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Abstract. An ideal of a ring is completely irreducible if it is not the intersec-
tion of any set of proper overideals. We investigate the structure of completely
irrreducible ideals in a commutative ring without finiteness conditions. It is
known that every ideal of a ring is an intersection of completely irreducible
ideals. We characterize in several ways those ideals that admit a representation
as an irredundant intersection of completely irreducible ideals, and we study
the question of uniqueness of such representations. We characterize those com-
mutative rings in which every ideal is an irredundant intersection of completely
irreducible ideals.

Introduction

Let R denote throughout a commutative ring with 1. An ideal of R is called

irreducible if it is not the intersection of two proper overideals; it is called completely

irreducible if it is not the intersection of any set of proper overideals. Our goal in this

paper is to examine the structure of completely irreducible ideals of a commutative

ring on which there are imposed no finiteness conditions. Other recent papers that

address the structure and ideal theory of rings without finiteness conditions include

[3], [4], [8], [10], [14], [15], [16], [19], [25], [26].

A proper ideal A of R is completely irreducible if and only if there is an element

x ∈ R such that A is maximal with respect to not containing x. Indeed, the

condition is clearly sufficient for A to be completely irreducible since x is in the

intersection of the proper overideals of A. On the other hand, if A is completely

irreducible and x is an element that is not inA but is in the intersection of the proper

overideals of A, then A is maximal with respect to not containing x. Evidently,

maximal ideals are completely irreducible. If R is a domain (not a field), then the

zero ideal of R is prime and irreducible, but it is not completely irreducible (it

is the intersection of all nonzero ideals). More generally, a prime ideal is always
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irreducible and is completely irreducible if and only if it is a maximal ideal. In

Theorem 1.3 we characterize completely irreducible ideals in various ways. We

deduce in Corollary 1.5 that an irreducible ideal of a Noetherian ring is completely

irreducible if and only if it is primary for a maximal ideal.

A great deal is known about the structure of the irreducible ideals of a Noetherian

ring. Indeed, the first decomposition theorem established by Emmy Noether [27]

states that each ideal of a Noetherian ring admits a representation as an irredundant

intersection of finitely many irreducible ideals; moreover, the number of components

appearing in such a representation is an invariant, and each such representation is

reduced (i.e., no ideal in the representation can be replaced by a strictly larger ideal

to obtain the same intersection). Another result due to Noether [27] is that a proper

irreducible ideal of a Noetherian ring is a primary ideal. In a ring without finiteness

assumptions there may exist proper irreducible ideals that are not primary. Fuchs

in [12] introduced the concept of a primal ideal, where a proper ideal A of R is said

to be primal if the zero-divisors in R/A form an ideal. The ideal of zero-divisors is

then necessarily of the form P/A where P is a prime ideal of R called the adjoint

prime of A. We also say that A is P -primal. In Fuchs [12] it is shown that proper

irreducible ideals are primal. More can be said about completely irreducible ideals.

We observe in Theorem 1.3 several equivalences to a proper ideal C of R being

completely irreducible among which is that C is irreducible and R/C contains a

simple submodule.

A ring in which every irreducible ideal is completely irreducible is zero-dimensional.

Corollary 1.5 states that if dimR = 0 and each primary ideal of R contains a power

of its radical, then every irreducible ideal of R is completely irreducible. In Section

2 we address the question: Under what conditions is an ideal representable as an

irredundant intersection of completely irreducible ideals? We consider in Section 3

the question of uniqueness of representation of the ideal A as an irredundant inter-

section of completely irreducible ideals. In Section 4 we characterize the rings in

which every ideal is an irredundant intersection of completely irreducible ideals. We

prove in Theorem 4.2 that every ideal of the ring R is an irredundant intersection

of completely irreducible ideals exactly if the ring is semi-artinian, where a ring R

is said to be semi-artinian if every nonzero R-module contains a simple R-module.

Proposition 1.4 and Corollary 1.5 characterize the completely irreducible ideals

of a Noetherian ring. In Section 5 we give an explicit description of the completely
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irreducible ideals of an arithmetical ring, where the ring R is arithmetical if for

every maximal ideal M the ideals of the localization RM are linearly ordered with

respect to inclusion. An arithmetical integral domain is a Prüfer domain. For a

prime ideal P of a Prüfer domain, Fuchs and Mosteig prove in [17, Lemma 4.3]

that the P -primal ideals form a semigroup under ideal multiplication. We gener-

alize this result in Theorem 5.6. For a prime ideal P of an arithmetical ring, we

show that the regular P -primal ideals form a semigroup under ideal multiplica-

tion, where an ideal is regular if it contains a nonzerodivisor. Theorem 5.8 states

that if M is a maximal ideal of an arithmetical ring R, then the set F of com-

pletely irreducible regular ideals of R with adjoint maximal ideal M is closed under

ideal-theoretic multiplication, and F with this multiplication is a totally ordered

cancellative semigroup.

A good reference for our terminology and notation is [18]. For ideals I, J of the

ring R, the residual I : J is defined as usual by

I : J = {x ∈ R : xJ ⊆ I}.

For an ideal A and for a prime ideal P of R, we use the notation

A(P ) = {x ∈ R : sx ∈ A for some s ∈ R \ P} =
⋃

s∈R\P
A : s

to denote the isolated P -component (isoliertes Komponentenideal) of A in the sense

of Krull [24, page 16]. Notice that x ∈ A(P ) if and only if A : x 6⊆ P . If R is a

domain, then A(P ) = ARP ∩R, where RP denotes the localization of R at P .

Two different concepts of associated primes of a proper ideal A of the ring R are

useful for us. One of these was introduced by Krull [23, page 742], and following

[22] we call a prime ideal P of R a Krull associated prime of A if for every x ∈ P ,

there exists y ∈ R such that x ∈ A : y ⊆ P . The prime ideal P is said to be a

strong Bourbaki associated prime of A if P = A : x for some x ∈ R.

1. Irreducible and Completely Irreducible Ideals

A ring is called subdirectly irreducible if in any of its representations as a subdirect

product of rings, one of the projections to a component is an isomorphism. It is

straightforward to see:

Lemma 1.1. A proper ideal C of R is completely irreducible if and only if the factor

ring R/C is subdirectly irreducible, or equivalently if and only if the R-module R/C

has a simple essential socle. �
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Thus if C is completely irreducible, then R/C contains a minimal nonzero ideal

C∗/C: the intersection of all nonzero ideals of R/C; this is then the essential socle

of R/C. We shall call C∗ the cover of C. Clearly, C∗/C is a simple R-module, so

C∗/C ∼= R/M for a maximal ideal M of R. (If C is only assumed to be irreducible,

then we can only claim that R/C is a uniform R-module, that is, the intersection

of any two nonzero submodules of R/C is not zero.)

Proposition 1.2. A completely irreducible proper ideal C of the ring R is a primal

ideal whose adjoint prime is the maximal ideal M of R for which C∗/C ∼= R/M .

Furthermore, M is a strong Bourbaki associated prime of C.

Proof. Let x ∈ R be a representative of any coset of C generating C∗/C ∼= R/M .

Then x 6∈ C and xM ⊆ C. Hence M ⊆ C : x ⊂ R (proper containment); thus

we necessarily have M = C : x, so M is a strong Bourbaki associated prime of C.

Evidently, M has to be the adjoint prime of the primal ideal C. �

Completely irreducible ideals can be characterized in various ways as we demon-

strate in Theorem 1.3.

Theorem 1.3. For a proper ideal C of R, the following conditions are equivalent.

(i) C is completely irreducible;

(ii) the factor module R/C is an essential extension of a simple module;

(iii) C is an irreducible ideal and R/C contains a simple R-submodule;

(iv) C is an irreducible ideal and C is properly contained in C : M for some

maximal ideal M of R;

(v) C is irreducible with adjoint prime a maximal ideal M of R, and M = C : x

for some x ∈ R \ C;

(vi) C = C(M) for some maximal ideal M of R and CRM is a completely irre-

ducible ideal of RM .

Proof. The equivalence of (i) and (ii) and of (iii) and (iv) is obvious, and so is the

implication (i) ⇒ (iv). To prove (iii) ⇒ (i), observe that a simple submodule of a

uniform module is an essential socle of the module.

By Proposition 1.2, (i) ⇒ (v) is clear. On the other hand, Condition (v) implies

that x + C generates a simple R-submodule in R/C. By the uniformity of R/C

this simple submodule is an essential socle of R/C, and (i) holds.

The equivalence of (v) and (vi) follows from the following two observations: (a)

if M is a maximal ideal containing C, then (C : x)RM = CRM :RM x for any
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x ∈ R; and (b) C(M) is irreducible if and only if CRM is an irreducible ideal of RM

(see Remark 1.6 of [14]). �

A ring is Laskerian if every ideal has a finite primary decomposition.

Proposition 1.4. If every proper ideal of the ring R is an intersection of primary

ideals (possibly an infinite intersection), then every completely irreducible proper

ideal of R is primary for a maximal ideal. In particular, if R is a Laskerian ring (or

a Noetherian ring), then every completely irreducible proper ideal of R is primary

for a maximal ideal.

Proof. Let C be a completely irreducible ideal of R with adjoint prime M and let

x ∈ R be a representative of any coset of C generating C∗/C ∼= R/M . Then x 6∈ C
and xM ⊆ C. Since C is an intersection of primary ideals, there exists a primary

ideal Q of R such that C ⊆ Q and x 6∈ Q. Since C is completely irreducible, it

follows that C = Q. Therefore C is a primary ideal that is M -primal, so C is

M -primary. �

Corollary 1.5. Let M be a maximal ideal of the ring R and let C be an irreducible

M -primary ideal. If Mn ⊆ C for some positive integer n, then C is completely

irreducible. Thus if M is finitely generated, then every irreducible M -primary ideal

is completely irreducible. Therefore an irreducible proper ideal of a Noetherian ring

is completely irreducible if and only if it is primary for a maximal ideal.

Proof. If Mn ⊆ C for some positive integer n, then C ⊂ (C : M). Hence by

Theorem 1.3(iv), C is completely irreducible. The last statement now follows from

Proposition 1.4. �

Remark 1.6. We are interested in describing the rings in which every irreducible

ideal is completely irreducible. Since prime ideals are irreducible and a prime ideal

is completely irreducible if and only if it is maximal, the condition that every

irreducible ideal in R is completely irreducible implies that all prime ideals of R

are maximal and dimR = 0. If R is a reduced zero-dimensional ring, then RP is a

field for each P ∈ SpecR and every primal ideal of R is maximal. Therefore every

irreducible ideal of a reduced zero-dimensional ring is completely irreducible.

Recall that a ring R is semi-artinian if every nonzero R-module contains a simple

R-module. If R is semi-artinian, then all irreducible ideals of R are completely

irreducible (see also Lemma 2.4 in Dilworth-Crawley [7]). The existence of a reduced
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zero-dimensional ring R having no principal maximal ideals shows that a ring in

which all irreducible ideals are completely irreducible need not be semi-artinian. In

Example 1.7 we give two specific ways to obtain an example of such a ring R.

Example 1.7. (1) Let L denote the algebraic closure of the field Q of rational

numbers and let D be the integral closure of the ring Z of integers in the

field L. Fix a prime integer p and let R = D/
√
pD. Then R is a reduced

zero-dimensional ring having the property that no maximal ideal of R is

finitely generated.

(2) Let Qω denote the product of countably infinitely many copies of the field

Q of rational numbers and let I denote the direct sum ideal of Qω. Then

R = Qω /I is a reduced zero-dimensional ring in which no maximal ideal is

finitely generated.

Remark 1.8. Let M be a maximal ideal of the ring R. By Theorem 1.3, an

irreducible M -primary ideal A is completely irreducible if and only if A ⊂ (A : M).

If (R,M) is a rank-one nondiscrete valuation domain and A = xR is a principal

M -primary ideal, then A is irreducible, but not completely irreducible. (Since the

value group G of R is a dense subset of R, the value of x is the limit of smaller

elements of G.) On the other hand, if dimR = 0 and if each primary ideal of R

contains a power of its radical, then Corollary 1.5 implies that all irreducible ideals

of R are completely irreducible.

Let A ⊆ C be ideals of the ring R. If C is completely irreducible, we call

C a relevant completely irreducible divisor of A if A has a decomposition as the

intersection of completely irreducible ideals in which C is relevant (i.e. it cannot be

omitted). If A admits an irredundant decomposition with completely irreducible

ideals, then all the ideals in this decomposition are relevant. On the other hand,

a prime ideal that is not a maximal ideal has no relevant completely irreducible

divisors. In Proposition 1.9 we characterize the relevant completely irreducible

divisors of an ideal.

Proposition 1.9. A completely irreducible ideal C containing the ideal A is a

relevant completely irreducible divisor of A if and only if the submodule C/A of

R/A is not essential.

Proof. First suppose C is a relevant completely irreducible divisor of A, and A =

C ∩
⋂
i∈I Ci is a decomposition with completely irreducible ideals Ci, where C
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cannot be omitted. Then there exist an element x ∈
⋂
i∈I Ci \ C and an r ∈ R

such that rx ∈ C∗ \ C. Let u = rx and let u denote the image of u in R/A. Then

u 6∈ C/A, while if M denotes the maximal ideal of R such that C∗/C ∼= R/M ,

then Mu ⊆ C ∩
⋂
i∈I Ci = A implies Ru is a simple submodule of R/A. Hence the

submodule C/A of R/A is not essential.

Conversely, assume C/A is not essential in R/A, i.e. there exists x ∈ R \A such

that (Rx+A) ∩C = A. Write the ideal (Rx+A) as an intersection of completely

irreducible ideals Ci (i ∈ I). Then A = C ∩
⋂
i∈I Ci, where C is relevant. �

Corollary 1.10. For every completely irreducible ideal C containing the ideal A,

the cover C? satisfies: C?/A is an essential submodule in R/A.

Proof. If C is not a relevant completely irreducible divisor of A, then C/A is an

essential submodule of R/A, so C∗/A is essential in this case. On the other hand, if

C is relevant, then for any x ∈ R \C, there exists r ∈ R such that rx ∈ C∗ \C. �

Corollary 1.11. Let A be a proper ideal of the ring R. There exists a relevant

completely irreducible divisor of A if and only if the socle Soc(R/A) 6= 0.

Proof. Assume that C is a relevant completely irreducible divisor of A. If A = C,

then Soc(R/A) = Soc(R/C) = C∗/C 6= 0. If A ⊂ C, then A = C ∩ B, where

A ⊂ B. Let b ∈ B \ A. Then b 6∈ C, so there exists r ∈ R such that rb ∈ C∗ \ C.

It follows that Mrb ⊆ C ∩ B = A, where M is the adjoint prime of C. Therefore

(A+ rbR)/A ⊆ Soc(R/A) and Soc(R/A) 6= 0.

Conversely, assume that Soc(R/A) 6= 0. Then there exists x ∈ R \ A such that

xM ⊆ A for some maximal ideal M of R with A ⊆ M . Let B = A + xR. Then

B/A ∼= R/M . Let C be an ideal of R containing A and maximal with respect to

x 6∈ C. Then C is completely irreducible and A = C ∩B. Therefore C is a relevant

completely irreducible divisor of A. �

Remark 1.12. The ring R of Example 1.7 is a zero-dimensional reduced ring

for which SocR = 0. Thus in this ring, the ideal (0) has no relevant completely

irreducible divisors.

In Proposition 1.13, we observe a connection between relevant completely irre-

ducible divisors of an ideal and maximal ideals that are strong Bourbaki associated

primes of the ideal.
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Proposition 1.13. Let A be a proper ideal of the ring R. A maximal ideal M of

R is a strong Bourbaki associated prime of A if and only if there exists a relevant

completely irreducible divisor of A that is M -primal.

Proof. Suppose C is a relevant completely irreducible divisor of A that is M -primal.

The proof of Proposition 1.9 establishes the existence of an element u ∈ R \A such

that Mu ⊆ A. Hence M = A : u is a strong Bourbaki associated prime of A.

Conversely, if M = A : x, then x 6∈ A. Let C be an ideal of R that contains A and

is maximal without x. Then M = C : x and C is M -primal. Since every ideal is

an intersection of completely irreducible ideals, there exist completely irreducible

ideals Ci such that A+Rx = ∩i∈ICi. Then (A+Rx)/A being simple implies that

A = C ∩ (∩i∈ICi), where C is clearly a relevant component. �

2. Irredundant Intersections

We consider under what conditions an ideal may be represented as an irredundant

intersection of completely irreducible ideals, where, as usual, irredundant means

that none of the components may be omitted without changing the intersection.

If {Bi}i∈I is a family of R-modules, then by an interdirect product of this family

we mean an R-submodule of the direct product
∏
i∈I Bi that contains the direct

sum
⊕

i∈I Bi. Similarly, if {Ri}i∈I is a family of rings, by an interdirect product of

this family of rings we mean a subring of the direct product
∏
i∈I Ri that contains

the direct sum
⊕

i∈I Ri and the identity of the direct product.

In Lemma 2.1 and later in this section, we use the following notation. Let {Ci}i∈I
be a family of completely irreducible ideals of the ring R and let A =

⋂
i∈I Ci. For

each j ∈ I let Cj =
⋂
i∈I,i6=j Ci. We frequently use the following basic fact.

Lemma 2.1. Let A =
⋂
i∈I Ci be an irredundant representation of the proper ideal

A with completely irreducible ideals Ci.

(i) There are elements ui ∈ R \Ci (i ∈ I) such that C∗i = Ci +Rui for i ∈ I and

ui ∈ Cj for all j 6= i.

(ii) For each i ∈ I, the R-module Ci/A has an essential socle generated by ui+A.

(iii) In the representation A =
⋂
i∈I Ci, no Ci can be replaced by a larger ideal

and still have the intersection be equal to A.

(iv) With ui as in (i), let Ui = (Rui+A)/A. Then Ui is a simple R-module and

the socle of R/A is an interdirect product of the Ui.
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Proof. (i) Since the intersection of the Ci (i ∈ I) is irredundant, for each i ∈ I there

exists an element xi ∈ Ci such that xi /∈ Ci. By Lemma 1.1, R/Ci is subdirectly

irreducible, so some multiple rxi /∈ Ci has the property that its image in R/Ci is

in Soc (R/Ci). If we choose ui = rxi for each i ∈ I, then we obtain elements with

the desired properties.

(ii) From (i) it is clear that 〈ui + A〉 is in the socle of Ci/A. By way of con-

tradiction, suppose that there is a cyclic R-module 〈v +A〉 contained in Ci/A and

independent of 〈ui + A〉. As Ci is completely irreducible, there is an r ∈ R such

that rv − ui ∈ Ci. Then rv − ui ∈ Ci ∩ Ci = A, contradicting the independence of

〈v +A〉 and 〈ui +A〉.
(iii) If we replace Ci by a larger ideal, then the intersection will contain ui, so it

will no longer represent A.

(iv) As Miui ⊆ A for a maximal ideal Mi, it is clear that the Ui = 〈ui + A〉
are simple submodules of R/A. From (i) it follows that they are independent, so

Soc (R/A) contains their direct sum D = ⊕i∈IUi. Suppose there is a v ∈ R such

that v + A ∈ Soc (R/A), but not in D, say Mv ⊆ A for a maximal ideal M of

R. Thus v /∈ Cj for some j ∈ I. If v /∈ Cj + Ruj, then Mv ⊆ Cj implies Cj =

(Cj +Ruj)∩ (Cj +Rv), contradicting the irreducibility of Cj . Hence v ∈ Cj +Ruj

for all j with v /∈ Cj . This means that the canonical injection R/A→
∏
j∈I R/Cj

maps v to an element of
∏
j∈I(Ruj + Cj)/Cj ∼=

∏
j∈I Uj . �

We remark that part (iii) of Lemma 2.1 is also a consequence of the stronger

statement: if A = B∩C, where C is irreducible and relevant for the decomposition

of A, then C cannot be replaced by any proper overideal (see Noether [27, Hilfssatz

II]). In fact, if C is properly contained in C′, then A = B ∩ C′ would lead to

C = C + (B ∩ C′) = (C +B) ∩ C′, contradicting the irreducibility of C.

Remark 2.2. It will be useful to keep in mind that (iv) of Lemma 2.1 implies that

(1)
⊕
i∈I

Soc(Ci/A) ⊆ Soc (R/A) ⊆
∏
i∈I

Soc(Ci/A).

Notice also that Soc(Ci/A) ∼= Soc(Ci + Ci)/Ci = Soc (R/Ci) = C∗i /Ci.

Next we exhibit an example where Soc(R/A) is the direct product of the Soc(Ci/A).

Example 2.3. For each nonnegative integer n, let Zn = 〈xn〉 be a cyclic group of

order p, where p is a fixed prime integer. Consider the product
∏
n<ω Zn with trivial

multiplication and let R be the ring obtained by adjoining an identity to
∏
n<ω Zn



10 LASZLO FUCHS, WILLIAM HEINZER, AND BRUCE OLBERDING

in such a way that as an additive group R = Z⊕
∏
n<ω Zn and multiplication is

defined as (a, b)× (c, d) = (ac, ad+ cb), where a, c ∈ Z and b, d ∈
∏
n<ω Zn.

For each nonnegative integer m, let Cm ∼=
∏
n<ω,n6=m Zn denote the subgroup

of
∏
n<ω Zn of elements having zero coordinate in component Zm. Then Cm is

an ideal of R that is maximal with respect to not containing the element that is

xm in component Zm and zero in all other components. Thus Cm is completely

irreducible. We have
⋂
n<ω Cn = 0 is an irredundant intersection, and in this

example, the first containment relation in (1) is strict, while the second becomes

equality.

For an irredundant intersection A =
⋂
i∈I Ci with completely irreducible ideals

Ci, we demonstrate in Example 2.4 that Soc (R/A) may fail to be an essential

submodule of R/A.

Example 2.4. There is a ring R in which the zero ideal is an irredundant inter-

section of completely irreducible ideals and SocR is not an essential submodule of

R. Let {pn | n < ω} be the set of prime numbers, and let Zn denote the ring

Z/p2
nZ (n < ω). In the direct product P =

∏
n<ω Zn consider the subring R gener-

ated by 1 = (1, 1, . . . , 1, . . . ), e = (p0, p1, . . . , pn, . . . ), and rn = (0, . . . , 0, pn, 0, . . . )

for each n < ω. Then e2 = 0, ern = 0 and rnrm = 0 for all n,m < ω. Consequently,

a typical element of R has the form a = m ·1+se+n0r0 + · · ·+nkrk for some k ≥ 0,

where m, s, ni ∈ Z. The ideal Re is just the infinite cyclic subgroup generated by e.

Define Cn as an ideal containing all ri (i < ω, i 6= n), rn − pn0pn1 · · · pnne, and being

maximal with respect to rn /∈ Cn. Clearly, the intersection
⋂
n<ω Cn contains no

nonzero element of the socle SocR = ⊕n<ωRrn, and is evidently irredundant. To

see that it cannot contain any element outside the socle either, assume by way of

contradiction that a as above is contained in every Cn. Then either a multiple of se

or ae = me is contained in every Cn, which is impossible, since pn0p
n
1 · · · pnne /∈ Cn.

However, the socle of R is not essential in R, as the ideal Re intersects SocR

trivially.

Let A be a proper ideal of the ring R. In Theorem 2.5 we relate representations

of A as an intersection of bigger ideals with representations of R/A as a subdirect

product.

Theorem 2.5. For a proper ideal A of the ring R the following are equivalent:

(i) A is the irredundant intersection of completely irreducible ideals;
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(ii) R/A is an irredundant subdirect product of subdirectly irreducible R-algebras

Ri.

Proof. (i) ⇒ (ii) Let {Ci}i∈I be a family of completely irreducible ideals of R such

that A =
⋂
i∈I Ci is an irredundant intersection. Then R/A can be identified via

the canonical map φ : R→
∏
i∈I R/Ci with the subring φ(R) of the direct product∏

i∈I R/Ci, where each component R/Ci contains a simple R-module C∗i /Ci as an

essential socle, so each component is subdirectly irreducible. If we drop a com-

ponent R/Cj , then φ will no longer induce an embedding of R/A in the product∏
i∈I,i6=j R/Ci, so the subdirect representation is irredundant.

(ii) ⇒ (i) Assume that R/A is an irredundant subdirect product of the subdi-

rectly irreducible R-algebras Ri (i ∈ I). Let T =
∏
i∈I Ri, and let πi : R/A → Ri

be the ith canonical projection. The kernel of πi is Ci/A, where Ci is a completely

irreducible ideal of R properly containing A, and Ri is isomorphic to R/Ci. Clearly,

A =
⋂
i∈I Ci and this representation is irredundant. �

Example 2.6. Let Fp denote the prime field of characteristic p, for a prime p.

Define R as the direct product
∏
p Fp with p running over an infinite set of primes.

Identify the product Cq of the Fp with p 6= q (q a fixed prime) as a subset of R

consisting of all tuples having a zero in position q. Under this identification, Cq is

a completely irreducible ideal of R, and 0 =
⋂
q Cq is an irredundant intersection.

(In this example, SocR is an essential submodule of R.)

In the preceding example, we could have used equally well several subrings (con-

taining ⊕pFp) of R, e.g. the von Neumann regular ring over which all von Neumann

regular rings are unital algebras; see Fuchs-Halperin [13].

Another criterion for the existence of an irredundant intersection representation

of an ideal A with completely irreducible ideals can be given in terms of the injective

hull of R/A.

Theorem 2.7. The proper ideal A of the ring R admits an irredundant represen-

tation as an intersection of completely irreducible ideals Ci (i ∈ I) if and only if the

injective hull E(R/A) of R/A is an interdirect product of injective hulls of simple

R-modules.

Proof. The ‘only if’ part of the theorem is an immediate consequence of Theorem

2.5, since the components R/Ci in the subdirect product are R-modules each with

a simple essential submodule.
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Conversely, assume E(R/A) is an interdirect product of injective hulls E(Si) of

simple R-modules Si. Define Ri = πi(R/A), where πi denotes the ith coordinate

projection of the product of the E(Si). Then R/A is evidently a subdirect product

of the Ri, and the Ri are subdirectly irreducible. For each i, the submodule E(Si)

of E(R/A) has nonzero intersection with R/A, and this intersection is contained in

the kernel of πj for each j 6= i. This shows that the representation is irredundant.

By Theorem 2.5, A admits an irredundant representation as an intersection of

completely irreducible ideals. �

For a proper ideal A of R, let S(A) denote the set of elements r ∈ R that are

not prime to A, i.e. that satisfy A ⊂ A : r.

Proposition 2.8. Let A be a proper ideal of a ring R. If A is an irredundant

intersection of completely irreducible ideals Ci, then S(A) is the union of maximal

ideals of R, each of which is a strong Bourbaki associated prime of A.

Proof. Given r ∈ R, we have r ∈ S(A) ⇐⇒ A ⊂ A : r. Since A : r =
⋂
i∈I(Ci : r),

we have, by Lemma 2.1(iii), r ∈ S(A) ⇐⇒ Ci ⊂ Ci : r for some i. Letting

Mi = {t ∈ R |Ci ⊂ Ci : t}, the adjoint prime of Ci, we see that S(A) =
⋃
i∈IMi.

The elements ui ∈ R introduced in Lemma 2.1 satisfy Mi = Ci : ui and ui ∈ Cj
for j 6= i. Thus A : ui = Mi, showing that Mi is a strong Bourbaki associated

prime of the ideal A. �

We can now prove:

Corollary 2.9. Let A =
⋂
i∈I Ci be an irredundant intersection, where the Ci are

completely irreducible ideals. Then A is an M -primal ideal if and only if all the Ci

are M -primal.

Proof. If all the completely irreducible ideals Ci are M -primal, then by Proposition

2.8 S(A) = M , so A is M -primal. On the other hand, if A is M -primal, i.e. if

S(A) = M , then again by Proposition 2.8, all the adjoint primes of the Ci must be

equal to M . �

This leads to a coarser intersection decomposition of ideals admitting irredundant

intersections with completely irreducible ideals.

Corollary 2.10. Assume that the proper ideal A of R has an irredundant represen-

tation as an intersection of completely irreducible ideals. Then A is an irredundant
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intersection of primal ideals with distinct adjoint maximal ideals such that each

primal component is an irredundant intersection of completely irreducible ideals.

Proof. Let A =
⋂
i∈I Ci be an irredundant intersection, where the Ci are com-

pletely irreducible ideals. For each maximal ideal M that is the adjoint prime of

some Ci, , let A[M ] denote the intersection of the Ci that are M -primal. By Corol-

lary 2.9, A[M ] is M -primal. Thus A =
⋂
M∈MaxR A[M ] is a decomposition of A

into an irredundant intersection of primal ideals with distinct adjoint primes M ,

and each A[M ] is an irredundant intersection of completely irreducible ideals. �

Since the isolated M -component A(M) of an ideal A is the intersection of all

M -primal overideals of A, it is clear that A(M) ⊆ A[M ] for each M .

It would be interesting to know if the converse of Corollary 2.10 is also true.

Example 2.11. It is possible that an ideal A is an irredundant intersection of com-

pletely irreducible ideals {Ci}i∈I and also the intersection of relevant completely

irreducible divisors {C′i}i∈I′ , where no subset of {C′i}i∈I′ gives an irredundant rep-

resentation of A. Let R be the ring defined in Example 2.4. It has been proved

there that its zero ideal admits a representation as an irredundant intersection of

completely irreducible ideals. Define An (n > 0) to be an ideal containing all

ri (i < ω, i 6= n), containing e, and maximal with respect to not containing rn.

Furthermore, for each n < ω let Bn (n < ω) be an ideal that contains all ri with

i > 0, contains the element r0 − pn0pn1 · · · pnne, and is maximal with respect to not

containing r0. In view of Proposition 1.9, all of An, Bn are relevant completely

irreducible divisors of A. Evidently, A =
⋂
n>0 An ∩

⋂
n<ω Bn. Here each of the

An, but none of Bn, is relevant for the intersection. Indeed, infinitely many Bn can

be deleted from this intersection as long as infinitely many Bn remain. In view of

this, this intersection cannot be made irredundant by canceling components.

3. The Question of Uniqueness

In her seminal paper [27] E. Noether proved that in a Noetherian ring every

proper ideal A is the finite irredundant intersection of irreducible ideals, and this

intersection has the following uniqueness properties: (1) the number of irreducible

components is unique, (2) the components satisfy the Replacement Property as

defined in (3.2), and (3) the components are primary ideals and their set of prime

radicals (along with their multiplicities) is uniquely determined by A.
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Our next goal is to prove, if possible, analogous results for ideals A that admit

a representation as an irredundant intersection of completely irreducible ideals. Of

course, the role of primary ideals will be taken over by primal ideals, and the set

of prime radicals will be replaced by the set of adjoint maximal ideals.

In our attempt to generalize the Noetherian situation the first problem we face

is that the cardinality of the set of completely irreducible components in an ir-

redundant intersection need not be unique. This is illustrated by the following

example.

Example 3.1. Let κ be an infinite cardinal and λ any cardinal such that κ <

λ ≤ 2κ. There exists a ring R that contains an ideal which is the irredundant

intersection of κ completely irreducible ideals and also the irredundant intersection

of λ completely irreducible ideals. Fix a prime integer p and let P =
∏
α<κ Zα

be the direct product of of κ cyclic groups Zα of order p. Give P the trivial

multiplication and make R = Z⊕P into a ring as in Example 2.3. Evidently

P = SocR and |P | = 2κ. For β < κ, the product Pβ =
∏
α<κ,α6=β Zα may be

viewed as an ideal in R; it is completely irreducible, since it is maximal with respect

to intersecting Zβ in zero. Clearly, 0 =
⋂
β<κ Pβ is an irredundant intersection with

κ components. Pick a subgroup P ′ of P that contains the direct sum ⊕α<κZα and

has index λ in P . Now P = P ′ ⊕
⊕

γ<λWγ for cyclic groups Wγ of order p.

Consider completely irreducible ideals Cα that contain
⊕

γ<λWγ and are maximal

with respect to intersecting Zα in zero, and consider as well completely irreducible

ideals C′γ that contain P ′ and are maximal with respect to intersecting Wγ in zero.

Then the intersection 0 =
⋂
α<κCα ∩

⋂
γ<λC

′
γ is irredundant with λ components.

As far as uniqueness of irredundant decompositions is concerned, we have the

following:

Theorem 3.2. Let

A =
⋂
i∈I

Ci =
⋂
j∈J

Bj

be two irredundant intersection representations of the proper ideal A of the ring R

with completely irreducible ideals Ci, Bj. Then:

(i) Each M ∈ MaxR that occurs as the adjoint prime of some primal ideal Ci

also occurs as the adjoint prime of some Bj. If it occurs a finite number of times in

one intersection, then it occurs the same number of times in the other intersection.
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(ii) The intersections have the Replacement Property: for each Ck there is a Bj

such that replacing Ck by Bj in the first intersection, we obtain an irredundant

representation of A.

Proof. We start the proof with (ii). (Note that in the first paragraph of its proof

irredundancy is irrelevant.)

(ii) Write Ck =
⋂
i6=k Ci and Akj = Ck ∩ Bj . The R-module (Ck + Ck)/Ck ∼=

Ck/(Ck∩Ck) ∼= Ck/A has an essential simple socle. Therefore, A =
⋂
j∈J Akj with

Akj ⊆ Ck implies that one of Akj (j ∈ J) must be equal to A, say, Ck ∩ Bj = A.

Thus Ck can be replaced by Bj .

To show that if A =
⋂
i∈I Ci is irredundant, then so is the new intersection,

assume by way of contradiction that C` (` 6= k) can be omitted from the new

intersection, i.e. A = Ck ∩ C` ∩ Bj (where Ck and C` are missing). What has

been proved is applied to this decomposition and the original one to conclude that

here Bj can be replaced by one of the Ci. After we do this, at least one of Ck and

C` would be missing from the intersection, contradicting the irredundancy of the

decomposition A =
⋂
i∈I Ci.

(i) Both Ck and its replacement Bj satisfy Ck ∩ Ck = A = Ck ∩ Bj . Hence

the covers satisfy C∗k/Ck
∼= Soc(Ck/A) ∼= B∗j /Bj . It follows that both Ck and Bj

are M -primal for the maximal ideal M that satisfies Soc(Ck/A) ∼= R/M . Thus

an M -primal completely irreducible ideal is always replaced by another M -primal

ideal in an irredundant intersection.

Now if the first intersection contains n completely irreducible ideals that are

M -primal, then successively replacing them by (necessarily distinct) completely

irreducible ideals from the second intersection, it follows that the second intersection

contains at least n M -primal ideals. Hence the claim is evident. �

Dilworth-Crawley [7, Theorem 4.2] prove an analogue of (ii) for compactly gen-

erated modular lattices under the hypothesis that the lattice is atomic (in our

setting, this corresponds to the case where Soc (R/A) is essential in R/A). They

also characterize atomic lattices where the components in irredundant intersections

are unique. Since we do not have atomicity in general (see Example 2.4), in our

search for uniqueness an independent approach is needed.

Remark 3.3. In [21] the rings are characterized for which every ideal can be

represented uniquely as an irredundant intersection of completely irreducible ideals.
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These rings are necessarily arithmetical. Indeed, it is shown in [21] that if A is the

set of ideals of a ring R that are finite intersections of completely irreducible ideals,

then R is arithmetical if and only if for each A ∈ A the representation of A as an

irredundant intersection of completely irreducible ideals is unique.

4. When Every Ideal is an Irredundant Intersection

In this section we characterize the rings in which every ideal is an irredundant

intersection of completely irreducible ideals. We start with the following observa-

tion.

Lemma 4.1. Consider the following statements about a proper ideal A of the ring

R.

(i) A is an irredundant intersection of completely irreducible ideals.

(ii) Soc (R/A) is an essential submodule of R/A.

Then (ii) implies (i). On the other hand, if (i) holds for every proper ideal of R,

then also (ii) holds for every proper ideal of R.

Proof. Assume that (ii) holds and let E(R/A) denote the injective hull of R/A.

Express Soc (R/A) as the direct sum ⊕i∈ISi of simple R-modules Si, and let E(Si)

be a maximal essential extension of Si in E(R/A). Then E(Si) is an injective hull of

Si and ⊕i∈IE(Si) is an essential submodule of E(R/A). The canonical map of the

direct sum ⊕i∈IE(Si) into the direct product
∏
i∈I E(Si) extends to an injection

of E(R/A) into
∏
i∈I E(Si). Thus E(R/A) is an interdirect sum of the E(Si). By

Theorem 2.7, A is an irredundant intersection of completely irreducible ideals.

Assume that (i) holds for every proper ideal of R and let A be a proper ideal of

R. By Lemma 2.1, Soc (R/A) cannot be trivial. Let B/A be a maximal essential

extension of Soc (R/A) in R/A. Then R/B has trivial socle, so B cannot admit

an irredundant representation as intersection of completely irreducible ideals. It

follows that B = R. This means that Soc (R/A) is an essential submodule in

R/A. �

Recall that a ring R is semi-artinian if every nonzero R-module contains a simple

R-module. We will call a domain almost semi-artinian if every proper factor ring

is semi-artinian.

Theorem 4.2. Every ideal of a ring is an irredundant intersection of completely

irreducible ideals exactly if the ring is semi-artinian. Every nonzero ideal of an
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integral domain is an irredundant intersection of completely irreducible ideals if

and only if the integral domain is almost semi-artinian.

Proof. Lemma 4.1 implies that all the ideals of a ring R have the stated property

if and only if Soc (R/A) is essential in R/A for all proper ideals A of R. This is the

case exactly if R is semi-artinian.

The claim concerning domains is an immediate consequence of the first part. �

Example 4.3. A ring that is perfect in the sense of Bass [2] is semi-artinian.

Perfect rings can be defined in several equivalent ways; for example, the ring R is

perfect is equivalent to each of the following statements: (i) every flat R-module

is projective, (ii) R satisfies the minimum condition for principal ideals (see e.g.

Anderson-Fuller [1, p. 315 ]).

Example 4.4. Consider the Bézout domain R of dimension 1 constructed by

Heinzer-Ohm [20, Example 2.2]. For this ring R, SpecR is not Noetherian, but

all of its localizations at maximal ideals are rank-one discrete valuation domains.

Moreover, all but one of its maximal ideals are principal. It can be seen that this

example is almost semi-artinian. Thus an almost semi-artinian domain need not

have Noetherian spectrum.

More interesting examples are those almost semi-artinian domains that are also

h-local, where an integral domain is h-local if each nonzero element is contained in

only finitely many maximal ideals and each nonzero prime ideal is contained in a

unique maximal ideal.

Example 4.5. The almost perfect domains introduced by Bazzoni-Salce [4] are

defined as domains such that every proper factor ring is a perfect ring. They

prove that an almost perfect domain can be characterized as an h-local domain

R such that for every nonzero proper ideal A, the factor ring R/A contains a

simple R-module. We are interested in obtaining more information about the ideal

structure of almost perfect domains. An almost perfect domain is a Matlis domain

of dimension ≤ 1 with Noetherian prime spectra, where an integral domain R is a

Matlis domain if its field of fractions has projective dimension at most 1 as an R-

module. The inclusion here is strict since a rank-one nondiscrete valuation domain

is a Matlis domain of dimension 1 that fails to be almost perfect.
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In an almost perfect domain, irreducible ideals are primary. Indeed, by [11]

a necessary and sufficient condition for an irreducible ideal A of a ring R to be

primary is that any strictly ascending chain of the form

A ⊂ A : b1 ⊂ A : b1b2 ⊂ · · · ⊂ A : b1b2 · · · bn ⊂ . . .

for any sequence b1, b2, . . . , bn, . . . in R terminates. This is evidently true if the

descending chain condition holds for principal ideals mod A.

Since an almost perfect domain R is h-local, every nonzero ideal A of R is

contained in at most a finite number of maximal ideals, M1, . . . ,Mn. Consequently,

we can write

A = A(M1) ∩ · · · ∩A(Mn).

The localization at a maximal ideal of a domain of dimension one is again of di-

mension one, and if R is a one-dimensional quasilocal domain with maximal ideal

M , then every nonzero proper ideal of R is M -primary. Consequently, the isolated

Mi-component A(Mi) must be Mi-primary for each i = 1, . . . , n.

We record as Theorem 4.6 an immediate consequence of [5, Theorem 8].

Theorem 4.6. In an almost perfect domain R, every nonzero ideal A is the product

of pairwise comaximal primary ideals:

A = B1B2 · · ·Bn,

where the Bi are primary ideals with distinct maximal ideals Mi as radicals. This

product representation is unique up to the order of the factors. Since an almost

perfect domain is almost semi-artinian, the Bi are irredundant intersections of

completely irreducible Mi-primary ideals. �

In particular, it follows that an almost perfect domain is Laskerian. We recall

that a ring is said to be strongly Laskerian if it is Laskerian and every primary

ideal contains a power of its radical. If A is a nonzero ideal of a one-dimensional

strongly Laskerian domain R, then R/A satisfies the minimum condition for prin-

cipal ideals, for R/A ∼=
∏n
i=1Ri, where each Ri is a zero-dimensional ring with

nilpotent maximal ideal Mi. If ri is a positive integer such that M ri
i = 0, then

a strictly descending chain of principal ideals in Ri has length at most ri. It fol-

lows that a strictly descending chain of principal ideals in R/A has length at most

r1 + · · ·+ rn. Thus R is almost perfect.
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Remark 4.7. The representations of the ideals Bi of Theorem 4.6 as irredundant

intersections of completely irreducible Mi-primary ideals may be infinite intersec-

tions. For example, if R with maximal ideal M is a one-dimensional local strongly

Laskerian domain that is not Noetherian, then M/M2 is infinite dimensional as a

vector space over R/M . Since R is almost semi-artinian, every nonzero ideal of

R is an irredundant intersection of completely irreducible ideals. However, every

representation of M2 as an intersection of completely irreducible ideals is an infinite

intersection (see for example part (iv) of Lemma 2.1).

5. Arithmetical Rings

Proposition 1.4 and Corollary 1.5 characterize the completely irreducible ideals

of a Noetherian ring. In this section we give an explicit description of the completely

irreducible ideals in a much different setting, that of an arithmetical ring. These

rings arise naturally in the consideration of irreducible ideals. In Theorem 1.8 and

Remark 1.6 of [14] it is shown that the following are equivalent: (i) the ring R

is arithmetical, (ii) every primal ideal of R is irreducible, (iii) the ideal A(P ) is

irreducible for every ideal A and prime ideal P of R with A ⊆ P .

We first consider the special case of a valuation ring, where by a valuation ring

we mean a ring in which the ideals are linearly ordered with respect to inclusion.

Lemma 5.1. Let M be a maximal ideal of the ring R. The following statements

are equivalent.

(i) R is a valuation ring with maximal ideal M .

(ii) The set of proper completely irreducible ideals of R is precisely the set of

ideals of the form rM , where r is a nonzero element of R.

(iii) For every nonzero r ∈ R, the ideal rM is irreducible.

Proof. (i) ⇒ (ii) Let C be a completely irreducible ideal of R. Since C∗/C is a

simple R-module and R is a valuation ring, C∗ must be a principal ideal of R

and C = MC∗. On the other hand, every ideal of the form rM , r ∈ R and r

nonzero, is completely irreducible by Theorem 1.3(v) and the fact that every ideal

of a valuation ring is irreducible.

(ii) ⇒ (iii) This is clear.

(iii) ⇒ (i) We first observe that (iii) implies R is quasilocal. For if r is not in

M but is in some other maximal ideal of R, then rM = M ∩ rR is an irredundant

intersection, contradicting the fact that rM is irreducible.
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Let x and y be nonzero elements of R. We show that the ideals xR and yR are

comparable. Notice that M = xM : x and M = yM : y. The ideals xM and yM

are irreducible, so by Theorem 1.3(v) xM and yM are completely irreducible. Thus

it follows that xR and yR are the respective covers (unique minimal overideals) of

xM and yM . Let I = (x, y)R and let A be an ideal of R with MI = Mx+My ⊂ A.

Since xR is the cover of xM and yR is the cover of yM , we must have x ∈ A and

y ∈ A. Also MI ⊂ I. Therefore I is the unique minimal overideal of MI, and MI

is completely irreducible with cover I. In particular, MI is irreducible, so I/MI

has dimension one as an R/M -vector space. Thus I = xR +MI or I = yR+MI.

Since R is quasilocal, it follows that I = xR or I = yR, proving that xR and yR

are comparable. �

Lemma 5.2. Let A be an ideal of a ring R. If M is a maximal ideal of R, then

MA(M) = (MA)(M).

Proof. Note first that MA(M) ⊆ (MA)(M). For if m ∈M and x ∈ A(M), then there

exists y ∈ R\M such that xy ∈ A, so thatmxy ∈MA andmx ∈ (MA)(M). To com-

plete the proof we verify locally that (MA)(M) = MA(M). Clearly (MA)(M)RM =

MARM = MA(M)RM , so suppose N is a maximal ideal of R distinct from M .

Then MA(M) ⊆ (MA)(M) implies that A(M)RN = MA(M)RN ⊆ (MA)(M)RN ⊆
A(M)RN ; hence MA(M)RN = (MA)(M)RN . �

Theorem 5.3. A ring R is arithmetical if and only if the completely irreducible

proper ideals of R are precisely the ideals of the form MB(M), where M is a maximal

ideal and B is a principal ideal having the property that BRM 6= 0.

Proof. Suppose that R is an arithmetical ring. Let C be a completely irreducible

proper ideal of R and let M be the adjoint (maximal) ideal of C. By Theorem 1.3,

CRM is completely irreducible, and by Lemma 5.1, CRM = (r/1)MRM , where

r ∈ R is such that its image r/1 in RM is nonzero. Define B = rR. Since for

every ideal A of R, the ideal A(M) is the preimage of ARM under the canonical

mapping R → RM , and since C = C(M), we have C = (MB)(M). Therefore by

Lemma 5.2 C = MB(M), and every completely irreducible ideal of R has the stated

form. By Lemmas 5.1 and 5.2 and Theorem 1.3 (vi), every ideal of the stated form

is completely irreducible.

Conversely, assume that the completely irreducible proper ideals of R are pre-

cisely the ideals of the form MB(M), where M is a maximal ideal and B is a
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principal ideal of R having the property that BRM 6= 0. It suffices to prove that

RM is a valuation ring for every maximal ideal M of R. By Lemma 5.1 it suffices

to show that (r/1)MRM is irreducible for all elements r ∈ R such that r/1 ∈ RM
is nonzero. By assumption, M(rR)(M) is an irreducible ideal of R, and this implies

that (r/1)MRM is an irreducible ideal of RM (Remark 1.6 of [14]). �

An ideal A of a domain R is said to be archimedean if its only endomorphisms

are multiplications by elements of R, i.e. if its endomorphism ring, End(A), is equal

to R [18, page 71]. We observe in Remark 5.4 that completely irreducible ideals of

a Prüfer domain need not be archimedean.

Remark 5.4. Let R = Z + xQ[[x]] be the ring of power series in x with rational

coefficients whose constant term is an integer. It is known that R is a Prüfer domain,

dimR = 2 and P = xQ[[x]] is the unique nonmaximal nonzero prime ideal of R.

Moreover P is contained in each maximal ideal of R, and for p ∈ Z a prime integer,

pR is a maximal ideal of R. Let V denote the valuation overring R2R = Z2Z + P ,

and consider the principal ideal A = xV of V . Since x ∈ P , A is also an ideal

of R and is completely irreducible as an ideal of R with adjoint maximal ideal 2R

and cover (x/2)V . Observe that End(A) is the proper valuation overring V of R.

Therefore A is not archimedean as an ideal of R. Since A is completely irreducible,

it is not possible to represent A as an intersection of archimedean ideals of R.

For a prime ideal P of a Prüfer domain, Fuchs and Mosteig prove in [17, Lemma

4.3] that the P -primal ideals form a semigroup under ideal multiplication. We

generalize this result in Theorem 5.6. In the proof of Theorem 5.6, we use the

following lemma.

Lemma 5.5. Let M be a maximal ideal of an arithmetical ring R. If A is a finitely

generated ideal of R contained in M such that ARM 6= 0, then A(M) is an M -primal

ideal of R.

Proof. Observe that A(M) is an M -primal ideal of R if and only if M is the unique

maximal Krull associated prime of A(M). If P is a Krull associated prime of A(M),

then necessarily P ⊆ M , so to show that A(M) is an M -primal ideal it suffices to

show that M is a Krull associated prime of A(M). Now by Lemma 2.4 of [14], M is

a Krull associated prime of A(M) if and only if MRM is a Krull associated prime

of ARM . Also, a consequence of Lemma 1.5 in [15] is that every nonzero principal
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ideal of a valuation ring V has adjoint prime the maximal ideal of V . Thus ARM

is MRM -primal, and it follows that A(M) is an M -primal ideal of R. �

Theorem 5.6. Let P be a prime ideal of an arithmetical ring R. If A and B are

P -primal ideals such that for all maximal ideals M of R, ABRM is a nonzero ideal

of RM , then AB is a P -primal ideal of R. In particular the set of regular P -primal

ideals of R is a semigroup under ideal multiplication.

Proof. We first make two observations:

(a) If C is an ideal of R, then P is a Krull associated prime of C if and only

if PRM is a Krull associated prime of CRM for some (equivalently, all) maximal

ideal(s) M containing P . This is proved in Lemma 2.4 of [14].

(b) If C is a primal ideal of R, then P is the adjoint prime of C if and only if

for each maximal ideal M of R containing P , CRM is a PRM -primal ideal of RM .

This is an application of (a) and the fact that an ideal C is P -primal if and only if

P is the unique maximal member of the set of Krull associated primes of A.

We now prove the theorem. Suppose first that R is a valuation ring. Then AB

is irreducible, hence primal, with adjoint prime, say Q. We claim that Q ⊆ P . If

this is not the case then P ⊂ Q, and since AB is Q-primal, there exists q ∈ Q \ P
such that qx ∈ AB for some x ∈ Q \ AB. Since B is P -primal, B : q = B. Also,

B ⊆ qR, so B = qC for some ideal C. Necessarily B ⊆ C ⊆ B : q = B, so this

forces B = C. Thus qB = B and qAB = AB. Since R is a valuation ring and

x 6∈ AB, we have AB ⊆ xR. Thus xqR ⊆ AB = qAB ⊆ xqR, and we conclude

that xqR = AB. It follows that xq2R = qAB = AB = xqR, so that xq = rxq2 for

some r ∈ R. But this implies that (1− rq)xq = 0, and since 1− rq is a unit in R,

xq = 0, contradicting the assumption that xqR = AB 6= 0. Thus Q ⊆ P .

We show that in fact Q = P . If this is not the case, then Q ⊂ P and there

exists p ∈ P \ Q. Since AB is Q-primal, AB : p2 = AB. Since A and B are

P -primal, there exist x ∈ P \ A and y ∈ P \ B such that xp ∈ A and yp ∈ B.

Hence xy ∈ AB : p2 = AB. Since R is a valuation ring, A ⊂ xR and B ⊂ yR. We

conclude that xyR ⊆ AB ⊆ xyR. Thus by Lemma 5.5 and the fact that AB 6= 0, we

have that AB is an M -primal ideal of R. This forces Q = P = M , a contradiction

to the assumption that Q ⊂ P . Hence P = Q and AB is P -primal.

We consider now the general case in which R is not necessarily a valuation ring.

As noted above in (b), to prove that AB is P -primal, it suffices to show that P

is the unique maximal member of the set of Krull associated primes of AB. By
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(b) ARM and BRM are PRM -primal ideals of R, and since RM is a valuation ring

we have by the case considered above that ABRM is a PRM -primal ideal. By (a)

P is a Krull associated prime of AB. To complete the proof it remains to show

that P is the unique maximal member of the set of Krull associated primes of AB.

Suppose that Q is a Krull associated prime of AB, and let M be a maximal ideal of

R containing Q. By (a) QRM is a Krull associated prime of ABRM . Since ABRM

is PRM -primal, QRM ⊆ PRM , so that Q ⊆ P . This completes the proof that

every Krull associated prime of AB is contained in P . �

Remark 5.7. Simple examples show that even in a valuation ring R with maximal

ideal M it is possible to have a proper ideal A that is completely irreducible (and

therefore M -primal) such that A2 is not M -primal. Let V be a valuation domain

whose value group is Γ = Z⊕Z with lexicographic ordering. Then the maximal

ideal of V is principal generated by an element x where the value v(x) = (0, 1)

is the smallest positive element in Γ. Let y ∈ V have value (1, 0), and let Q be

the prime ideal of V of height one. Thus Q is generated by elements z having

value v(z) = (1, b), where b ∈ Z may be negative. Notice that Q2 ⊂ yV ⊂ Q

and that Q2 is Q-primary. Define R = V/Q2. Then R is a valuation ring with

maximal ideal M = xR. The ideal A = yR is completely irreducible, so M -primal.

However, A2 = (0) is not M -primal. For a specific realization of this example, let

x, y be indeterminates over a field k, let W = k(x)[y](y), let Q = yW , and set

V = k[x](x) + Q. Then V is a rank-two valuation domain with principal maximal

ideal xV and height-one prime Q. The valuation ring R = V/Q2 has maximal ideal

M = xR. Since Q2 is Q-primary, the ideal (0) of R is not M -primal. The principal

ideal A = yR is a completely irreducible ideal and therefore is M -primal. However,

A2 = (0) is not M -primal.

If we consider only those completely irreducible regular ideals whose adjoint

prime is a fixed maximal ideal M , then we can verify:

Theorem 5.8. Let R be an arithmetical ring and let M be a maximal ideal of R.

The set F of completely irreducible regular ideals of R with adjoint maximal ideal

M is closed under ideal-theoretic multiplication, and F with this multiplication is

a totally ordered cancellative semigroup.

Proof. We show first that: (?) If I and J are principal ideals of R and I(M) and

J(M) are regular ideals of R, then (IJ)(M) = I(M)J(M). Suppose that I or J , say
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I, is not contained in M . Then IJRM = JRM , so that (IJ)(M) = J(M), and since

I 6⊆M , I(M) = R. Thus if I or J is not contained in M , then (?) holds. Otherwise,

both I and J are contained in M , and by Lemma 5.5 I(M) and J(M) are M -primal

ideals of R. As a product of regular M -primal ideals, I(M)J(M) is M -primal by

Theorem 5.6. Thus (I(M)J(M))(M) = I(M)J(M), so since IJ ⊆ I(M)J(M) we have

that (IJ)(M) ⊆ I(M)J(M), and it remains to verify the reverse inclusion. Suppose

that x ∈ I : b and y ∈ J : c for some b, c ∈ R \M . Then xy ∈ IJ : bc ⊆ (IJ)(M)

since bc 6∈M . It follows then that I(M)J(M) ⊆ (IJ)(M), and this proves (?).

Now let A and B be in F . Then AB is an M -primal ideal by Theorem 5.6. By

Theorem 5.3, A = MJ(M) and B = MK(M) for some principal ideals J and K of R.

Since A and B are regular ideals, so are J(M) and K(M). Now if M 6= M2, then since

by Theorem 5.6, M2 is primal, hence irreducible, it follows that M/M2 is a one-

dimensional R/M -vector space. Hence if M 6= M2, M = I(M) for some principal

ideal I ⊆ M . In this case we have by (?) (and the fact that M is regular) that

AB = I(M)J(M)K(M)M = (IJK)(M)M , so AB ∈ F by Theorem 5.3. Otherwise, if

M = M2, then again by (?) AB = (IJ)(M)M and by Theorem 5.3, AB ∈ F .

Now assume AC = BC, where A,B,C are in F . Using Theorem 5.3, write

A = (MJ)(M), B = (MK)(M) and C = (ML)(M) for principal ideals J,K, and

L of R. Then ACRM = BCRM implies that M2JLRM = M2KLRM . Moreover

LRM is a regular principal ideal of RM since C is regular and C ⊆ L(M) implies

CRM ⊆ LRM . Thus LRM is a cancellation ideal of RM and JM2RM = KM2RM .

If MRM = M2RM , then clearly ARM = CRM . Otherwise, if MRM 6= M2RM ,

then the irreduciblity of M2RM implies (as above) that MRM is principal and

regular, in which case also ARM = CRM . Therefore A = A(M) = C(M) = C.

Since R is an arithmetical ring, the ideals of RM are linearly ordered with respect

to inclusion and thus so are their preimages under the canonical map R → RM .

Therefore for ideals A and B of R, the ideals A(M) and B(M) of R are comparable.

It follows that the ideals in F are totally ordered under inclusion. �

Acknowledgement. We thank the referee for numerous helpful suggestions about

this paper.

References

[1] F.W. Anderson and K.R. Fuller, Rings and Categories of Modules, Springer, 1974.
[2] H. Bass, Finitistic dimension and a homological generalization of semiprimary rings,

Trans. Amer. Math. Soc. 95 (1960), 466-488.



COMPLETELY IRREDUCIBLE IDEALS 25

[3] S. Bazzoni, Divisorial domains, Forum Math. 12 (2000), 397-419.
[4] S. Bazzoni and L. Salce, Almost perfect domains, Coll. Math. 95 (2003), 285-301.
[5] J. Brewer and W. Heinzer, On decomposing ideals into products of comaximal ideals,

Comm. Algebra 30 (2002), 5999-6010.
[6] R.P. Dilworth, Abstract commutative ideal theory, Pacific J. Math. 12 (1962), 481-498.
[7] R.P. Dilworth and P. Crawley, Decomposition theory for lattices without chain conditions,

Trans. Amer. Math. Soc. 96 (1960), 1-22.
[8] M. Fontana and E. Houston, On integral domains whose overrings are Kaplansky ideal

transforms, J. Pure Appl. Algebra 163 (2001), 173-192.
[9] M. Fontana, J.A. Huckaba, I.J. Papick and M. Roitman, Prüfer domains and endomor-

phism rings of their ideals, J. Algebra 157 (1993), 489-516.
[10] M. Fontana and S. Kabbaj, Essential domains and two conjectures in ideal theory, to

appear Proc. Amer. Math. Soc.
[11] L. Fuchs, A condition under which an irreducible ideal is primary, Quart. J. Math. Oxford

19 (1948), 235-237.
[12] L. Fuchs, On primal ideals, Proc. Amer. Math. Soc. 1 (1950), 1-6.
[13] L. Fuchs and I. Halperin, On the imbedding of a regular ring in a regular ring with

identity, Fund. Math. 54 (1964), 285-290.
[14] L. Fuchs, W. Heinzer and B. Olberding, Commutative ideal theory without finiteness

conditions: primal ideals, to appear Trans. Amer. Math. Soc.
[15] L. Fuchs, W. Heinzer and B. Olberding, Maximal prime divisors in arithmetical rings, in

Rings, Modules, Algebras, and Abelian Groups, Proceedings of the Algebra Conference -
Venezia, Marcel Dekker vol.236 pages 189-203.

[16] L. Fuchs, W. Heinzer and B. Olberding, Commutative ideal theory without finiteness
conditions: irreducibility in the quotient field, in preparation.

[17] L. Fuchs and E. Mosteig, Ideal theory in Prüfer domains — an unconventional approach,
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