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Abstract. Let R be an integral domain and let Q denote the quotient field of

R. We investigate the structure of R-submodules of Q that are Q-irreducible,

or completely Q-irreducible. One of our goals is to describe the integral do-
mains that admit a completely Q-irreducible ideal, or a nonzero Q-irreducible

ideal. If R has a nonzero finitely generated Q-irreducible ideal, then R is

quasilocal. If R is integrally closed and admits a nonzero principal Q-irreducible
ideal, then R is a valuation domain. If R has an m-canonical ideal and admits

a completely Q-irreducible ideal, then R is quasilocal and all the completely
Q-irreducible ideals of R are isomorphic. We consider the condition that every

nonzero ideal of R is an irredundant intersection of completely Q-irreducible

submodules of Q and present eleven conditions that are equivalent to this. We
classify the domains for which every nonzero ideal can be represented uniquely

as an irredundant intersection of completely Q-irreducible submodules of Q.

The domains with this property are the Prüfer domains that are almost semi-
artinian, that is, every proper homomorphic image has a nonzero socle. We

characterize the Prüfer or Noetherian domains that possess a completely Q-

irreducible ideal or a nonzero Q-irreducible ideal.

1. Introduction

This article continues a study of commutative ideal theory in rings without

finiteness conditions begun in [15], [16], [17] and [26]. In [15] and [16] we examine

irreducible and completely irreducible ideals of commutative rings. In the present

article we investigate stronger versions of these two notions of irreducibility for

ideals of integral domains. In particular, we consider irreducibility of an ideal of

an integral domain when it is viewed as a submodule of the quotient field of the

domain.

All rings in this paper are commutative and contain a multiplicative identity. Our

notation is as in [18]. Let R be a ring and let C be an R-module. An R-submodule

A of C is C-irreducible if A = B1 ∩ B2, where B1 and B2 are R-submodules of

C, implies that either B1 = A or B2 = A. An R-submodule A of C is completely

C-irreducible (or completely irreducible when the module C is clear from context)
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if A =
⋂

i∈I Bi, where {Bi}i∈I is a family of R-submodules of C, implies A = Bi

for some i ∈ I.

In the case where the module C is the ring R, an ideal A of R is R-irreducible as

a submodule of R precisely if A is irreducible as an ideal in the conventional sense

that A is not the intersection of two strictly larger ideals. It is established by Fuchs

in [14, Theorem 1] that a proper irreducible ideal A of the ring R is a primal ideal

in the sense that the set of elements of R that are non-prime to A form an ideal

P that is necessarily a prime ideal and is called the adjoint prime ideal of A. One

then says that A is P -primal. For such an ideal A, it is the case that A = A(P ),

where A(P ) =
⋃

x∈R\P (A :R x).

In Remark 1.1 we record several general facts about completely C-irreducible

submodules. The straightforward proofs are omitted.

Remark 1.1. For a proper submodule A of C the following are equivalent:

(1) A is completely C-irreducible.

(2) There exists an element x ∈ C \A such that x ∈ B for every submodule B

of C that properly contains A.

(3) C/A has a simple essential socle, that is, C/A is a cocyclic R-module.

(4) C/A is subdirectly irreducible in the sense that in any representation of C/A

as a subdirect product of R-modules, one of the projections to a component

is an isomorphism.

It is also straightforward to see that every submodule of a module C is an

intersection of completely C-irreducible submodules of C. Thus a nonzero module

C contains proper completely C-irreducible submodules.

The main focus of our present study is the case where R is an integral domain

and C = Q is the quotient field of R. (Throughout this paper Q is understood to be

the quotient field of the integral domain R.) We are thus interested in Q-irreducible

and completely Q-irreducible submodules of Q. We are particularly interested in

determining conditions on an integral domain R in order that R admit a completely

Q-irreducible ideal, or a nonzero Q-irreducible ideal. The zero ideal of R is always

Q-irreducible, but if R 6= Q, the zero ideal of R is not completely Q-irreducible. In

the case where R admits completely Q-irreducible ideals, or nonzero Q-irreducible

ideals, we are interested in describing the structure of such ideals. Ideals with either

of these properties are necessarily primal ideals.

It is frequently the case that an integral domain R may fail to have any frac-

tional ideals that are completely Q-irreducible, or any nonzero ideals that are Q-

irreducible. If R = Z is the ring of integers, then every nonzero proper Q-irreducible
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R-submodule of Q is completely Q-irreducible and has the form pnZpZ, where p is

a prime integer and n is an integer. Thus for R = Z every nonzero proper Q-

irreducible R-submodule of Q is a fractional ideal of a valuation overring of R.

Moreover, every nonzero fractional R-ideal has a unique representation as an irre-

dundant intersection of infinitely many completely Q-irreducible R-submodules of

Q. It follows that R has no nonzero fractional ideal that is Q-irreducible.

In Section 2 we establish basic properties of irreducible submodules of an R-

module C with special emphasis on the case where C = Q. We prove in Theorem

2.5 that if R admits a nonzero principal Q-irreducible fractional ideal, then R

is quasilocal, and R is integrally closed if and only if R is a valuation domain. In

Theorem 2.11 we give several necessary conditions for an integral domain to possess

a nonzero Q-irreducible ideal. If A is a nonzero Q-irreducible ideal, we prove

that End(A) is quasilocal, and that A is a primal ideal of End(A) with adjoint

prime the maximal ideal of End(A). If the integral domain R admits a nonzero

finitely generated Q-irreducible ideal, we prove that R is quasilocal. Moreover, every

nonzero Q-irreducible ideal of a Noetherian domain is completely Q-irreducible.

In Section 3 we review some relevant results and examples regarding completely

Q-irreducible fractional ideals. Over a quasilocal domain, an m-canonical ideal (if

it exists) is an example of a completely Q-irreducible ideal. If R has an m-canonical

ideal and admits a completely Q-irreducible ideal, we prove that R is quasilocal and

all completely Q-irreducible ideals of R are isomorphic. We classify the Noetherian

domains that admit a nonzero Q-irreducible ideal.

In Proposition 4.3 of Section 4 we show that a proper submodule A of the quotient

field Q of a domain is an irredundant intersection of Q-irreducible submodules if and

only if the injective hull of Q/A is an interdirect sum of indecomposable injectives.

In Section 5 we continue to examine irredundant intersections of Q-irreducible

submodules in Q. We draw on the literature to give in Theorem 5.2 eleven dif-

ferent module- and ideal-theoretic conditions that are equivalent to the assertion

that every nonzero ideal of a domain is an irredundant intersection of completely

irreducible submodules of Q. We show in particular that such a domain is locally

almost perfect, and from this observation we answer in the negative a question

of Bazzoni and Salce of whether every locally almost perfect domain R has the

property that Q/R is semi-artinian (Example 5.5). In Theorem 5.9 we classify

the domains for which every nonzero ideal can be represented uniquely as an irre-

dundant intersection of completely Q-irreducible submodules of Q. The domains

having this property have Krull dimension at most one and are necessarily Prüfer,
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that is, every nonzero finitely generated ideal is invertible. They may be described

precisely as the Prüfer domains R that are almost semi-artinian, that is, every

proper homomorphic image of R has a nonzero socle.

In light of Theorem 5.9 it is useful to describe the completely irreducible sub-

modules of the quotient field of a Prüfer domain. This is done in Theorem 6.2.

Also in Section 6 we characterize the Prüfer domains that possess a completely Q-

irreducible ideal, or a nonzero Q-irreducible ideal. We prove that a Prüfer domain

R that admits a nonzero Q-irreducible ideal also admits a completely Q-irreducible

ideal, and this holds if and only if every proper R-submodule of Q is a fractional

R-ideal.

In Section 7 we discuss several open questions, and in an appendix we correct

some errors in the article [17] that were pointed out to us by Jung-Chen Liu and

her student Zhi-Wei Ying. We are grateful to them for showing us these mistakes.

2. The structure of Q-irreducible ideals

We begin with several general results.

Proposition 2.1. Let R be a ring and C an R-module. The following statements

are equivalent for a proper R-submodule A of C.

(i) A is a completely C-irreducible R-submodule of C.

(ii) There exists x ∈ C \A such that for all y ∈ C \A we have x ∈ A + Ry.

(iii) A is C-irreducible and there exists a maximal ideal M of R such that

A ⊂ (A :C M), where (A :C M) = {y ∈ C : yM ⊆ A}.

Furthermore, if R is a domain, A is torsionfree and C is the divisible hull of A,

then statements (i)-(iii) are equivalent to:

(iv) There is a maximal ideal M of R such that A = ARM and A is completely

C-irreducible as an RM -submodule of C.

Proof. (i) ⇒ (ii) Let A∗ be the intersection of all R-submodules of C properly

containing A. Then A ⊂ A∗, and A∗/A is a simple R-module. Hence A∗ = Rx + A

for some x ∈ Q \A, and (ii) follows.

(ii) ⇒ (iii) By (ii) there exists x ∈ C \A such that A∗ := A + Rx is contained in

every R-submodule of C properly containing A. Hence A∗/A is a simple R-module

and A∗/A ∼= R/M for some maximal ideal M of R. Thus A∗ ⊆ (A :C M) so that

(A :C M) 6= A.

(iii) ⇒ (i) Since A is irreducible, (A :C M)/A ∼= R/M and every proper sub-

module containing A contains (A :C M), proving (i).
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(i) ⇒ (iv) Since R is a domain and A is torsion-free, A =
⋂

M∈Max(R) AM ,

where each AM is identified with its image in C = QA. Because A is completely

C-irreducible, A = AM for some maximal ideal M of R. The assumption that

A is completely C-irreducible as an R-module clearly implies A is completely C-

irreducible as an RM -submodule of C.

(iv) ⇒ (iii) Since we have established the equivalence of (i)-(iii), and since by

assumption A is a completely irreducible RM -submodule of C, we have by (iii)

(applied to the RM -module A) that there exists x ∈ (A :C MRM ) \ A. Now since

A = AM , we have A 6= (A :C MRM ) = (A :C M). Thus it remains to observe

that A is C-irreducible. Suppose A = B ∩ D for some R-submodules B and D

of C. Then A = AM = BM ∩ DM , so since by assumption A is irreducible as an

RM -submodule of C, it must be that A = BM or A = DM . Thus B ⊆ A or D ⊆ A,

proving that A is irreducible. �

Remark 2.2. Let R be an integral domain that is properly contained in its quotient

field Q.

(i) By Remark 1.1, every R-submodule of Q is an intersection of completely

irreducible submodules of Q. In particular, every ideal of R is an intersection of

completely irreducible submodules of Q.

(ii) A fractional ideal A of R is completely Q-irreducible if and only if A is not

the intersection of fractional R-ideals that properly contain A. If A is a fractional

R-ideal and A 6= Q, then A is completely Q-irreducible if and only if there exists

x ∈ Q \A such that x is in every fractional ideal that properly contains A.

(iii) A maximal ideal P of R is completely Q-irreducible if it is Q-irreducible.

This is immediate from Proposition 2.1, since P ( R ⊆ (P :Q P ).

In Lemma 2.3, we establish several general facts about Q-irreducible and com-

pletely Q-irreducible ideals.

Lemma 2.3. Let A be a proper ideal of the integral domain R. Then

(i) A is Q-irreducible if and only if for each nonzero r ∈ R the ideal rA is

irreducible.

(ii) For a nonzero q ∈ Q, the fractional ideal qA is Q-irreducible if and only if

A is Q-irreducible. Therefore the property of being Q-irreducible is an invariant of

isomorphism classes of fractional R-ideals.

(iii) A is Q-irreducible if and only if there is a prime ideal P of R such that

A = ARP and A is a Q-irreducible ideal of RP . It then follows that P is uniquely

determined by A and A is P -primal.



6 LASZLO FUCHS, WILLIAM HEINZER, AND BRUCE OLBERDING

(iv) For a nonzero q ∈ Q, the fractional ideal qA is completely Q-irreducible if

and only if A is completely Q-irreducible. Therefore the property of being completely

Q-irreducible is an invariant of isomorphism classes of fractional R-ideals.

(v) If A is completely R-irreducible and if for each nonzero r ∈ R the ideal rA

is irreducible, then A is completely Q-irreducible.

Proof. (i) Assume A is Q-irreducible and r is a nonzero element of R. If rA = B∩C

for ideals B and C of R, then A = r−1B ∩ r−1C. Since A is Q-irreducible, either

A = r−1B or A = r−1C. Hence either rA = B or rA = C and rA is irreducible.

Conversely, assume A is not Q-irreducible. Then there exist R-submodules B and

C of Q that properly contain A such that A = B ∩C. We may assume that B and

C are fractional ideals of R. Then there exists a nonzero r ∈ R such that rB and

rC are integral ideals of R. Moreover, A = B∩C implies rA = rB∩rC and A ⊂ B

implies rA ⊂ rB and similarly A ⊂ C implies rA ⊂ rC. Therefore rA is reducible.

This completes the proof of (i).

Statements (ii) and (iv) are clear since A =
⋂

i∈I Bi if and only if qA =
⋂

i∈I qBi

and multiplication by q (or by q−1) preserves strict inclusion.

(iii) Assume A is Q-irreducible. Then A is P -primal for some prime ideal P of

R, so that A = A(P ) = ARP ∩ R. Since A is Q-irreducible, this forces A = ARP .

Clearly then A is Q-irreducible as an RP -module since it is Q-irreducible as an

R-module. Conversely, suppose that A = ARP and A is Q-irreducible as an ideal

of RP . If A = B ∩ C for some R-submodules B and C of Q, then A = ARP =

BRP ∩ CRP , and since A is a Q-irreducible RP -submodule of Q, A = BRP or

A = CRP . Thus B ⊆ A or C ⊆ A, which completes the proof.

(v) Since A is completely R-irreducible, there exists an element x ∈ R \ A such

that x is in every ideal of R that properly contains A. Let A∗ = A+xR. If A is not

completely Q-irreducible, then there exists an R-submodule B of Q that properly

contains A but does not contain x. Since there are no ideals properly between A

and A∗, A = A∗ ∩ B and this intersection is irredundant. We may assume that B

is a fractional ideal of A. Then there exists a nonzero r ∈ R such that rB is an

integral ideal of R. Therefore rA = rA∗ ∩ rB is an irredundant intersection. It

follows that rA is not irreducible. �

Remark 2.4. With regard to Lemma 2.3 we have:

(1) If A is a nonzero Q-irreducible ideal of R and P is as in Lemma 2.3(iii),

then RP ⊆ End(A) and rA = A for each r ∈ R \ P . It follows that A is

contained in every ideal of R not contained in P . Thus if P is a maximal

ideal of R and A is P -primary with A = ARP , then R is quasilocal.
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(2) It is also true that if A and B are isomorphic R-submodules of Q, then A

is (completely) Q-irreducible if and only if B is (completely) Q-irreducible.

For A and B are R-isomorphic if and only if there exists q ∈ Q such that

A = qB.

Theorem 2.5. If the integral domain R has a nonzero principal fractional ideal that

is Q-irreducible, then R is quasilocal and every principal ideal of R is Q-irreducible.

If R is integrally closed, then

(i) R is Q-irreducible if and only if R is a valuation domain, and

(ii) R is completely Q-irreducible if and only if R is a valuation domain with

principal maximal ideal.

Proof. (i) Lemma 2.3 implies that R has a nonzero principal fractional ideal that

is (completely) Q-irreducible if and only if every nonzero principal fractional ideal

of R is (completely) Q-irreducible. Suppose R has distinct maximal ideals M and

N . Then there exist x ∈ M and y ∈ N such that x + y = 1. It follows that

xyR = xR ∩ yR is an irredundant intersection. By Lemma 2.3(i), R is not Q-

irreducible.

(ii) Suppose that R is integrally closed and Q-irreducible but is not a valuation

domain. Then there exists x ∈ Q such that neither x nor 1/x is in R. Let F be

the set of valuation overrings of R that contain x and let G be the set of valuation

overrings of R that contain 1/x. Let A =
⋂

V ∈F V and B =
⋂

W∈G W . Then x ∈ A

implies R ( A and 1/x ∈ B implies R ( B. Observe that every valuation overring

of R is a member of at least one of the sets F or G. Since R is integrally closed,

we have R = A ∩ B, a contradiction to the assumption that R is Q-irreducible.

Conversely, it is clear that if R is a valuation domain, then R is integrally closed

and Q-irreducible.

(iii) By (ii) we need only observe the well-known fact that a valuation domain R

is completely Q-irreducible if and only if the maximal ideal of R is principal. (See

for example [3].) �

Remark 2.6. There exist integral domains R that are completely Q-irreducible and

are not integrally closed. If R is a one-dimensional Gorenstein local domain, then

R, and every nonzero principal fractional ideal of R, is completely Q-irreducible.

Thus, for example, if k is a field and a and b are relatively prime positive integers,

then the subring R := k[[ta, tb]] of the formal power series ring k[[t]] is completely

Q-irreducible.
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Theorem 2.5(ii) characterizes among integrally closed domains R the ones that

are valuation domains as precisely those R that are Q-irreducible. As a corollary to

Proposition 2.1, we have the following additional characterizations of the valuation

property in terms of Q-irreducibility.

Corollary 2.7. The following are equivalent for a domain R with quotient field Q.

(i) R is a valuation domain.

(ii) Every irreducible ideal is Q-irreducible.

(iii) Every completely irreducible ideal is completely Q-irreducible.

(iv) There exists a maximal ideal of R that is Q-irreducible.

(v) There exists a maximal ideal of R that is completely Q-irreducible.

Proof. (i) ⇒ (ii) If R is a valuation domain, then it is easy to see that irreducible

ideals are Q-irreducible since the R-submodules of Q are linearly ordered.

(ii) ⇒ (iii) If A is a completely irreducible ideal of R, then there is a maximal

ideal M of R such that (A :R M) 6= A. Thus (A :Q M) 6= A, and since A is by (ii)

Q-irreducible, we have from Proposition 2.1 (iii) that A is Q-irreducible.

(iii) ⇒ (iv) This is clear from the fact that maximal ideals are completely irre-

ducible.

(iv) ⇒ (v) This follows from Remark 2.2(iii).

(v) ⇒ (i) Let M be a completely Q-irreducible maximal ideal of R. For every

nonzero r ∈ R, rM is completely irreducible by Proposition 2.3. It is shown in

Lemma 5.1 of [16] that this property characterizes valuation domains, so the proof

is complete. �

Corollary 2.8. Let P be a prime ideal of a domain R. Then P is Q-irreducible if

and only if P = PRP and RP is a valuation domain. Thus if P is Q-irreducible,

then RP /P is the quotient field of R/P , and R is a pullback of R/P and the

valuation domain RP . Moreover P is completely Q-irreducible as an ideal of RP .

Proof. Suppose that P is Q-irreducible. By Lemma 2.3, P = PRP and PRP is a

Q-irreducible ideal of RP . Hence, by Corollary 2.7, RP is a valuation domain.

Conversely, assume P = PRP and RP is a valuation domain. By Corollary 2.7,

P is a Q-irreducible ideal of RP . Hence, by Lemma 2.3, P is Q-irreducible. It

follows from Remark 2.2(iii) that P = PRP is a completely Q-irreducible ideal of

RP . �

Remark 2.9. With P = PRP as in Corollary 2.8, if R 6= RP , then P as an

ideal of R is not completely Q-irreducible. For Proposition 2.1 (iii) implies that a
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completely Q-irreducible prime ideal is a maximal ideal, and by Remark 2.4(i), if

P is maximal and Q-irreducible, then R = RP . It can happen however that P is

Q-irreducible and nonmaximal. This is the case, for example, if P is a nonmaximal

prime of a valuation domain R.

Remark 2.10. Pullbacks arising as in Corollary 2.8 have been well-studied; for

a recent survey see [20]. For example, a consequence of our Corollary 2.8 and

Theorem 4.8 in [19] is that if a domain R has a Q-irreducible prime ideal P , then

R is coherent if and only if R/P is coherent.

Theorem 2.11. Assume that A is a nonzero Q-irreducible ideal of the integral

domain R. Then

(i) If A is not principal, then AA−1 is contained in the Jacobson radical of R.

(ii) End(A) is a quasilocal integral domain.

Let M denote the maximal ideal of End(A).

(iii) A is an M -primal ideal of End(A).

(iv) If M is finitely generated as an ideal of End(A), then A is completely Q-

irreducible as an ideal both of R and of End(A).

(v) If A is a finitely generated ideal of R, then R is quasilocal and the maximal

ideal of R is the adjoint prime of A.

(vi) If both A and its adjoint prime are finitely generated ideals, then A is com-

pletely Q-irreducible.

Proof. (i) Let x ∈ A−1 and suppose that there is a maximal ideal N of R not

containing xA. Then there exists y ∈ N such that xA + yR = R. It follows

that xyA = xA ∩ yR. By Lemma 2.3(ii), xyA is irreducible. Therefore either

xyA = xA or xyA = yR. If xA = xyA, then xA ⊆ yR ⊆ N , a contradiction, while

if xyA = yR, then xA = R and A is principal. We conclude that every maximal

ideal of R contains xA. Therefore AA−1 is contained in the Jacobson radical of R.

(ii) and (iii) Since A is Q-irreducible as an ideal of R, it is also Q-irreducible as

an ideal of End(A). By Lemma 2.3(iii), there is a prime ideal M of End(A) such

that A = A End(A)M . Thus End(A)M ⊆ End(A), which implies that M is the

unique maximal ideal of End(A). Also by Lemma 2.3(iii), A is M -primal.

(iv) Let x1, . . . , xn generate M . By Lemma 2.1(iii), to show that A is completely

Q-irreducible it suffices to prove that (A :Q M) 6= A. Now (A :Q M) = x−1
1 A ∩

· · ·∩x−1
n A, so if (A :Q M) = A, then the Q-irreduciblity of A implies x−1

i A = A for

some i. In this case, x−1
i ∈ End(A), which is impossible since xi ∈ M , the maximal

ideal of End(A).
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(v) By Lemma 2.3(ii), A = ARP for some prime ideal P of R. Thus RP ⊆
End(A). But A is a finitely generated ideal of R implies that End(A) is an integral

extension of R. This forces R = RP , so that P is the unique maximal ideal of R.

(vi) By (v), R is quasilocal with maximal ideal M , and M is the adjoint prime

of A. As in the proof of (iv), we have A ⊂ (A :Q M). Therefore Lemma 2.1(ii)

implies that A is completely Q-irreducible. �

Corollary 2.12. Every nonzero Q-irreducible ideal over a Noetherian domain

is completely Q-irreducible. If the Noetherian domain R admits a completely Q-

irreducible ideal, then R is local and dim R ≤ 1.

Proof. Suppose that A is a nonzero Q-irreducible ideal of R. By Theorem 2.11(vi)

A is a completely Q-irreducible ideal of R, and hence also of End(A). By The-

orem 2.11(ii), End(A) is quasilocal. Since R is Noetherian, End(A) is a finitely

generated integral extension of R. Therefore R is local.

If dim R > 1, then there exists a nonzero nonmaximal prime ideal P of R. Let

x ∈ P with x 6= 0. Then xM is completely irreducible by Lemma 2.3(iv). However,

by Corollary 1.4 in [16] a completely irreducible ideal of a Noetherian local domain

is primary for the maximal ideal, contradicting xM ⊆ P . Therefore dim R ≤ 1. �

Corollary 2.13. If the integral domain R admits an invertible Q-irreducible ideal,

then every invertible ideal of R is principal and completely Q-irreducible.

Proof. Suppose that A is an invertible Q-irreducible ideal of R. By Theorem 2.11(i)

A is principal. Let B be an invertible ideal of R. Since A is invertible, A =

(B :Q: (B :Q A)). Moreover, (B :Q A) is an invertible, hence finitely generated,

fractional ideal of R. Hence there are elements q1, . . . , qk ∈ Q such that A =

(B :Q (q1, . . . , qk)R) = q−1
1 B ∩ · · · ∩ q−1

k B. Since A is Q-irreducible, there exists

i ∈ {1, . . . , k} such that B = qiA. Hence B is principal and R-isomorphic to A. By

Lemma 2.3, B is Q-irreducible. �

Remark 2.14. Statement (ii) of Theorem 2.11 is true also when A is a completely

irreducible submodule of Q. For by Lemma 2.1(iv) (with A viewed as a completely

irreducible End(A)-submodule of Q) there is a maximal ideal M of End(A) such

that A = AM This forces End(A)M ⊆ End(A), so End(A) is quasilocal.

3. Completely Q-irreducible and m-canonical ideals

As noted in Remark 2.2 every ideal of a domain is the intersection of completely

irreducible submodules of the quotient field. Thus for a given domain there exists
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an abundance of completely irreducible submodules of Q. However, as we observe

in Section 1, a domain need not possess a completely Q-irreducible ideal (see also

Example 3.7).

In this section we examine the existence and structure of completely Q-irreducible

ideals. We also consider the class of “m-canonical” ideals. A nonzero fractional

ideal A of a domain R is an m-canonical fractional ideal if for all nonzero ideals

B of R, B = (A :Q (A :Q B)). This terminology is from [1] and [25]. Different

terminology is used in [3] and [18] to express the same concept. An ideal A is, in

our terminology, m-canonical if and only if, in the terminology of [3] and [18], R is

an “A-divisorial” domain and End(A) = R. Notice that the property of being an

m-canonical ideal is invariant with respect to R-isomorphism for fractional ideals

of R.

It follows from [25, Lemma 4.1] that an m-canonical ideal of a quasilocal domain

is completely Q-irreducible. A deeper result is due to S. Bazzoni [3]: A fractional

ideal A of a quasilocal domain R is m-canonical if and only if A is completely Q-

irreducible, End(A) = R and for all nonzero r ∈ R, A/rA satisfies the dual AB-5∗

of Grothendieck’s AB-5. (An R-module B satisfies AB-5∗ if for any submodule C of

B and inverse system of submodules {Bi}i∈I of B, it is the case that
⋂

i∈I(C+Bi) =

C +
⋂

i∈I(Bi).)

As examples later in this section show, a domain need not possess an m-canonical

ideal. However if R admits an m-canonical ideal, then all completely Q-irreducible

ideals of R are isomorphic:

Proposition 3.1. Let R be a domain that is not a field. If R has an m-canonical

ideal A, then every completely Q-irreducible ideal of R is isomorphic to A. Consider

the following statements.

(i) R has an m-canonical ideal.

(ii) Any two completely Q-irreducible ideals of R are isomorphic.

Then (i) ⇒ (ii). If every completely irreducible proper submodule of Q is a frac-

tional ideal of R, then (ii) ⇒ (i).

Proof. Suppose that R has an m-canonical ideal A. If B is a nonzero ideal of R,

then B =
⋂

q q−1A, where q ranges over all nonzero elements of (A :Q B). Thus if

B is completely Q-irreducible, then B = q−1A for some 0 6= q ∈ (A :Q B). Thus

every proper completely Q-irreducible ideal is isomorphic to A, and (i) ⇒ (ii).

Assume that any two completely Q-irreducible ideals are isomorphic and every

completely Q-irreducible proper submodule of Q is a fractional ideal of R. Let A be
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a completely irreducible R-ideal. By Remark 1.1 every ideal of R is an intersection of

completely Q-irreducible submodules of Q and therefore of completely Q-irreducible

fractional ideals of R. Thus every ideal of R is an intersection of ideals isomorphic

to A; that is, for any ideal B, there exists a set X ⊆ Q such that B =
⋂

q∈X qA. It

follows that B = (A :Q (A :Q B)). Hence A is an m-canonical ideal. �

Remark 3.2. An integral domain may have an m-canonical ideal, but not admit a

completely Q-irreducible fractional ideal. For example, if R is a Dedekind domain

having more than one maximal ideal, then R admits an m-canonical ideal, but does

not have any completely Q-irreducible fractional ideals. Indeed, as we observe in

Proposition 3.3, if R has an m-canonical ideal and admits a completely Q-irreducible

ideal, then R is quasilocal.

Proposition 3.3. If R has an m-canonical ideal and a completely Q-irreducible

ideal, then R is quasilocal.

Proof. Let A be a completely Q-irreducible ideal of R. By Proposition 3.1, A is an

m-canonical ideal. Therefore R = End(A). By Theorem 2.11, End(A) is quasilocal.

Therefore R is quasilocal. �

Remark 3.4. If A is a proper R-submodule of Q, then A is contained in a com-

pletely irreducible proper submodule of R. Thus if every completely irreducible

proper submodule of Q is a fractional ideal of R, then every proper submodule of

Q is a fractional ideal of R. The latter property holds for R if and only if there

exists a valuation overring of R which is a fractional ideal of R [31, Theorem 79].

Routine arguments show that a nonzero fractional ideal of a valuation domain

is m-canonical if and only if it is completely Q-irreducible. Also in the Noetherian

case, the condition AB-5∗ is redundant, as we note next. The following proposition

is essentially due in the case of Krull dimension 1 to Matlis [32] and in the general

case with the assumption that End(A) = R to Bazzoni [3]. Bazzoni’s proof shows

that you can omit in our context the assumption that End(A) = R. We outline

how to do this in the proof. We also include a different proof of the step (iv) ⇒
(iii).

Proposition 3.5. (Bazzoni [3, Theorem 3.2], Matlis [32, Theorem 15.5]) The fol-

lowing statements are equivalent for a nonzero fractional ideal A of a Noetherian

local domain (R,M) that is not a field.

(i) Q/A is an injective R-module.

(ii) R has Krull dimension 1 and (A : M)/A is a simple R-module.
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(iii) A is an m-canonical ideal.

(iv) A is Q-irreducible.

Proof. (i) ⇒ (ii) By Proposition 4.4 in [33] a Noetherian domain that admits an

ideal of injective dimension 1 necessarily has Krull dimension 1. Thus dim(R) = 1,

so we may apply Theorem 15.5 in [32] to obtain (ii).

(ii) ⇒ (iii) This is contained in Theorem 15.5 of [32].

(iii)⇒ (i) If A is an m-canonical ideal, then necessarily End(A) = R, so Theorem

3.2 of [3] applies.

(iii)⇒ (iv) An m-canonical ideal of a quasilocal domain is completely Q-irreducible

[25, Lemma 4.1].

(iv) ⇒ (iii) Suppose that A is Q-irreducible. By Corollary 2.12 dim R = 1 and

A is completely Q-irreducible. By Theorem 2.11 End(A) is a quasilocal domain.

Since R is Noetherian, End(A) is Noetherian. Thus by Theorem 3.2 in [3] A is an

m-canonical ideal of End(A).

By [32, Theorem 15.7] a Noetherian local domain of Krull dimension 1 has an m-

canonical ideal if and only if the total quotient ring of the completion of the domain

is Gorenstein. Therefore the total quotient ring of the completion of End(A) is

Gorenstein. Now End(A) is an overring of R that is finitely generated as a module

over R. Hence there exists a nonzero x ∈ R such that xEnd(A) ⊆ R. It follows

that the total quotient ring T of the completion of R coincides with the completion

of End(A). Thus T is a Gorenstein ring, and by the result cited above, R has an

m-canonical ideal, say B. By Proposition 3.1 B is isomorphic to A, so A is an

m-canonical ideal of R. �

Remark 3.6. Let R be a Noetherian domain of positive dimension. If R admits

a nonzero Q-irreducible ideal, then R is local and dimR = 1. Every proper R-

submodule of Q is a fractional R-ideal if and only if the integral closure R of

R is local (so a DVR) and is a finitely generated R-module. In this case every

proper R-submodule of Q that is completely Q-irreducible is a fractional R-ideal.

There exist, however, other one-dimensional Noetherian local domains R that admit

completely Q-irreducible ideals. By Proposition 3.5, R admits a completely Q-

irreducible ideal if and only if the total quotient ring of the completion of R is

Gorenstein. In particular, this is true if R is Gorenstein. There exist examples

where R is Gorenstein and R is not local, or not a finitely generated R-module,

or both. For such an R, nonzero principal fractional ideals of R are completely

Q-irreducible, and there also exist completely Q-irreducible proper R-submodules

of Q that are not fractional R-ideals.
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Example 3.7. A one-dimensional Noetherian local domain need not possess a

nonzero Q-irreducible ideal. As noted in the proof of Proposition 3.5 it suffices

to exhibit a Noetherian local domain R of Krull dimension 1 such that the total

quotient ring of R is not Gorenstein. Such examples can be found in Proposition

3.1 of [12] and Theorem 1.26 and Corollary 1.27 of [27]. A specific example, based

on [27] is obtained as follows. Let x, y, z be algebraically independent over the field

k and let R = k[x, y, z](x,y,z). Let f, g ∈ xk[[x]] be such that x, f, g are algebraically

independent over k. Let u = y − f and v = z − g. Then P := (u, v)k[[x, y, z]] is a

prime ideal of height 2 of the completion R̂ = k[[x, y, z]] of R having the property

that P ∩R = (0). If q is a P -primary ideal of R̂, it follows from [27, Theorem 1.26]

that (R̂/q) ∩ k(x, y, z) is a one-dimensional Noetherian local domain having R̂/q

as its completion. If we take q = P 2 = (u2, uv, v2)R̂, then the total quotient ring

of R̂/q is not Gorenstein.

Remark 3.8. (i) It is an open question whether a completely Q-irreducible ideal

of a quasilocal integrally closed domain R is an m-canonical ideal if End(A) = R

[3, Question 5.5]. The answer is affirmative when A = R: this is Theorem 2.3 of

[3].

(ii) In [3] Bazzoni relates the question in (i) to a 1968 question of Heinzer [24]:

If R is a domain for which every nonzero ideal is divisorial, is the integral closure

of R a Prüfer domain? To obtain that R has a Prüfer integral closure the weaker

requirement that R be completely Q-irreducible is not sufficient, as we note below

in Example 3.10.

(iii) Bazzoni constructs in Example 2.11 of [3] an example of a quasilocal domain

R such that R is completely Q-irreducible but not m-canonical. By Lemma 3.5 and

(i) such a domain is neither Noetherian nor integrally closed.

The D +M construction provides a source of interesting examples of completely

Q-irreducible ideals. The following example is from [25, Remark 5.3], as strength-

ened in [1]. We recall it here, since it is relevant to Example 3.10.

Example 3.9. Let k ⊂ F be a proper extension of fields and V be a valuation

domain (that is not a field) of the form V = F + M , where M is the maximal ideal

of V . Define R = k + M . Then R is a quasilocal domain with maximal ideal M .

If U is any k-subspace of F of codimension 1, then the fractional ideal A = U + M

is a completely Q-irreducible fractional ideal of R since every R-submodule of the

quotient field Q of R that properly contains A contains also V .
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It is proved in Theorem 3.2 of [1] that if F is an algebraic extension of k with

[F : k] infinite, then there exist codimension 1 subspaces U and W of F such that

U + M and W + M are non-isomorphic completely Q-irreducible fractional ideals

of R. Thus by Proposition 3.1 R does not possess an m-canonical ideal. Indeed, it

is shown in Theorem 3.1 of [1] that R has an m-canonical ideal if and only if [F : k]

is finite.

We shall see in Theorem 6.3 that it is possible for a domain R to possess a

completely Q-irreducible ideal A and not be quasilocal. It follows from this result

that End(A) need not equal R. However, in this situation, R is not quasilocal. The

next example shows that even when R is quasilocal, it is possible for a completely

Q-irreducible ideal to have an endomorphism ring not equal to R.

Gilmer and Hoffmann in [21] establish the existence of an integral domain R that

admits a unique minimal overring, but has the property that the integral closure of

R is not Prüfer. In Example 3.10 we modify this example to establish the existence

of an integral domain R that has infinitely many distinct fractional overrings Rt,

t ∈ N, such that each Rt is completely Q-irreducible as a fractional ideal of R.

Since Rt is a fractional overring of R, End(Rt) = Rt. We remark that Bazzoni in

[3, Section 4] has abstracted and greatly generalized the example of [21].

Example 3.10. Let K be a field and let L = K((X)) be the quotient field of

the formal power series ring K[[X]]. Every nonzero element of L has a unique

expression as a Laurent series
∑

n≥k anXn, where k is an integer, the an ∈ K and

ak 6= 0. Let Y be an indeterminate over L and let V = L[[Y ]] denote the formal

power series ring in Y over the field L. Thus V is a rank-one discrete valuation

domain (DVR) of the form L + M , where M = Y L[[Y ]] is the maximal ideal of

V . Let R = K + M2. It is well-known and readily established that R is a one-

dimensional quasilocal domain with maximal ideal M2. For t a positive integer,

let Wt be the set of all elements f ∈ K((X)) such that f = 0 or the coefficient of

X−t in the Laurent expansion of f is 0. Notice that Wt is a K-subspace of L and

L = Wt ⊕ KX−t as K vector spaces. Let Rt = K + WtY + M2. Then Rt is an

overring of R and Y 2Rt ⊆ M2, so Rt is a fractional ideal of R.

We show that Rt is completely Q irreducible as a fractional R-ideal by proving

that X−tY is in every fractional ideal of R that properly contains Rt. Let f ∈ Q\Rt.

Since Q = L((Y )), there exists an integer j such that f =
∑

n≥j bnY n, where each

bn ∈ L and bj 6= 0. Notice that f 6∈ Rt implies j ≤ 1. Since L = K((X)),

there exists an integer k such that bj =
∑

n≥k anXn, where each an ∈ K and

ak 6= 0. Since ak is a unit of R, the fractional ideal Rt + Rf = Rt + a−1
k f ,



16 LASZLO FUCHS, WILLIAM HEINZER, AND BRUCE OLBERDING

so we may assume that ak = 1. If j < 0, then X−k−tY 1−j ∈ M2 ⊂ R and

X−k−tY 1−jf = X−tY + αY + βY 2, where α ∈ K[[X]] and β ∈ V = L[[Y ]].

Since α ∈ Wt, αY + βY 2 ∈ Rt. Hence X−tY ∈ Rt + Rf if j < 0. If j = 0

and k 6= 0, then X−k−tY 1−j ∈ WtY ⊂ Rt and X−k−tY f = X−tY + αY + βY 2,

where αY + βY 2 ∈ Rt, so X−tY ∈ Rt + Rf in this case. If j = 0 and k = 0,

replace f by f − 1 to obtain a situation where k > 0 and j ≥ 0. If j = 1, then

f 6∈ Rt implies b1 6∈ Wt. Hence b1 = c + dX−t, where c ∈ Wt and 0 6= d ∈ K.

Hence f − cY = dX−tY + αY 2, where α ∈ L[[Y ]]. Therefore also in this case

X−tY ∈ Rt + Rf . We conclude that Rt is completely Q-irreducible.

In Example 3.10 the completely Q-irreducible fractional ideals that are con-

structed have endomorphism rings integral over the base ring. In Example 3.13 we

exhibit a Noetherian local domain R and a completely Q-irreducible R-submodule

A of Q such that End(A) is not integral over R. We first give a partial characteri-

zation of when valuation overrings are (completely) Q-irreducible.

Theorem 3.11. Let V be a valuation overring of the domain R. Then the following

two statements hold for V .

(i) If V/R is a divisible R-module, then V is a Q-irreducible R-submodule of Q.

Moreover, V has a principal maximal ideal if and only if V is a completely

Q-irreducible R-submodule of Q.

(ii) Suppose that V is a DVR. Then V is a completely Q-irreducible R-submodule

of Q if and only if V/R is a divisible R-module.

Proof. (i) The assumption that V/R is divisible implies that every R-submodule of

Q containing V is also a V -submodule of Q. For if x 6∈ V , then 1/x ∈ V . Since V/R

is divisible, V = (1/x)V +R. Thus V +xR = xV . Hence V +xR is a V -submodule

of Q. This implies that any R-submodule of Q containing V is a V -module. Since

V is Q-irreducible as a V -submodule of Q, it follows that V is Q-irreducible as an

R-submodule of Q.

If the valuation domain V has principal maximal ideal, then, by Theorem 2.5,

V is a completely Q-irreducible V -submodule of Q. Therefore V is a completely

Q-irreducible R-submodule of Q.

Conversely, if V is a completely Q-irreducible R-submodule of Q, then necessarily

V is a completely Q-irreducible V -submodule of Q. By Corollary 2.7 every principal

ideal of V is Q-irreducible. Hence by Theorem 2.5 V has a principal maximal ideal.

(ii) Suppose that V is a completely Q-irreducible R-submodule of Q. Let 0 6=
x ∈ R. We claim that V = R + xV . Consider the ideal C = (R + xV :Q V ) of V .
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Since V is a DVR, C is isomorphic to V . Also, C = ∩y∈V y−1(R + xV ), so since

C is completely Q-irreducible, C is isomorphic to R + xV . Thus V and R + xV

are isomorphic as R-modules, and since these two modules are rings, this forces

R + xV = V , proving that V/R is divisible. The converse follows from (i). �

Remark 3.12. Let V be a DVR overring of the integral domain R and let P

be the center of V on R. Necessary and sufficient conditions in order that V/R

be a divisible R-module are that (i) PV is the maximal ideal of V , and (ii) the

canonical inclusion map of R/P ↪→ V/PV is an isomorphism. By Theorem 3.11(ii),

these conditions are also necessary and sufficient in order that V be completely Q-

irreducible as an R-submodule of Q.

Example 3.13. Let K be a field, and let X and Y be indeterminates for K.

Define R = K[X, Y ](X,Y ). We construct a valuation overring V of R such that

V is a completely Q-irreducible R-submodule of Q. Let g(X) ∈ XK[[X]] be such

that X and g(X) are algebraically independent over K. Define a mapping v on

K[X, Y ]\{0} by v(f(X, Y )) = smallest exponent of X appearing in the power series

f(X, g(X)). Then v extends to a rank-one discrete valuation on K(X, Y ) centered

on (X, Y )R and having residue field K. (More details regarding this construction

can be found in Chapter VI, Section 15, of [37].) Since the valuation ring V of

v has maximal ideal (X, Y )V and residue field V/(X, Y )V = K, it follows that

V = R + (X, Y )kV for all k > 0. Since V is a DVR, V = R + fV for every nonzero

f ∈ R. Hence V/R is a divisible R-module. By Theorem 3.11, V is a completely

Q-irreducible R-submodule of Q.

4. Q-irreducibility and injective modules

Let N be a submodule of the torsion-free R-module M . N is said to be an

RD-submodule (relatively divisible) if rN = N ∩ rM for all r ∈ R. An R-module

X is called RD-injective if every homomorphism from an RD-submodule N of any

R-module M can be extended to a homomorphism M → X. Every R-module M

can be embedded as an RD-submodule in an RD-injective module, and among such

RD-injectives there is a minimal one, unique up to isomorphisms over M , called

the RD-injective hull M̂ of M . If M is torsion-free, then so are both M̂ and M̂/M .

The R-topology of an R-module M is defined by declaring the submodules rM

for all 0 6= r ∈ R as a subbase of open neighborhoods of 0. If M is torsion-free, then

it is Hausdorff in the R-topology if and only if it is reduced (i.e. it has no divisible

submodules 6= 0). M is R-complete if it is complete (Hausdorff) in the R-topology.

If M is reduced torsion-free, then it is an RD-submodule of its R-completion M̃ .
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Observe that for a prime ideal P the R-completion and RP -completion of RP are

identical. The R-completion M̃ of a torsion-free R-module M is an RD-submodule

of the RD-injective hull M̂ such that M̂/M̃ is reduced torsion-free.

Lemma 4.1. For a proper R-submodule A of Q the following conditions are equiv-

alent:

(i) A is Q-irreducible;

(ii) the injective hull E(Q/A) of the R-module Q/A is indecomposable;

(iii) the RD-injective hull Â of A is indecomposable.

Proof. (i) ⇔ (ii) An injective module is indecomposable exactly if it is uniform.

(ii) ⇔ (iii) This equivalence is a consequence of Matlis’ category equivalence

between the category of h-divisible torsion R-modules T and the category of reduced

R-complete torsion-free R-modules M , given by the correspondences

T 7→ HomR(Q/R, T ) and M 7→ Q/R⊗R M

which are inverse to each other. Under the category equivalence, Q/A and the

R-completion Ã of A correspond to each other, and so do the injective hull of Q/A

and the RD-injective hull Â of A. As equivalence preserves direct decompositions,

the claim is evident. �

Let I be an ideal of the ring R. It is well known that if E(R/I) is indecomposable,

then I is irreducible. Note that E(R/I) can also be written as E(Q/A) for a Q-

irreducible R-submodule A of Q. In fact, E(R/I) is a summand of E(Q/I), so we

can write: E(Q/I) = E(R/I)⊕ E for an injective R-module E. The kernel of the

projection of Q/I into the first summand is of the form A/I for a Q-irreducible

submodule A of Q, and then E(R/I) = E(Q/A).

Conversely, if A is a Q-irreducible proper submodule of Q, and x ∈ Q \ A, then

the set I = {r ∈ R | rx ∈ A} is a primal ideal of R such that E(Q/A) = E(R/I).

The adjoint prime P of the primal ideal I may be called the prime associated to A:

this is uniquely determined by A, though I depends on the choice of x.

Lemma 4.2. Every indecomposable injective R-module E can be written as E(Q/A)

for a Q-irreducible R-submodule of A of Q. Moreover, there is a unique prime ideal

P of R such that E(Q/A) ∼= E(R/I) for a P -primal ideal I of R, and P is a

maximal ideal whenever A is completely Q-irreducible. �

We can add that I can be replaced by P if and only if P is a strong Bourbaki

associated prime for I. Indeed, E(R/I) = E(R/P ) if and only if there are elements
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r ∈ R \ I and s ∈ R \ P such that (I :R r) = (P :R s). Since (P :R s) = P , this is

equivalent to P = (I :R r), that is, P is a strong Bourbaki associated prime of I.

It is clear that every proper submodule of Q is the intersection of Q-irreducible

submodules. This intersection is in general redundant. A criterion for irredundancy

is as follows.

Proposition 4.3. A proper submodule A of Q admits an irredundant represen-

tation as an intersection of Q-irreducible submodules if and only if E(Q/A) is an

interdirect sum of indecomposable injectives.

Proof. Suppose A =
⋂

i∈I Ai is an irredundant intersection with Q-irreducible sub-

modules Ai of Q. Setting Bi =
⋂

j∈I,j 6=i Aj , it is clear that the submodule generated

by Bi/A (i ∈ I) in Q/A is their direct sum. Hence E(Q/A) contains the direct sum

of the injective hulls E(Q/Ai) ∼= E(Bi/A). As Q/A embeds in the direct product

of the Q/Ai, E(Q/A) embeds in the direct product of the E(Q/Ai). Thus E(Q/A)

is an interdirect sum of the E(Q/Ai) (these are evidently indecomposable).

Conversely, suppose E(Q/A) is an interdirect sum of indecomposable injectives

Ei (i ∈ I). Since Ei is a uniform module, we have (Q/A) ∩ Ei 6= 0 for each i ∈ I.

Clearly, Ai (defined by Ai/A = (Q/A) ∩
∏

j∈I,j 6=i Ej) is a submodule of Q, which

is maximal disjoint from Ei, so Q-irreducible. The intersection A =
⋂

i∈I Ai is

evidently irredundant. �

5. Irredundant decompositions and semi-artinian modules

In this section we examine domains for which every nonzero submodule of Q is an

irredundant intersection of completely irreducible submodules of Q. Such domains

are closely related to the class of almost perfect rings.

A ring R is perfect if every R-module has a projective cover; equivalently, (since

our rings are assumed to be commutative) R satisfies the descending chain condi-

tion on principal ideals [2]. In their study [6] of strongly flat covers of modules,

Bazzoni and Salce introduced the class of almost perfect domains, consisting of

those domains R for which every proper homomorphic image of R is perfect. Every

Noetherian domain of Krull dimension 1 is almost perfect, but the class of almost

perfect domains includes also non-Noetherian non-integrally closed domains– see

for example Section 3 of [5].

There are a number of applications of perfect and almost perfect domains in

the literature, most of which are motivated by the rich module theory for these

classes of rings [5, 6, 10]. In this section we emphasize different features of the
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module and ideal theory of almost perfect domains, namely, the close connection

with irredundant decompositions into completely irreducible submodules.

If R is a ring, then an R-module A is (almost) semi-artinian if every (proper)

homomorphic image of A has a nonzero socle. In a semi-artinian module every

irreducible submodule is completely irreducible (see for example [9, Lemma 2.4]),

but this property does not characterize semi-artinian modules [16, Example 1.7].

As indicated by Lemma 5.1 below, the semi-artinian property is both necessary

and sufficient for irredundant decompositions into completely irreducible submod-

ules. Bazzoni and Salce note in [5] that:

R almost perfect ⇒ Q/R semi-artinian ⇒ R locally almost perfect.

They show also that R is almost perfect if and only if R is h-local and every local-

ization of R at a maximal ideal is almost perfect. In general, the first implication

cannot be reversed [5, Example 2.1]. Smith asserts in [36] that the converse of the

second implication is always true, but as noted in [5, p. 288] the proof is incorrect.

Thus Bazzoni and Salce raise the question in [5, p. 288] of whether the converse is

always true; namely, if R is locally almost perfect, is Q/R necessarily semi-artinian?

We give an example in this section to show that the answer is negative, and we

characterize in Theorem 5.2(vi) and (vii) precisely when a locally almost perfect

domain R has Q/R semi-artinian. We collect also in this theorem a number of

different characterizations of domains R for which Q/R is semi-artinian.

The following lemma is a special case of a lattice theoretic result [9, Theorem 4.1].

A number of other properties of irredundant intersections of completely irreducible

submodules of semi-artinian modules can be deduced from this same article.

Lemma 5.1. (Dilworth-Crawley [9]) Let R be a ring and A be an R-module. Then

A is (almost) semi-artinian if and only if every (nonzero) submodule of A is an

irredundant intersection of completely irreducible submodules of A. �

In order to formulate (vii) of the next theorem, we recall that a topological space

X is scattered if every nonempty subspace of X contains an isolated point.

Theorem 5.2. The following statements are equivalent for a domain R with quo-

tient field Q.

(i) Q/R is semi-artinian.

(ii) Every nonzero torsion module is semi-artinian.

(iii) R is almost semi-artinian.

(iv) Q is almost semi-artinian.
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(v) For each nonzero proper ideal A of R, there is a maximal ideal that is a

strong Bourbaki associated prime of A.

(vi) R is locally almost perfect and for each nonzero radical ideal J of R, there

is a maximal ideal of R/J that is principal.

(vii) R is locally almost perfect and for each nonzero radical ideal J of R,

Spec(R/J) is scattered.

(viii) For each torsion R-module T , every submodule of T is an irredundant in-

tersection of completely irreducible submodules of T .

(ix) For each torsion-free module A, every nonzero submodule of A is an irre-

dundant intersection of completely irreducible submodules of QA.

(x) Each nonzero submodule of Q is an irredundant intersection of completely

irreducible submodules of Q.

(xi) Each nonzero ideal of R is an irredundant intersection of completely irre-

ducible submodules of Q.

(xii) Each nonzero ideal of R is an irredundant intersection of completely irre-

ducible ideals.

Proof. The equivalence of (i)-(iv) can be found in [10, Theorem 4.4.1]. It follows

then from Lemma 5.1 that (i) - (iv) are equivalent to (viii), (ix), (x) and (xii). The

equivalence of (vi) and (vii) is a consequence of Corollary 2.10 in [26]. To complete

the proof it is enough to show that (v) and (vi) are equivalent to (i) and that (xi)

is equivalent to (iii).

(i) ⇒ (vi) Since Q/R is semi-artinian, R is locally almost perfect. We have

already established that (i) is equivalent to (xii). That (xii) implies (vi) is a conse-

quence of Corollary 2.10 of [26].

(vi)⇒ (v) Suppose that A is a proper nonzero ideal of R. Since for every nonzero

radical ideal J of R, R/J has a maximal ideal of R that is principal, every nonzero

ideal of R has a Zariski-Samuel associated prime M [26, Theorem 2.8]; that is,

M =
√

A :R x for some x ∈ R \A. Since R has Krull dimension 1, M is a maximal

ideal of R. By (vi) RM/(AM :RM
x) contains a simple RM -module. Thus there

exists y ∈ R \ (AM :RM
x) such that MRM = (AM :RM

x) :RM
y = AM :RM

xy.

Since A :R x ⊆ A :R xy ⊆ M and
√

A :R x = M , it follows that M is the only

maximal ideal of R containing A :R xy. Thus since AM :RM
xy = MRM , it is the

case that A :R xy = M .

(v) ⇒ (iii) If A is a proper nonzero ideal of R and M is a strong Bourbaki

associated prime of A, then A :R M 6= A, so R/A contains a simple R-module.
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(iii) ⇒ (xi) Since (iii) is equivalent to (x), it is sufficient to note that (x) implies

(xi).

(xi) ⇒ (iii) Let A be a proper nonzero ideal of R. Then there exists a completely

irreducible submodule C of Q such that A = C ∩D is an irredundant intersection

for some submodule D of Q. Let x ∈ D \C. Now (C :Q M)/C is the essential socle

of Q/C, so if y ∈ (C :Q M) \ C, then y ∈ xR + C. Thus rx ∈ yR + C for some

r ∈ R such that rx 6∈ C. Consequently, rxM ⊆ C, and since x ∈ D, it is the case

that rxM ⊆ A with rx 6∈ A. Thus rx+A is a nonzero member of the socle of R/A.

Statement (iii) now follows. �

An integral domain R is almost Dedekind if for each maximal ideal M of R, RM is

a DVR. In [35, Theorem 3.2] it is shown that if X is a Boolean (i.e. compact Haus-

dorff totally disconnected) topological space, then there exists an almost Dedekind

domain R with nonzero Jacobson radical such that Max(R) is homeomorphic to X.

Thus we obtain the following corollary to Theorem 5.2(vii).

Corollary 5.3. The following statements are equivalent for a Boolean topological

space X.

(i) X is a scattered space.

(ii) There exists a domain R with nonzero Jacobson radical such that Q/R is

semi-artinian and Max(R) is homeomorphic to X. �

Remark 5.4. In Example 2.1 of [5] an example is given of a domain R for which

Q/R is semi-artinian but R is not almost perfect. Using the corollary, we may obtain

many such examples. Indeed, let X be an infinite Boolean scattered space. Then

there exists an almost Dedekind domain R such that Max(R) is homeomorphic to

X and R is not a Dedekind domain. In particular, R is not h-local, since an h-local

almost Dedekind domain is Dedekind. Thus Q/R is semi-artinian but R is not

almost perfect.

It is not difficult to exhibit infinite Boolean scattered spaces. For example, let X

be a well-ordered set such that not every element has an immediate successor. Then

X is a scattered space with respect to the order topology on X, and the isolated

points of X are precisely the smallest element of X and the immediate successors

of elements in X (see [28, Example 17.3, p. 272]).

In [5] Bazzoni and Salce raise the question of whether every locally almost perfect

domain R has the property that Q/R is semi-artinian. Using Theorem 5.2 we give

an example to show that this is not the case.
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Example 5.5. Let X be a Boolean space that is not scattered (e.g. let X be

the Stone-Ĉech compactification of the set of natural numbers with the discrete

topology). As noted above, there exists an almost Dedekind domain R such that

Max(R) is homeomorphic to X and R has nonzero Jacobson radical. Then R is

locally almost perfect but by Theorem 5.2(vii) Q/R is not semi-artinian.

In [15] it is shown that every irreducible ideal of an almost perfect domain is

primary. A similar argument yields:

Lemma 5.6. If R is a locally almost perfect domain, then every proper irreducible

ideal is primary.

Proof. Let A be a nonzero irreducible ideal. Then A is primary if and only if

any strictly ascending chain of the form A ⊂ A :R b1 ⊂ A :R b1b2 ⊂ · · · ⊂ A :R
b1b2 · · · bn ⊆ · · · for b1, b2, . . . , bn, . . . ∈ R terminates [14]. Suppose there is an

infinite such strictly ascending chain, and let M be a maximal ideal containing

every residual A :R b1b2 · · · bn. Since RM is an almost perfect domain, RM/AM has

the descending chain condition for principal ideals. Thus there exists n > 0 such

that AM :R b1b2 · · · bn = AM :R b1b2 · · · bn+1. If r ∈ A :R b1b2 · · · bn+1, then there

exists x ∈ R \M such that xr ∈ A :R b1b2 . . . bn. An irreducible ideal of a domain

of Krull dimension 1 is contained in a unique maximal ideal (see for example [26,

Lemma 2.7]), so necessarily A is M -primal. Thus x is prime to A and it follows

that r ∈ A :R b1b2 · · · bn. However, this forces A :R b1b2 · · · bn = A :R b1b2 · · · bn+1,

contrary to assumption. Thus A is primary. �

Theorem 5.7. If R is an almost semi-artinian domain, then every ideal of R is

an irredundant intersection of primary completely irreducible ideals.

Proof. The theorem follows from Lemma 5.6 and Theorem 5.2(xii). �

We characterize next the domains R for which every nonzero submodule of Q can

be represented uniquely as an irredundant intersection of completely Q-irreducible

R-submodules.

An R-module B is distributive if for all submodules A1, A2 and A3 of B, (A1 ∩
A2) + A3 = (A1 + A3) ∩ (A2 ∩ A3). The module B is uniserial if its submodules

are linearly ordered by inclusion. An R-module is distributive if and only if for all

maximal ideals M of R, BM is a uniserial RM -module [29].

Lemma 5.8. Let R be a ring and B be an R-module. Let A be the set of all R-

submodules of B that are finite intersections of completely irreducible submodules
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of B. Then the module B is distributive if and only if for each A ∈ A, the repre-

sentation of A as an irredundant intersection of completely irreducible submodules

of B is unique.

Furthermore, if a submodule B of a distributive R-module can be represented

as a (possibly infinite) irredundant intersection of irreducible submodules, then this

representation is unique.

Proof. Suppose that each representation of A ∈ A as an irredundant intersection

of completely Q-irreducible submodules of B is unique. Then this property holds

also for the RM -submodules of BM for each maximal ideal M of R. Thus by the

remark preceding the theorem, to prove that B is distributive it suffices to show

that BM is a uniserial RM -module. Thus we may reduce to the case where R is a

quasilocal domain with maximal ideal M and show that B is a uniserial R-module.

If B is not uniserial, there exist incomparable completely B-irreducible submodules

C1 and C2 of B. Define A = C1 ∩ C2, C∗
1 = C1 :B M and C∗

2 = C2 :B M . By

Lemma 2.1, C1 ⊂ C∗
1 and C2 ⊂ C∗

2 . Now there exist x ∈ (C∗
1 ∩ C2) \ A and

y ∈ (C1∩C∗
2 )\A. (This follows from the irreduciblity of the Ci and the modularity

of the lattice of submodules of Q; see for example Noether [34, Hilfssatz II].) We

have Soc B/A = (A + xR + yR)/A is a 2-dimensional vector space over R/M and

x + y 6∈ C1 ∪ C3. Let C3 be an R-submodule of B containing A + (x + y)R that

is maximal with respect to x 6∈ C3. Then C3 is completely B-irreducible, distinct

from C1 and C2 and A = C1∩C3. Yet A ∈ A, so this contradiction means that the

submodules of B are comparable. The converse and the last assertion follow from

the fact that in a complete distributive lattice, an irredundant meet decomposition

into meet-irreducible elements is unique [8, pp. 5-6] . �

Theorem 5.9. The following are equivalent for a domain R with quotient field Q.

(i) Every nonzero submodule of Q can be represented uniquely as an irredun-

dant intersection of completely irreducible submodules of Q.

(ii) Every nonzero ideal of R can be represented uniquely as an irredundant

intersection of completely irreducible submodules of Q.

(iii) Every nonzero proper ideal of R can be represented uniquely as an irredun-

dant intersection of completely irreducible ideals of R.

(iv) R is an almost Dedekind domain such that for each radical ideal J of R,

R/J has a finitely generated maximal ideal.

(v) R is an almost semi-artinian Prüfer domain.

Proof. (i) ⇒ (ii) This is clear.
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(ii) ⇒ (iii) This follows from Theorem 5.2 and Lemma 5.8.

(iii) ⇔ (iv) This is proved in [26, Corollaries 2.10 and 3.9].

(iv) ⇒ (v) This follows from Theorem 5.2.

(v) ⇒ (i) Since R is a Prüfer domain, Q is a distributive R-module. Thus (i) is

a consequence of Theorem 5.2 and Lemma 5.8. �

6. Prüfer domains

In light of Theorem 5.9 it is of interest to describe the completely irreducible

submodules of the quotient field of a Prüfer domain. We do this in Theorem 6.2.

We need for the proof of this theorem a description of the completely irreducible

ideals of a Prüfer domain. This is a special case of Theorem 5.3 in [16]: A proper

ideal A of a Prüfer domain is completely irreducible if and only if A = MB(M) for

some maximal ideal M and nonzero principal ideal B of R.

Lemma 6.1. Let R be an integral domain and let A be a flat R-submodule of

Q. If A is Q-irreducible, then End(A) is quasilocal and is Q-irreducible as an

R-submodule of Q.

Proof. Since A is a flat R-submodule of Q, it is the case that A(B∩C) = AB∩AC

for all R-submodules B and C of Q [7, I.2, Proposition 6]. Suppose now that

End(A) = B ∩ C for R-submodules B and C of Q. Then A = A End(A) =

A(B ∩ C) = AB ∩ AC, and since A is Q-irreducible, A = AB or A = AC. Thus

B ⊆ End(A) or C ⊆ End(A), so that End(A) is Q-irreducible. Finally, if End(A)

is not quasilocal, then there exist two nonzero non-units x, y ∈ End(A) such that

xEnd(A) + y End(A) = End(A). Thus xy End(A) = xEnd(A) ∩ y End(A), so

End(A) = y−1 End(A) ∩ x−1 End(A). Since End(A) is Q-irreducible, this forces x

or y to be a unit, a contradiction. �

Theorem 6.2. Let R be a Prüfer domain. Then

(i) the Q-irreducible R-submodules of Q are precisely the R-submodules of Q

that are also RP -submodules for some prime ideal P , and

(ii) the completely Q-irreducible proper R-submodules of Q are precisely the R-

submodules of Q that are isomorphic to MRM for some maximal ideal M

of R.

Conversely, either of statements (i) and (ii) characterizes among the class of do-

mains those that are Prüfer.

Proof. (i) If A is Q-irreducible submodule of Q, then by Lemma 6.1 End(A) is

quasilocal. Since R is a Prüfer domain, there is a prime ideal P of R such that
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RP = End(A) and A is an RP -submodule of Q. Conversely, if P is a prime ideal of

R, A is an RP -submodule of Q and A = B ∩C for some R-submodules B and C of

Q, then A = BRP ∩CRP . Since RP is a valuation domain A = BRP or A = CRP .

Thus A = B or A = C and A is Q-irreducible.

(ii) Suppose that R is a Prüfer domain and let A be a completely Q-irreducible

proper R-submodule of Q. Then by Proposition 2.1, A = ARM for some maximal

ideal M of R and A is a completely Q-irreducible submodule of RM . Since RM

is a valuation domain, there exists q ∈ Q such that qA ⊆ RM . Moreover, qA is

a completely irreducible ideal of RM , so by Lemma 5.1 of [16], qA = xMRM for

some x ∈ RM . Hence A is isomorphic to MRM .

On the other hand, if A is an R-submodule of the form xMRM for some x ∈ Q,

then A is a completely irreducible fractional ideal of the valuation domain RM [16,

Lemma 5.1]. Since RM is a valuation domain, A is a completely Q-irreducible of

RM . Thus by Proposition 2.1, A is a completely Q-irreducible R-submodule of Q.

It is easy to see that statement (i) characterizes Prüfer domains. For let M is a

maximal ideal of R, and observe that since by (i) the ideals of RM are irreducible,

they are linearly ordered.

Finally, suppose that each completely Q-irreducible proper R-submodule of Q

is isomorphic for some maximal ideal M to the maximal ideal of RM . Let M be

a maximal ideal of R. Then by assumption rMRM is an irreducible ideal of RM

for all r ∈ R. By Lemma 5.1 of [16], RM must be a valuation domain. Thus R

is a Prüfer domain since every localization of R at a maximal ideal is a valuation

domain. �

In Theorem 6.3, we describe the Prüfer domains that have a completely Q-

irreducible ideal.

Theorem 6.3. The following statements are equivalent for a Prüfer domain R.

(i) There exists a completely Q-irreducible ideal of R.

(ii) There exists a nonzero Q-irreducible ideal of R.

(iii) There is a nonzero prime ideal contained in the Jacobson radical of R.

(iv) Every proper R-submodule of Q is a fractional ideal of R.

Proof. (i) ⇒ (ii) This is clear.

(ii)⇒ (iii) Suppose that A is a Q-irreducible ideal of R. By Lemma 2.3, A = ARP

for some prime ideal of R. If A is an invertible ideal of R, then by Theorem 2.11

P is the unique maximal ideal of R, so that statement (iii) is clearly true. It

remains to consider the case where A is not invertible. By Theorem 2.11, if x is a
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nonzero element in A−1, then xA is contained in the Jacobson radical of R. Since

by Lemma 2.3(ii), xA is Q-irreducible we may assume without loss of generality

that A itself is contained in the Jacobson radical of R.

Now let {Ni} be the set of maximal ideals of R. Since ARP is an ideal of R

and A is contained in each Ni, it follows that for each i, ARP RNi = ARNi ⊂ RNi .

Thus there is prime ideal Pi contained in P and Ni that contains A (the ideal Pi

can be chosen to be the contraction of the maximal ideal of the ring RP RNi
that

contains A). Because R is a Prüfer domain, the prime ideals contained in P are

linearly ordered by inclusion. Thus if Q =
⋂

i Pi, then Q is a nonzero prime ideal

of R (for it contains A) and Q is contained in every maximal ideal of R.

(iii) ⇒ (i) Let P be a nonzero prime ideal of R contained in the Jacobson radical

of R. Since R is a Prüfer domain, P = PRP , so if 0 6= x is in P it follows that

xRM is contained in P . Thus xMRM is contained in P = PRM . Moreover by

Proposition 6.2 xMRM is a completely Q-irreducible R-submodule of Q.

(iii) ⇒ (iv) Statement (iv) is equivalent to the assertion that there exists a

valuation overring V ⊂ Q of R such that (R :Q V ) 6= 0 [31, Theorem 79]. If R

satisfies (iii), then a nonzero prime ideal P contained in the Jacobson radical of R

has the property that PRP = P . Thus V can be chosen to be RP .

(iv) ⇒ (ii) By the theorem of Matlis cited in (iii) ⇒ (iv), there exists a valuation

ring V with (R :Q V ) 6= 0. Thus since R is a Prüfer domain there is a prime ideal

P with V = RP and rRP ⊆ R for some nonzero r ∈ R. By Proposition 6.2, rRP is

a Q-irreducible ideal of R. �

Remark 6.4. If R is a Prüfer domain with nonzero Jacobson radical ideal J ,

then there exists a unique largest prime ideal P contained in J . If M is a max-

imal ideal of R, then PRM = PRP since RM is a valuation domain. Thus

P =
⋂

M∈Max(R) PRM = PRP . It follows that RP /P is the quotient field of R/P .

Using this observation it is not hard to see that a Prüfer domain R satisfies the

equivalent conditions of Theorem 6.3 if and only if R occurs in a pullback diagram

of the form
R −−−−→ Dy α

y
V

β−−−−→ K
where

• α is injective and D is a Prüfer domain such that the Jacobson radical of

D does not contain a nonzero prime ideal,

• K is isomorphic to the quotient field of D, and
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• β is surjective with V a valuation domain.

Thus if D is any Prüfer domain with quotient field Q and X is an indeterminate

for Q, then D + XQ[[X]] is a Prüfer domain satisfying the equivalent conditions of

Theorem 6.3.

7. Questions

We conclude with several questions that we have not been able to resolve. Other

questions touching on similar issues can be found in [1], [3] and [25].

Questions 7.1. What conditions on a domain R guarantee that any two completely

Q-irreducible fractional ideals are necessarily isomorphic?

Proposition 3.1 gives an answer to this question in the case where every proper

submodule of Q is a fractional R-ideal. By Theorem 6.2 if R is a valuation domain,

then all completely Q-irreducible ideals of R are isomorphic. If R is a Noetherian

local domain, then by Propositions 3.1 and 3.5 any two Q-irreducible ideals are

isomorphic.

Questions 7.2. What integral domains R admit a completely Q-irreducible ideal?

a nonzero Q-irreducible ideal?

The Noetherian and Prüfer cases of Question 7.2 are settled in Proposition 3.5

and Theorem 6.3, respectively.

Questions 7.3. If R admits a nonzero Q-irreducible ideal, does R also admit a

completely Q-irreducible ideal?

The answer to Question 7.3 is yes if R is Prüfer or Noetherian.

Questions 7.4. If A is a (completely) irreducible submodule of the quotient field

of a quasilocal domain R, what can be said about End(A)? For a completely Q-

irreducible ideal A of a quasilocal domain R does it follow that End(A) is integral

over R?

Theorem 6.3 along with the fact that if A is completely irreducible, then End(A)

is quasilocal, shows that if R is not quasilocal, then End(A) need not be integral

over R even if R is a Prüfer domain.

Theorem 2.11, Example 3.10 and Example 3.13 are relevant to Question 7.4.

Questions 7.5. If R is a (Noetherian) domain, what are the completely irreducible

submodules of Q?
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Theorem 6.2 answers Question 7.5 in the case where R is Prüfer.

Questions 7.6. If A is a completely Q-irreducible R-submodule of Q, when is A

a fractional ideal of R? of End(A)?

If R is a valuation domain, then every proper submodule of Q is a fractional ideal

of R. The case where R is a one-dimensional Noetherian domain is deeper, but has

been resolved independently by Bazzoni and Goeters. A consequence of Theorem

3.4 of [3] is that if A is a completely Q-irreducible submodule of Q such that End(A)

is Noetherian and has Krull dimension 1, then (by Theorem 2.11) End(A) is local

and (by the cited result of Bazzoni) A is a fractional ideal of End(A). Indeed, a

more general result due to H. P. Goeters is true: If A is a submodule of the quotient

field of a local Noetherian domain of Krull dimension 1, then A is a fractional ideal

of End(A) [22, Lemma 1]. Recently, Goeters has extended this to all quasilocal

Matlis domains [23].

8. Appendix: Corrections to [17]

In this appendix we correct several mistakes from our earlier paper [17]. We

include also a stronger version of Lemma 3.2 of this paper. The main corrections

concern Lemmas 2.1(iv) and 3.2 of [17]. The notation and terminology of this

appendix is that of [17].

The proof of statement (iv) of Lemma 2.1 of [17] is incorrect. Statement (iv)

should be modified in the following way:

(iv) For each nonzero nonmaximal prime ideal P of R, if {Mi} is the collection

of maximal ideals of R not containing P , then RP ⊆ (
⋂

i RMi
)RM for each

maximal ideal M of R containing P .

Having changed statement (iv), we modify now the original proofs of (iii) ⇒ (iv)

and (iv) ⇒ (v) in the following way. For (iii) ⇒ (iv) we note that by Theorem

3.2.6 of [11] End(P ) = RP ∩ (
⋂

i RMi
) and End(PM ) = RP . Thus by (iii) RP =

End(PM ) = End(P )M = RP ∩ (
⋂

i RMi)RM , and (iv) follows.

For the proof of (iv) ⇒ (v), we have as in the original proof that

RP = End(A)M = (
⋂

Q∈XA

RQ)RM ∩ (
⋂
N

RN )RM .

We claim that
⋂

Q∈XA
RQ ⊆ RP . If this is not the case then since RM is a valua-

tion domain it must be that RP ⊂ (
⋂

Q∈XA
RQ)RM (proper containment). Hence

from the above representation of End(A)M we deduce that since RP is a valuation

domain, RP = (
⋂

N RN )RM . Thus (
⋂

N RN )RM ⊂ (
⋂

Q∈XA
RQ)RM . By (iv),
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RQ′ ⊆ (
⋂

N RN )RM since no N contains Q′. However Q′ ∈ XA, so this implies

RQ′ ⊂ RQ′RM , but since M contains Q′, RQ′RM = RQ′ . This contradiction im-

plies that
⋂

Q∈XA
RQ ⊆ RP , so every element r ∈ P is contained in some Q ∈ XA.

Consequently, no element of P is prime to A.

Reference is made in the first paragraph of the proof of Lemma 3.3 of [16] to the

original version of statement (iv). In particular it is claimed that since R has the

separation property, PiS is a maximal ideal of S. This can be justified now using

the following more general fact, which does not appear explicitly in [17]:

Lemma 8.1. A Prüfer domain R has the separation property if and only if for

each collection {Pi : i ∈ I} of incomparable prime ideals, the ideals Pi extend to

maximal ideals of S :=
⋂

i∈I RPi
.

Proof. If R has the separation property, then for each j ∈ I, End(Pj) = RPj ∩
(
⋂

N RN ) by Theorem 3.2.6 of [11], where N ranges over the maximal ideals of

R that do not contain Pj . Thus End(Pj) ⊆ S since the Pi’s are comaximal. By

Lemma 2.1(ii) of [17] Pj is a maximal ideal of End(Pj), and since R is a Prüfer

domain, either Pj extends to a maximal ideal SPj of S or SPj = S. The latter

case is impossible since S ⊆ RPj . Thus SPj is a maximal ideal of S. The converse

follows from Theorem 3.2.6 of [15] and Lemma 2.1(ii) of [17]. �

A second reference to the original version of Lemma 2.1(iv) is made in the first

paragraph of the proof of (i) ⇒ (ii) of Theorem 3.7. In this paragraph it is claimed

that since End(A)M = RP , the elements of P are not prime to A. Since (by Theo-

rem 2.3 of [17]) R has the separation property, this claim is immediate from Lemma

2.1(v) and the original argument that appealed to Lemma 2.1(iv) is unnecessary.

The argument in the third paragraph of the proof of Lemma 3.2 of [17] is incor-

rect, but rather than patch this argument we give below a stronger version of this

lemma. It requires a slight strengthening of Lemma 3.1 of [17].

Lemma 8.2. (cf. Lemma 3.1 of [17]) Let A be an ideal of a Prüfer domain R.

Suppose Q is a prime ideal of R that contains A, and P is a prime ideal such that

End(A)Q = RP . If P ∈ Ass(A), then End(A)Q = End(AQ).

Proof. Since P ∈ Ass(A), A(P ) is a primal ideal with adjoint prime P , and it fol-

lows that AP is a PP -primal ideal. By [17, Lemma 1.4], End(AP ) = RP . Thus

End(AP ) = End(A)Q, so A End(AP ) = A End(A)Q implies AP = AQ. Conse-

quently, End(AQ) = End(AP ) = RP = End(A)Q. �
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Lemma 8.3. (cf. Lemma 3.2 of [17]) Let R be a Prüfer domain with field of

fractions F , let X be an R-submodule of F , and let M be a maximal ideal of R.

Then End(X)M = RP for some P ∈ Spec R with P ⊆ M . Assume that P is the

union of prime ideals Pi, where each Pi is the radical of a finitely generated ideal.

Then End(X)Q = End(XQ) for all prime ideals Q such that P ⊆ Q ⊆ M .

Proof. Since RM ⊆ End(X)M and RM is a valuation domain, End(X)M = RP for

some prime ideal P ⊆ M . If End(X)M = F , then clearly End(X)M = End(XM ),

so we assume End(X)M 6= F and thus P 6= (0). Let Q be a prime ideal of R

such that P ⊆ Q ⊆ M . Since End(X)M = RP , we have End(X)Q = RP . Now

RP = End(X)Q ⊆ End(XQ) ⊆ End(XP ), so to prove Lemma 8.3, it suffices to

show that End(XP ) ⊆ RP .

Let S = End(X). Now PS ⊆ PRP , so PS 6= S. Since S is an overring of

the Prüfer domain R, S is a flat extension of R, so PS is a prime ideal of S and

SPS = RP . Also, PS is the union of the prime ideals PiS, and each PiS is the

radical of a finitely generated ideal of S.

Let L be a prime ideal of S such that L ⊆ PS and such that L =
√

I, where I

is a finitely generated ideal of S. We prove there exists a nonzero q ∈ F such that

qXL is an ideal of SL that is primary for LL. The invertible ideal I2 of S is an

intersection of principal fractional ideals of S. Since End(X) = S, each principal

fractional ideal of S is an intersection of S-submodules of F of the form qX, q ∈ F .

Since I2 ⊆ L, I2 is an intersection of ideals of S of the form L ∩ qX, where q ∈ F .

Since I2 ⊂ I ⊆ L (where ⊂ denotes proper containment), there exists q ∈ F such

that I2 ⊆ L ∩ qX ⊂ L. Hence there exists a maximal ideal N of S with L ⊆ N

such that I2
N ⊆ LN ∩ qXN ⊂ LN . Since SN is a valuation domain, the SN -modules

qXN and LN are comparable and I2
N ⊆ LN ∩ qXN ⊂ LN implies I2

N ⊆ qXN ⊂ LN .

Now
√

I2 =
√

I = L and I2 ⊆ N implies L ⊆ N . Thus I2
L ⊆ qXL ⊆ LL, and we

conclude that
√

qXL = LL.

We observe next that XP 6= F . Since P 6= 0, there exists i such that Pi 6= 0 and

L := PiS ⊆ PS, where L =
√

I for some finitely generated ideal I of S. As we have

established in the paragraph above, there exists a nonzero q ∈ F such that qXL is

an ideal of SL. Thus qXP ⊆ qXL ⊆ SL, so it is not possible that XP = F .

Fix some member L of the chain {PiS}. Since XP 6= F , L ⊆ PS and RP is a

valuation domain, there exists a nonzero element s of S such that sX ⊆ LL. Since

End(XP ) = End(sXP ) and we wish to show that End(XP ) ⊆ RP we may assume

without loss of generality that s = 1; that is, we assume for the rest of the proof
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that X ⊆ LL. Define A = X ∩S. Then A is an ideal of S. Moreover A is contained

in L since AL ⊆ XL ⊆ LL.

With the aim of applying Lemma 8.2, we show that PS ∈ Ass(A). For each

i define Li = PiS. It suffices to show each Li with L ⊆ Li ⊆ PS is in Ass(A),

since this implies that PS =
⋃

Li⊇L Li is a union of members of Ass(A). Let i be

such that L ⊆ Li. Since Li is the radical of a finitely generated ideal of S, there

exists (as we have established above) a nonzero q ∈ F such that qXLi
is an ideal

of SLi
that is primary for (Li)Li

. Now ALi
= XLi

∩ SLi
. Since SLi

is a valuation

domain, ALi = XLi or SLi ⊆ XLi . By assumption, X ⊆ LL. Since L ⊆ Li, it

follows that XLi ⊆ LL, so it is impossible that SLi ⊆ XLi . Thus ALi = XLi .

Consequently, qXLi
= qALi

and qALi
is an ideal of SLi

that is primary for (Li)Li
.

Since SLi
is a valuation domain, it follows that qALi

= ALi
: s for some s ∈ S.

Thus (Li)Li ∈ Ass(ALi), so Li ∈ Ass(A). This proves PS ∈ Ass(A).

Since A = X ∩ S is an ideal of S, S ⊆ End(A). For each maximal ideal N

of S, either AN = XN or AN = SN It follows that End(A) ⊆ End(X) = S, so

End(A) = S. Thus End(A)P = SP = RP , and by Lemma 8.2, End(AP ) = RP .

(We have used here that SSP = RP .) Now AP = XP ∩ SP = XP ∩ RP . Since

RP is a valuation domain, AP = XP or RP ⊆ XP . The latter case is impossible

since XP ⊆ XL ⊆ LL. Thus AP = XP . We conclude that End(XP ) = End(AP ) =

RP . �

Finally we make two corrections to the proof of Lemma 3.3. The third paragraph

should read: Define A = JRQ ∩ R. Then AS = JRQ ∩ S is QS-primary. In

particular, QS is the unique minimal prime of AS and A 6⊆ PiS ∩R = Pi for each

i ≥ 1.

Also, in the fifth paragraph an exponent is incorrect: xi needs to be chosen in

Ai \ (P1 ∪ · · · ∪Pi ∪Ai+1). Then in the eighth paragraph, we have xi+1SN ⊂ xiSN

since xi ∈ Ai \Ai+1 and Ai+1SN ∩R = Ai+1RQ ∩R = Ai+1.
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