

L I, x3y7, x4y6 64 15 0 [0, 0, 0, 0, 0, 0, . . . ]

is stable; and as in the last case, in view of the Hilbert coefficients, L = s(I). In general, we would

like to better understand the process of passing from an ideal to its stable closure.

2. Passing from an ideal to its coefficient ideals.

Let R be a d-dimensional Noetherian quasi-unmixed local ring, and let I be an ideal primary

for the maximal ideal of R. Kishor Shah has shown that one way to attain all the coefficient ideals

of I is as follows: For each integer k in {1, 2, . . . , d}:

I{k} =
⋃

(In+1 : B) ,

where n varies over the positive integers and B varies over all the k-element subsets of sets of d

generators of minimal reductions of In.

In particular, if I is such that I and all its powers are Ratliff-Rush, i.e., G(I) has positive depth,

then taking a minimal reduction q of I and considering (In+1 : qn) does not give us more than I,

for the image of qn in the n-th graded piece In/In+1 of G(I) contains a regular element of G(I).

Let us see how Shah’s description of the coefficient ideals gives the same results as the description

given in [HJLS] involving the blowup of I. The description of the coefficient ideals given in [HJLS,

Theorem 3.17] can be phrased as follows: The ideal I{k} is the intersection of R and the extensions

of I to the following family of overrings: R[I/a]P , as a varies over a fixed set A of d generators of

a minimal reduction of I and P varies over the primes of height ≤ k in R[I/a] that contain I (or

equivalently a). Let P be such a prime in such a ring R[I/a]. Then since R[I/a] is the degree-0 piece

of the localization R[It][1/(at)] of the Rees algebra R[It] of I, and this localization is a Laurent

series ring in the indeterminate at over R[I/a], it follows that PR[It][1/(at)] ∩ R[It] is a prime of

height ≤ k in the Rees algebra. Since a ∈ P , we have I ⊆ P ; so the image Q of P in the form ring

G(I) = R[It]/IR[It] is a prime of height ≤ k − 1. Now for any set C of d generators of a minimal

reduction of a power In of I, G(I) is integral over (R/I)[c : c ∈ C], and the elements c = ct+IR[It]

form a regular sequence G(I). Thus, for any k-element subset B of C, the prime Q cannot contain

every b for b ∈ B (for otherwise ht(Q) ≥ k). Taking preimage in the Rees algebra, there is some

b in B for which bt /∈ PR[It], so that b/a is a unit in R[I/a]P . Therefore, if f ∈ (In+1 : B), then
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f = (b/an)−1(bf/an) ∈ IR[I/a]P . In other words, the union of Shah’s description is contained in

the intersection of [HJLS].

For the reverse inclusion, given an element in the intersection of [HJLS], we must find a set B

of the kind described by Shah so that (In+1 : B) contains that element. In the Rees algebra R[It],

take an irredundant primary decomposition of IR[It], say IR[It] = Q1 ∩Q2 ∩ · · · ∩Qn, where each

Qj is homogeneous. For each k = 1, . . . , d, let Jk denote the intersection of those Qj of which

the radical has height at least k + 1. Applying the “refined generalized prime avoidance lemma”

[S1, Lemma 2(F)] to the images Jk/IR[It] in G(I), we see that we can find, for some positive

integer N , elements c1, . . . , cd in IN for which, for each k = 1, . . . , d, we have c1t
N , . . . , ckt

N ∈ Jk
and dim(G(I)/(c1t

N + IR[It], . . . , ckt
N + IR[It]) G(I)) = d− k. Moreover, if Jk−1 < Jk, then we

must choose cnt
N from Jk − Jk−1. It follows that all minimal primes of (I, c1t

N , . . . , ckt
N)R[It]

have height at least k + 1. Suppose f is in the intersection of [HJLS], i.e., f in R is also in

IR[I/a]P for each a in A and each prime P in R[I/a] containing I and of height ≤ k. Then

f ∈ R[It]∩
⋂
{IR[It]P : I ⊆ P, ht(P ) ≤ k} =

⋂
{Qj : ht(rad(Qj)) ≤ k}. Since c1t

N , . . . , ckt
N are in

the remaining Qj (in fact, if Jk−1 < Jk, then ckt
N has this property), we see that f(c1t

N , . . . , ckt
N )

is in the degree-N piece IN+1t of IR[It], i.e., f ∈ IN+1 : (c1, . . . , ck). (In fact, if Jk−1 < Jk, then

f ∈ IN+1 : ck. Thus, the distinct coefficient ideals of I are in fact colon ideals of IN+1 by a single

element of the sequence c1, . . . , cd. The above is a very slight reworking of Shah’s proof, but he

does not note this realization of coefficient ideals as colons by a single element.)

3. Coefficient ideals in higher dimensions.

Let R = F [x, y, z] where x, y, z are indeterminates over an infinite field F , and let M = (x, y, z)R.

Consider the ideal

Ideal Generators e0 e1 e2 e3 Hd

I x6, x2y4, y6, x2z4, z6 216 144 88 32 [8, 0, 0, 0, 0, 0, 0, . . . ]

Using Macaulay we see that the form ring G(I) of R with respect to I has depth one, so I and all

its powers are Ratliff-Rush ideals. We claim that

I{2} I, x4y2z2 216 144 88 40 [8, 0, 0, 0, 0, 0, 0, . . . ]

I{1} (x2, y2, z2)3 216 144 8 0 [0, 0, 0, 0, 0, 0, . . . ]

I ′ = I{0} = M6 216 180 20 0 [0, 0, 0, 0, 0, 0, . . . ]

so that

I = Ĩ < I{2} < I{1} < I ′ = M6.
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The Hilbert polynomial

PI(n) = e0(I)

(
n+ 2

3

)
− e1(I)

(
n+ 1

2

)
+ e2(I)

(
n

1

)
− e3(I)

gives the Hilbert function for all positive integers n, but not for n = 0, i.e., the postulation number

of I is zero (as this term is used in [M]).

To find these coefficient ideals of I we examine the blowup of I. Dividing by x6, we have the

affine piece

Rx = F [x, y, z, (y/x)4, (y/x)6, (z/x)4, (z/x)6] ⊂ (Rx)′ = F [x, y/x, z/x].

Then R
(2,x)
x = Rx[x2(y/x)2(z/x)2] and R

(1,x)
x = Rx[(y/x)2, (z/x)2]. Both of these assertions were

checked by using Macaulay: The ring R
(2,x)
x has depth 2 (i.e., the maximal ideal is not an associated

prime of a principal ideal), and R
(1,x)
x is a complete intersection.

Also, Ry = F [x, y, z, (x/y)2, (x/y)2(z/y)4, (z/y)6]. In this case Ry = R
(2,y)
y (again, by Macaulay,

it has depth 2), and R
(1)
y = Ry[(z/y)2] is a complete intersection. Similarly for Rz.

Thus, I{2} is the intersection of the contractions of the extensions of I to R
(2)
x , R

(2)
y and R

(2)
x . It

is clear that this intersection contains x4y2z2 and that the blowup of (I, x4y2z2)R has these rings

as its affine pieces; checking that (I, x4y2z2)R is Ratliff-Rush, we conclude that it is I{2}. Similarly

for I{1}.

Interlude 3.1. We thought at first that I{1} was the ideal (I, x4y2, x4z2, x2y2z2)R — we missed

some of the contraction from the affine pieces of the model — so we wanted to show that this ideal is

Ratliff-Rush. Eureka! After 8.5 hours of Macaulay run we obtained this verification by computing

that the depth of the Rees algebra of this ideal is 3. Hence by [HM] the depth of the form ring

with respect to this ideal is 2.

The verification that this ideal is Ratliff-Rush using Macaulay turned out to be very time- and

memory-consuming; so we were led to seek a simplifying approach. We note the following: The

generators of this ideal are all in the subring A = F [x2, y2, z2] of B = F [x, y, z], and B is free

over A. Let J denote the A-ideal generated by x6, y6, z6, x2y4, x4y2, x2z4, x4z2, x2y2z2. Then the

ideal above is JB, and J is an ideal generated in degree 3 in the polynomial ring A. Since the

form ring of B with respect to JB is free over the form ring of A with respect to J , if we show

that the latter form ring has positive depth, then so has the former, so that all powers of JB are

Ratliff-Rush. Thus, we set Macaulay to computing the projective dimension of the Rees algebra of

(x3, y3, z3, xy2, x2y, xz2, x2z, xyz)B. But even this turned out to challenge Macaulay.
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Interlude 3.2. Another method of simplifying the computations on the defining ideal of the Rees

algebra, to obtain information on the depth of the form ring and the Cohen-Macaulay property

of the blowup, was shown to us by Craig Huneke. Let I be a quasi-homogeneous ideal in the

polynomial ring R = F [x, y, . . . ]; let I = (f1, . . . , fn)R where the fi’s are quasi-homogeneous. Then

Macaulay can compute the kernel J of the R-algebra epimorphism from T = R ⊗F F [a1, . . . , an]

(ai’s indeterminates) onto the Rees algebra R[It] defined by ai 7→ fit. The program can then

find a minimal projective resolution of J over T ; the number of matrices in this resolution is the

projective dimension of R[It] over T , so that the Auslander-Buchsbaum formula yields the depth

of R[It]. It follows from [HM, Theorem 2.1, page 262] that, if G(I) is not Cohen-Macaulay, then

the depth of G(I) is one less than that of R[It]. Suppose the maximal minors of the last matrix

in the resolution of J generate an ideal primary for (x, y, . . . , a1, . . . , an)T . Then each ring in the

blowup of I, i.e., Proj(R[It]), has projective dimension less than that of R[It]. Thus, in this case,

if depth(R[It]) = dim(R), then Proj(R[It]) is Cohen-Macaulay.

But the computation of the projective resolution of J may be very long and difficult, even for

Macaulay. Huneke suggests passing to the quotient ring T/xT of T obtained by setting x = 0.

Since x is regular on both T and R[It], [N, 27.2] the projective dimension of J over T is equal to

the projective dimension of J/xJ over T/xT .

With regard to Example (E5) on page 387 of [HJLS], we can now confirm that the linear and

constant terms of Hilbert functions of ideals between I = (x3, y3) and its integral closure I ′ = (x, y)3

are as given there.

Let R = F [x, y, z]. The ideal I = (x4, y4, z4, x2y2z2, x3y3z, x3yz3)R was pointed out to us by

Les Reid to be an example of a monomial ideal that is 6-generated but has 7 corner elements. Is

this property of the ideal I reflected in some way in the associated coefficient ideals of I?

Example 3.22 of [HJLS] revisited. Let F be an infinite field and let x, y2, . . . , yd be indeter-

minates over F . Consider the affine domain S = F [x, {xyi, y4
i , y

6
i }di=2]. Then

S(1,xS) = S(1) = F [x, {xyi, y2
i }di=2] < F [x, {yi}di=2] = S′ .

To see that, for k in {1, . . . , d− 1}, we have S(k+1,xS) < S(k,xS), we note that the product of x2k−2

and y2
i , for k distinct values of i, is an element of S(k,xS), since any prime P in S of height at most k

and containing x does not contain y4
i , y

6
i for at least one of the yi’s that appear in the product, so

one of the factors y2
i is a unit in SP , and the product of the remaining factors is an element of S.
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But this element is not in S(k+1,xS) because it is not in the localization of S at the prime ideal of

height k + 1 generated by x and xyi, y
4
i , y

6
i for the yi’s that appear in the product.

The domain S is an affine piece of the blowup of the ideal I generated by x6, x2(xyi)
4, (xyi)

6,

i = 2, . . . , d in the polynomial ring R = F [x, {xyi}di=2]. Forming the rings of fractions of R,S with

respect to the complement in R of the maximal ideal M = (x, {xyi}di=2)R yields a regular local

ring RM , and (R −M)−1S is an affine piece of the blowup of IRM which retains the properties

verified in the last paragraph.

Moreover, since the extensions of the affine piece of the blowup of I as described in [HJLS] are

distinct, it follows that, for sufficiently high powers of I, the contractions of these powers from the

various extensions of the blowup are distinct; i.e., for n sufficiently large,

(̃In) = (In){d} < (In){d−1} < · · · < (In){0} = (In)′ .

In fact, we believe that these strict inclusions hold for n = 1.

Observation 3.3. Let R = F [x1, . . . , xd] be a polynomial ring in d variables x1, . . . , xd over

an infinite field F , let M = (x1, . . . , xd)R and let I be an M -primary ideal. We say that I is

a monomial ideal if I is generated by monomials in x1, . . . , xd. Karen Smith suggested to us

the following argument to show that if I is a monomial ideal, then all the associated coefficient

ideals I{k} of I are also monomial ideals. For each d-tuple a = (a1, . . . , ad) in the algebraic d-torus

F ∗×· · ·×F ∗, where F ∗ = F−0 is the multiplicative group of units of F , define an F -automorphism

φa : R → R by setting φa(xi) = aixi for 1 ≤ i ≤ d. To show I{k} is a monomial ideal it suffices

to show φa(I{k}) = I{k} for each a = (a1, . . . , ad). By assumption I = (f1, . . . , fn)R, where

each fi is a nonzero monomial. Let Ri = R[f1/fi, . . . , fn/fi]. Then φa naturally extends to an

F -automorphism of Ri which we continue to call φa, and IRi = fiRi is mapped to itself under

φa. The invariance of fiRi under φa implies that the union of the associated primes of fiRi of

height at most k in Ri is mapped onto itself under φa. Therefore φa extends to an automorphism

of the localization Tik of Ri at the complement of the union of the associated primes of fiRi of

height at most k. It follows that fiTik ∩R is mapped onto itself by φa. By [HJLS, Theorem 3.17],

I{k} = ∩ni=1fiTik ∩R. Therefore the ideal I{k} is mapped onto itself by φa, so I{k} is a monomial

ideal.

4. Stable ideals in dimension 2.

Let us examine with R = F [x, y] what ideals between I = (xn, yn) and its integral closure

I ′ = (x, y)nR are stable. The following two results show that many of these ideals are stable:
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Result 4.1. Let a, b be a minimal reduction of the height-2 ideal A in the ring R, and n be

a positive integer; set I = (an, bn). Then I is a minimal reduction of An; suppose the reduction

number is 1, i.e., IAn = A2n. Then for every nonnegative integer j we have IAn+j = A2n+j . Set

J = I +An+i+1 for a positive integer i; then we have

J2 = IJ + (An+i+1)2 = IJ +A2n+2i+2 = IJ + IAn+2i+2 ⊆ I(J +An+i+1) = IJ ;

i.e., J is stable. Moreover, for each ideal K ⊆ An+i the ideal L = J + K is also stable. For, we

have

L2 = J2 + JK +K2 ⊆ IJ + (I +An+i+1)K +A2n+2i

⊆ I(J +K) +A2n+2i+1 +A2n+2i = I(J +K) +A2n+2i

= I(J +K +An+2i) = I(J +K) = IL

where we have used An+2i ⊆ J .

Result 4.2. Again, let R be a ring. Let a, b be a R-sequence, and m,n be positive integers; and

set I = (am, bn). Then for any ideal J contained in adm/2ebdn/2eR, the sum I + J is stable. For,

(adm/2ebdn/2e)2 ∈ I2, so J2 ⊆ I2, so (I + J)2 = I2 + IJ + J2 ⊆ I2 + IJ = I(I + J).

Applying these paragraphs to x, y in F [x, y], we see that: (1) for any integer n ≥ 2, we can

find stable ideals I between (xn, yn)R and (x, y)nR such that e0(I) = n2 and e2(I) = 0 (both

necessarily) and e1(I) is any integer from 0 to (n − 2)(n − 1)/2; and (2) for any positive integers

m,n, we can find stable ideals I between (xm, yn)R and its integral closure with e0(I) = mn,

e2(I) = 0 (again, both necessarily) and e1(I) is any integer from 0 to dm
2
edn

2
e.

In (4.3) we prove that the e1-closure of certain monomial ideals are stable. This shows that

examples such as [HJL, Example 5.4] are of necessity not generated by monomials.

Observation 4.3. Let R = F [x, y] where x and y are indeterminates over the infinite field F ,

let m and n be positive integers and suppose I is a monomial ideal of R integral over (xm, yn)R.

We show that the e1-closure J of I is stable. By [HJLS, Theorem 3.17] (see also [HJL, (3.2)],

J = ID∩R, where D is the first coefficient domain of I. Then D is also the first coefficient domain

of J and each of the rings R[J/xm] and R[J/yn] is contained in D. Therefore JR[J2/xmyn]∩R = J .

It follows that (J3 : xmyn) = J . To show that J is stable, it suffices to show that J2 ⊆ (xm, yn)J .

The Briancon-Skoda Theorem [LS, Theorem 1] implies J2 ⊆ (xm, yn)R. By (3.3), the ideal J is
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a monomial ideal. Let a ∈ J2 with a a monomial. Then a ∈ (xm, yn)R implies either a ∈ xmR
or a ∈ ynR. Suppose a = xmb with b ∈ R. Then b ∈ (J2 : xm) ⊆ (J3 : xmyn) = J which means

a ∈ (xm, yn)J . A similar arguement applies in case a ∈ ynR. Therefore J is stable.
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