
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 00, Number 0, Xxxx XXXX, Pages 000–000
S 0002-9939(XX)0000-0

FACTORIZATION OF MONIC POLYNOMIALS
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Abstract. We prove a uniqueness result about the factorization of a monic
polynomial over a general commutative ring into comaximal factors. We ap-
ply this result to address several questions raised by Steve McAdam. These
questions, inspired by Hensel’s Lemma, concern properties of prime ideals and
the factoring of monic polynomials modulo prime ideals.

0. Introduction

There is an interesting relationship between the factorization of monic polyno-

mials and the behavior of prime ideals in integral extensions. This is illustrated for

example by the well-known result of Nagata [7, (43.12)] that asserts that a quasilo-

cal integral domain R satisfies Hensel’s Lemma if and only if every extension domain

integral over R is quasilocal. Other references that deal with this relationship in-

clude the papers [2] and [4]. Recent work of Steve McAdam [4], [5], [6] on this topic

is the motivation for our interest in the matters considered here. For a prime ideal

contained in the Jacobson radical of an integral domain, McAdam [4] introduces the

concepts of H-prime, weak-H-prime and quasi-H-prime. The H-primes are precisely

those for which a version of Hensel’s Lemma holds. The other definitions reflect a

careful analysis of the comaximal factorization of monic polynomials.

In Theorem 1.2 we make use of a famous theorem of Quillen-Suslin, a key in-

gredient in their resolution of the Serre Conjecture, to prove a uniqueness result

concerning comaximal factors of a monic polynomial over a general commutative

ring. We apply this result to prove in Theorems 2.2 and 2.3 that the concepts of

H-prime, weak H-prime and quasi-H-prime are equivalent.

All rings considered here are commutative with unity. Two general references

for our notation and terminology are [7] and [3].
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1. Comaximal factors of monic polynomials

Remark 1.1. Let I, J be ideals in a ring S for which IJ = fS where f is a nonze-

rodivisor in S. Then I, J are invertible ideals, i.e., rank-1 projective S-modules.

Moreover, using subscript f to denote passing to the ring of fractions with respect

to the multiplicatively closed system generated by f , we have If = Sf = Jf . Sup-

pose in particular that S = R[X ], where R is a ring and X is an indeterminate

over R, and that f is monic in R[X ]. Then by the Quillen–Suslin theorem ([9]; [8];

[3, Chapter IV, Theorem 3.14]), I, J are free R[X ]-modules, i.e., principal ideals

generated by nonzerodivisors, and there are generators p, q of I, J respectively for

which f = pq.

Theorem 1.2. Let R be a ring and X be an indeterminate over R. Let g, h be

comaximal monic polynomials in R[X ], and suppose that the monic polynomial f

in R[X ] is such that gh ∈ fR[X ]. Then f has a factorization of the form f = pq

where g ∈ pR[X ] and h ∈ qR[X ]. In particular, if f is irreducible in R[X ], then

either g ∈ fR[X ] or h ∈ fR[X ].

Proof. Let R[X ]g and R[X ]h denote the localizations ofR[X ] at the multiplicatively

closed systems generated by g and h respectively, and let I := fR[X ]g ∩R[X ] and

J := fR[X ]h ∩R[X ]. Suppose g(X)h(X) = f(X)k(X), where k(X) ∈ R[X ]. Then

because

h(X) = f(X)k(X)/g(X) ∈ I and g(X) = f(X)k(X)/h(X) ∈ J ,

the ideals I and J are comaximal in R[X ]; so their intersection, which is

fR[X ]g ∩ fR[X ]h ∩R[X ] = fR[X ] ,

is their product. By Remark 1.1, there are generators q(X), p(X) of I, J respectively

for which f = pq, g ∈ pR[X ] and h ∈ qR[X ].

Remark 1.3. With the notation of Theorem 1.2, if R is an integral domain, the

polynomials p(X), q(X) ∈ R[X ] such that f = pq can clearly be chosen to be

monic. More generally, if SpecR is connected, then p(X) and q(X) can be chosen

to be monic. To see this, we use the fact that for any ring S and nonconstant

polynomial a(X) ∈ S[X ], if S[X ]/(a) is a free S-module of rank n, then there

exists a monic polynomial b of degree n in the ideal (a) [3, Prop. 2.2, page 44];

and because S[X ]/(b) is also a free S-module of rank n of which S[X ]/(a) is a

homomorphic image, b is a generator of (a). Now in our present context, we have

R[X ]/(f) ∼= R[X ]/(p) ⊕ R[X ]/(q), so R[X ]/(p) and R[X ]/(q) are locally free R-

modules. Thus, SpecR is covered by neighborhoods SpecRi on which the extension
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of (p) is generated by monic polynomials. Because SpecR is connected, R[X ]/(p)

has constant rank and these monic polynomials all have the same degree n and up

to units of Ri are extensions of polynomials in (p) of degree n. An appropriate R-

linear combination of these polynomials in (p) gives a monic polynomial of degree

n in the ideal (p), and this monic polynomial generates (p). Similarly, the ideal (q)

is generated by a monic polynomial if SpecR is connected.

Example 1.4. The hypotheses in Theorem 1.2 that we are working with monic

polynomials is necessary: Indeed, let D be a Dedekind domain that is not a principal

ideal domain. Let P be a maximal ideal of D that is not principal. Then there

exists an irreducible element f in P − P 2. Write fD = PQe11 · · ·Qenn , where the

Qi’s are distinct maximal ideals; because P is not principal, n > 0. Let g ∈
PQe11 · · ·Q

en−1

n−1 − Qn, and choose h ∈ Qenn but not in any of the maximal ideals

containing g. Then gD + hD = D and gh ∈ fD, but g, h 6∈ fD. For a specific

example, consider the Dedekind domain D = Z[
√
−5] ([1, page 417]). We have

2 · 3 = (1 +
√
−5)(1 −

√
−5) in this D, and 2 and 3 are comaximal, but neither of

the irreducible factors on the right side of the equation divides either 2 or 3.

Example 1.5. The hypothesis that g, h are comaximal is very necessary: Let R

be any integral domain that is not integrally closed, let a be an element of the field

of fractions of R that is integral over R but not in R, and let f ∈ R[X ] be a monic

polynomial of minimal degree of which a is a root. Then f(X) = (X − a)g(X) for

some polynomial g(X) over the integral closure of R. Let b, c be nonzero elements

of R for which ba ∈ R and cg(X) ∈ R[X ]. Then f is irreducible in R[X ] and

f(X)(f(X) + b(X − a) + cg(X) + bc)

= (f(X) + b(X − a))(f(X) + cg(X)) ,

but f(X) divides neither of the factors on the right side of the equation.

Thus over any domain R that is not integrally closed, there exist monic polyno-

mials f, g, h ∈ R[X ] such that f is irreducible and gh ∈ fR[X ], but g, h 6∈ fR[X ].

For R an integrally closed domain this phenomenon is not possible; for in this case

a monic irreducible in R[X ] generates a prime ideal.

2. Henselian-like conditions

In [4], McAdam uses the following definitions:

Definition 2.1. Let P be a prime contained in the Jacobson radical of an integral

domain R. Then P is



4 WILLIAM J. HEINZER AND DAVID C. LANTZ

(a) an H-prime if, for every list of nonconstant monic polynomials f, g, h in

R[X ] such that gR[X ] + hR[X ] = R[X ] and f − gh ∈ PR[X ], there exist

monic p, q in R[X ] for which f = pq, and g − p, h− q ∈ PR[X ];

(b) a weak-H-prime if, for every list of nonconstant monic polynomials f, g, h in

R[X ] such that gR[X ]+hR[X ] = R[X ] and f−gh ∈ PR[X ], f is reducible;

and

(c) a quasi-H-prime if, for every list of nonconstant monic polynomials f, g, h

in R[X ] such that gR[X ] + hR[X ] = R[X ] and f − gh ∈ PR[X ], and for

every prime ideal K in R[X ] lying over 0 in R and having f ∈ K, either

K + gR[X ] = R[X ] or K + hR[X ] = R[X ].

Theorem 2.2. A weak-H-prime is an H-prime (and of course conversely).

Proof. Let P be a weak-H-prime in the domain R, and let f, g, h be nonconstant

monic polynomials in R[X ] for which f − gh ∈ PR[X ] and g, h generate the unit

ideal in R[X ]. Denote by overbars images mod PR[X ], let R := R/P and identify

R[X ]/PR[X ] ∼= R[X ]. For each monic irreducible factor p of f , we show that either

g or h is in pR[X ]:

We have gh ∈ pR[X ] and g and h are comaximal in R[X ]. Hence by Theorem

1.2, p factors into a monic factor of g and a monic factor of h. The latter factors

are comaximal because g and h are comaximal. If both factors were nonconstant,

then because P is a weak-H-prime, p would be reducible; so one of the factors is a

constant, i.e., 1, and hence either g ∈ pR[X ] or h ∈ pR[X ].

We proceed by induction on the number n of irreducible factors of f . The case

where n = 1 is clear. Assume the theorem holds for monic polynomials f having

n irreducible factors. Suppose f ′ = pf , where p is irreducible and monic, and that

f ′ = g′h′, where g′, h′ are nonconstant, monic and comaximal. Then by the last

paragraph we may assume g′ ∈ pR[X ]. Let g in R[X ] be such that g′ = pg, and set

h = h′. Then f = gh and

R[X ] = g′R[X ] + h′R[X ] ⊆ gR[X ] + hR[X ] + PR[X ] ⊆ R[X ] .

Suppose there is a maximal ideal M of R[X ] that contains both g and h. Then

because M contains monic polynomials, it meets R in a maximal ideal and so

contains P , a contradiction. Therefore g, h are comaximal. By the induction hy-

pothesis, there exist monic polynomials g1, h1 in R[X ] for which f = g1h1, g1 = g,

and h1 = h; so f ′ = pf = pg1h1, pg1 = pg = g′ and h1 = h = h′. This completes

the induction and the proof.
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Much of the work needed to prove Theorem 2.3 is done by McAdam in [4]; it

merely remains for us to make a few observations and apply the Quillen-Suslin

Theorem.

Theorem 2.3. A quasi-H-prime is an H-prime, and conversely.

Proof. McAdam proves in [4, Proposition (2.1)] that an H-prime is a quasi-H-prime;

so it remains to prove that a quasi-H-prime is an H-prime. Let P be a quasi-H-prime

in the domain R, and let f, g, h be nonconstant monic polynomials in R[X ] such

that f − gh ∈ PR[X ] and gR[X ] + hR[X ] = R[X ]. Then by [4, Proposition (2.7)],

there are ideals I, J properly containing fR[X ] for which

I

fR[X ]
⊕ J

fR[X ]
=

R[X ]

fR[X ]
.

It follows that I and J are comaximal in R[X ] and intersect in fR[X ]. Thus as

in the proof of Theorem 1.2, IJ = fR[X ], so by Remark 1.1, f is the product of

generators of the principal ideals I, J . Neither generator can be a unit, because

I, J both properly contain fR[X ] and their product is fR[X ]. Thus, f is reducible;

so P is a weak-H-prime and hence by Theorem 2.2 an H-prime.
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