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1. Introduction.

(1.1) Let (R,m) be a 2-dimensional regular local domain with R/m in-

finite, and let I be an m-primary ideal. We write the Hilbert polynomial,

measuring the lengths λ(R/In) for sufficiently large n, in the form:

PI(n) = e0(I)

(
n+ 1

2

)
− e1(I)

(
n

1

)
+ e2(I) .

We consider a sequence of ideals I ⊆ Ĩ ⊆ I{1} ⊆ I ′, where I ′ denotes the

integral closure of I. It is well known that I ′ is the largest ideal containing

I and having the same multiplicity as I, i.e., for which e0(I ′) = e0(I). The

ideal Ĩ =
⋃∞
n=1(In+1 : In), the “Ratliff–Rush ideal associated to I,” is the

largest ideal containing I and having the same Hilbert polynomial as I. (We

give a fuller explanation of our terminology below.) It is shown by Shah in

[Sh1] that there exists an ideal I{1}, the “first coefficient ideal” or “e1-ideal”
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associated to I, that is uniquely maximal among those containing I for which

the first two coefficients of their Hilbert polynomials are equal to those of I:

e0(I) = e0(I{1}) and e1(I) = e1(I{1}). By Narita [N], the third coefficients,

the constant terms of the Hilbert polynomials, satisfy e2(I) ≥ e2(I{1}) ≥ 0.

Thus, if e2(I) = 0, then Ĩ = I{1} = (Ĩ){1}, i.e., Ĩ is a “first coefficient ideal”

or “e1-ideal.”

An example illustrating these ideals is:

Example 1.2. Let R = k[x, y](x,y), where k is a field and x, y are indetermi-

nates, and set

I = (x16, x12y4, x10y6, x6y10, x4y12, y16)R .

Then Ĩ = (x16, x12y4, x10y6, x8y8, x6y10, x4y12, y16)R, I{1} = (x2, y2)8R, and

I ′ = (x, y)16R. Thus, I ⊂ Ĩ ⊂ I{1} ⊂ I ′ (strict containments). The Hilbert

polynomials of I (or of Ĩ) and of I{1} are respectively

256

(
n+ 1

2

)
− 112

(
n

1

)
+ 8 and 256

(
n+ 1

2

)
− 112

(
n

1

)
.

In particular, λ(I{1}/Ĩ) = e2(I).

This paper arose from our interest in whether an e1-ideal I primary for

the maximal ideal in a 2-dimensional regular local domain satisfies e2(I) = 0.

There appear in the literature several statements equivalent to the conditions

that I = Ĩ and e2(I) = 0. Among them are: (1) I has reduction number at

most one, i.e., if J is a minimal reduction of I, then JI = I2. (2) λ(R/I) =

e0(I) − e1(I). (3) The Rees algebra R[It] is Cohen–Macaulay. It is shown

in [HJLS] that all sufficiently high powers of I are e1-ideals iff the blowup

B(I) = Proj(R[It]) is Cohen–Macaulay, a condition formally weaker than
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(3). We show in Example 5.4 below the existence of an m-primary ideal I of

R such that all powers of I are e1-ideals, but R[It] is not Cohen–Macaulay.

(1.3) In studying the association I 7→ I{1}, we have found it useful to

attach to I a certain 1-dimensional semilocal domain D, the “first coefficient

domain” of I, that plays a role for this association similar to that played

by the intersection of the Rees valuation domains of I for integral closure:

InD ∩ R = (In){1} for each positive integer n. The paper [HJLS] contains

some information on the structure of e1-ideals and other “coefficient ideals.”

In particular, it is from Theorem 3.17 of that paper (repeated as Theo-

rem 2.10(a) below) that we deduce the equation InD ∩R = (In){1}. In the

present paper we establish some basic facts about such domains and prove

several properties of e1-ideals and ideals of reduction number at most one

(usually primary for the maximal ideal in a local domain).

Before we describe the contents of the paper in more detail, we establish

some basic notation and terminology.

(1.4) We denote the length of the R-module A by λR(A), omitting the

subscript when the context allows. If I is an ideal in a Noetherian ring R for

which dim(R/I) = 0, then the Hilbert function of I, HI(n) := λ(R/In), is,

for all sufficiently large values of the positive integer n, a polynomial in n of

degree d := dim(R), the Hilbert polynomial of I, which we denote by PI(n).

If PI is written in terms of binomial coefficients:

PI(n) = e0(I)

(
n+ d− 1

d

)
− e1(I)

(
n+ d− 2

d− 1

)
+ · · ·+ (−1)ded(I) ,

then the coefficients ei = ei(I) are integers, the Hilbert coefficients of I. The

leading coefficient e0(I) = e(I) is the multiplicity of I.

(1.5) Let I be an m-primary ideal in a quasi-unmixed local domain (R,m)
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of dimension d > 0 with R/m infinite. It is shown by Shah in [Sh1] that, for

each integer m in {0, 1, . . . , d}, there is a unique largest ideal I{m} containing

I for which ei(I{m}) = ei(I) for i = 0, . . . , m. (Shah’s results are valid in

the case of rings with zero-divisors, but in the present paper we choose to

restrict to the domain case.) In [HJLS] we call I{m} the m-th coefficient ideal

associated to I or the em-ideal associated to I; and if I{m} = I, then we call

I an m-th coefficient ideal or an em-ideal. In particular, I{0} = I ′ by [Re1,

Theorem 3.2, page 16]; and I{d} = Ĩ, the Ratliff–Rush ideal associated to I,

is the largest ideal for which (Ĩ)n = In for sufficiently large positive integers

n. It is immediate that

I ⊆ I{d} ⊆ I{d−1} ⊆ · · · ⊆ I{1} ⊆ I{0} = I ′ .

Most of Section 2 is devoted to establishing our notation and basic facts

on blowups B(I) of ideals I and other models that we use in the sequel.

Let (R,m) be a d-dimensional, normal, analytically unramified local domain

with R/m infinite. In Theorem 2.13, we show that each projective model X

over Spec(R) such that B(I) � X � B(I)′ is of the form X = B(J) for some

ideal J integral over a power of I.

Again, let (R,m) be a quasi-unmixed, analytically unramified local do-

main with infinite residue field, and let m ≤ dim(R). Given an m-

primary ideal I of R, we define in Section 3 the m-th coefficient domain

Dm of I, a semilocal domain of dimension at most m; and we observe that

InDm ∩ R = (In){m}. Specializing to first coefficient domains, we display

several methods of realizing them; and we show in Theorem 3.12 that, if in

addition R is normal, then a domain birational and integral over the first

coefficient domain of an ideal I is the first coefficient domain of an ideal
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integral over a power of I.

In Section 4, we explore the similarities and relationship between the

concepts of ideals of reduction number at most one and first coefficient ideals.

We show that, under reasonable hypotheses, the intersections of both these

classes with the family of ideals having a fixed common reduction are closed

under intersection. Suppose (R,m) is a 2-dimensional, Cohen–Macaulay,

analytically unramified local domain with R/m infinite, I = (a, b)R is an

m-primary ideal, and D is its first coefficient domain. Then for an e1-ideal

J integral over I, we show in Theorem 4.8 that e1(J) = λD(E/D) where E

is the first coefficient domain of J , and that J has reduction number at most

one iff JD does.

In Section 5 we provide general and specific examples, in the context of

a 2-dimensional regular local domain, of the concepts we have introduced

earlier. In particular, Example 5.4 is that of an ideal of reduction number 2,

all of whose powers are e1-ideals.

2. Preliminaries: Blowups of ideals and other models.

We abbreviate “regular local domain” by RLR and “discrete rank-one

valuation domain” by DVR. Our use of the terms “local” and “semilocal”

includes the condition that the ring is Noetherian. We say that a semilocal

integral domain S “birationally dominates” a local domain (R,m) if S con-

tains R, S is contained in the field of fractions of R, and each maximal ideal

of S contains m.

We record in this section the conventions and results concerning models

and related matters that we use below.

(2.1) Let R be a Noetherian domain and X be a birational model over
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R, i.e., a finite union of spectra (regarded as a family of local domains) of

finitely generated R-algebras between R and its field of fractions K such

that, for any valuation domain V between R and K, there is at most one

domain in X that is dominated by V . The model X is complete over R if

every such V dominates an element of X .

(2.2) For an ideal I of R, we will abbreviate the contraction
⋂
{IS ∩ R :

S ∈ X} to R of the extension of I to (the local domains in) X by IX ∩ R.

We also speak of the elements of X as prime ideals by identifying the local

domain with its maximal ideal. (Of course, two local domains may share the

same maximal ideal, but this is not true of two local domains on the same

model.)

(2.3) For an ideal I of R and a local domain S in X , if the maximal

ideal of S is an associated prime (respectively, a prime minimal over) the

extension IS of I to S, we call S an associated prime (respectively, a minimal

prime) of IX . There are only finitely many local domains, say S1, S2, . . . , Sn,

in X that are associated primes of IX , and we have the equality IX ∩R =

IS1 ∩ IS2 ∩ . . . ∩ ISn ∩R.

(2.4) An ideal J contained in an ideal I is a reduction of I if there is a

positive integer n for which JIn = In+1. This is equivalent to saying that

I is integral over J , i.e., that each element a of I satisfies an equation of

the form an + b1a
n−1 + · · · + bn−1a + bn = 0 where bj ∈ Jj for each j in

{1, . . . , n}. The largest ideal J ′ of R that is integral over J (i.e., of which

J is a reduction) is the integral closure of J . An ideal I has at least one

minimal reduction J (with respect to inclusion); the smallest n for which

JIn = In+1, as J varies over the minimal reductions of I, is the reduction

number of I. If (R,m) is local with infinite residue field, then the minimal



7

number of generators of a minimal reduction of I is equal to the dimension

of the ring
⊕∞

n=0 I
n/mIn; this dimension is bounded below by the height of

I and above by the dimension of R.

(2.5) For an ideal I of R, the blowup B(I) of I, defined by

B(I) =
⋂
{Spec(R[I/a] : a ∈ I − 0}

= { R[I/a]P : a ∈ I − 0, P prime in R[I/a] } ,

is the model over R consisting of the family of all local domains S between

R and its field of fractions that are minimal with respect to domination

among those in which the extension of I is principal. The elements a in this

definition need not vary over all the nonzero elements of R; B(I) is also the

union of the spectra of the rings R[I/a] as a varies over a generating set of I

or even over a generating set for a reduction of I. A model X is the blowup

of an ideal of R iff it is projective (cf. [ZS]) and birational over R.

(2.6) If X, Y are models complete and birational over R, we say X domi-

nates Y and write Y � X if every local domain in Y is dominated by a local

domain in X . If I ⊆ J are ideals of R such that J is integral over I, then

B(I) � B(J).

(2.7) For a birational model X over R, we will frequently consider two

related families of local domains: the normalization X ′ of X , consisting of

the union of the spectra of the integral closures of the local domains in X ;

and the “S2-ification” X(1) of X , consisting of the union of the spectra of

the rings S(1) =
⋂
{Sp : p ht-1 prime in S} as S varies over X . Without

additional hypotheses, X ′ and X(1) may not be models over R, because a

local domain on X ′ or X(1) may not be a localization of a finitely generated

R-algebra. But suppose R is a quasi-unmixed analytically unramified local
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domain. Then for a model X complete and birational over R, X(1) and X ′ are

complete models over R and X � X(1) � X ′; and if X is projective over R,

then X ′ is also projective over R. It is well known that I ′ = IB(I)′ ∩R; we

also have Ĩ = IB(I) ∩ R [HLS, Fact 2.1] and, if in addition R has infinite

residue field, then I{1} = IB(I)(1) ∩R [HJLS, Theorem 3.17].

(2.8) The model denoted B(I)(1) in the present paper may properly domi-

nate the model denoted B(I)(1,I) in [HJLS] (and occasionally abbreviated to

B(I)(1) there), but the sets of associated primes of IB(I)(1) and IB(I)(1,I)

are both equal to the set of one-dimensional associated primes of IB(I),

so the contractions IB(I)(1,I) ∩ R and IB(I)(1) ∩ R are equal. In general,

B(I)(1) = B(I)(1,I) if and only if Rp satisfies Serre’s condition S2 for each

prime p of R not containing I.

(2.9) In studying the coefficient ideals I{m} of I defined in (1.5) for m > 1,

it is useful to consider, for S a Noetherian domain, certain rings between S

and S(1) in which the associated primes of principal ideals are of height no

greater than m. We set

S(m) :=
⋂
{ Sp : p is a prime in S, ht(p) ≤ m }

and, for a model X complete and birational over R,

X(m) :=
⋃
{ Spec(S(m)) : S ∈ X } .

Assume that R is universally catenary and that finitely generated birational

R-algebras have finitely generated integral closure (if R is local, then these

conditions are equivalent to: R is quasi-unmixed and analytically unrami-

fied), and let d := dim(R). Then for a birational model X complete over R,

the sets X(m) are also complete models over R and

X = X(d) � X(d−1) � · · · � X(1) � X ′.
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Suppose X dominates the blowup of an ideal I of R. Then the model that

was denoted X(m,I) in [HJLS] is dominated by X(m); though this domination

may be proper, we have as in (2.8) above that the associated primes of the

extension of I are the same in these two models, and so IX(m,I) ∩ R =

IX(m) ∩R. In particular, if in addition R is local with infinite residue field

and X = B(I), then by [HJLS, Theorem 3.17], this common contraction is

the associated em-ideal I{m} of I described in (1.5). For this reason and the

fact that IB(I)′ ∩ R = I ′ = I{0}, and for later notational convenience, we

set B(I)(0) := B(I)′. We remark, generalizing the statement in (2.8), that

B(I)(m) = B(I)(m,I) iff each associated prime of a principal ideal in R that

does not contain I has height at most m.

We restate Theorem 3.17 and Proposition 1.12 of [HJLS], because they

are frequently used in the present paper, for instance in Theorem 2.13 below.

The last assertion in part (b) follows from [Re2, Theorem 1.4].

Theorem 2.10. (a) Let (R,m) be a d-dimensional quasi-unmixed analyt-

ically unramified local domain with R/m infinite, let I be an m-primary

ideal, and let k ∈ {1, . . . , d}. Then for each positive integer n, (In){k} =

InB(I)(k,I) ∩ R. Moreover, for all sufficiently large integers n, B(I)(k,I) is

the blowup of (In){k}, and all the powers of (In){k} are ek-ideals.

(b) If R is a Noetherian domain and I is a nonzero ideal of R, then

for each positive integer n, (In)′ = InB(I)′ ∩ R. If in addition (R,m) is

a normal, analytically unramified local domain, and I is m-primary, then

for all sufficiently large integers n, B(I)′ is the blowup of (In)′, and all the

powers of (In)′ are integrally closed.

(2.11) Because we want to make use of the connection between coefficient
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ideals and models as described in Theorem 2.10(a) often in the present paper,

when we discuss coefficient ideals or their associated models, we assume that

(R,m) is a quasi-unmixed analytically unramified local domain with infinite

residue field, though we will often repeat these hypotheses in the statements

of results.

Questions 2.12. (1) If R = k[[x, y]] and I is generated by monomials, need

I{1} be as well?

(2) If I is an e1-ideal, must I2 also be?

(3) If I is an e1-ideal, must In also be for all large n?

(4) Suppose I, J are m-primary Ratliff–Rush ideals in a 2-dimensional

RLR (R,m), having the same integral closure and the same blowup. Is this

common blowup also the blowup of I+J? Must I = J? These questions are

interesting even in the case where the common integral closure is a power of

m. (Cf. Example 3.14.)

Theorem 2.13. Suppose (R,m) is a d-dimensional, normal, analytically

unramified, local domain with R/m infinite and I is an m-primary ideal in

R. Then the set of projective models X over R such that B(I) � X � B(I)′

satisfies the ascending chain condition with respect to domination. Moreover,

for 0 ≤ q < p ≤ d, if B(I)(p) � X � B(I)(q), then there exists a positive

integer n and an ideal J of R such that (In){p} ⊆ J ⊆ (In){q} and X = B(J).

In particular, each projective model X over Spec(R) such that B(I) � X �

B(I)′ is of the form X = B(J) for some ideal J integral over a power of I.

Proof. Note that, since we have assumed that R is normal, the models

B(I)(k,I) of Theorem 2.10 are equal to the models B(I)(k) here. We first
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prove the following version of the first assertion: The set

{ B(J) : J an ideal, and ∃n ∈ N such that In ⊆ J ⊆ (In)′ }

satisfies the ascending chain condition under domination. This version is

shown in the proof of Theorem 3.17 of [HJLS], although not explicitly stated

there. We briefly recall the proof. Let (a1, . . . , ad)R be a reduction of I; then

for any ideal J between In and (In)′, (an1 , . . . , a
n
d)R is a reduction of J , and

R[I/ai] = R[In/ani ] ⊆ R[J/ani ] ⊆ R[I/ai]
′; since B(I), B(J), B(I)′ are re-

spectively the unions of the spectra of the rings R[I/ai], R[J/ani ], R[I/ai]
′, it

suffices to show that the collection of domains between R[I/ai] and R[I/ai]
′

satisfies the ascending chain condition with respect to inclusion. And this

collection does satisfy ACC, because the assumption that R is analytically

unramified guarantees that R[I/ai]
′ is a finite R[I/ai]-module by Rees’s The-

orem [Re2, Theorem 1.5, page 27].

Now we prove the full strength of the first assertion by proving the second:

Assume by way of contradiction that the second assertion is false. Note that,

in particular, the ascending chain condition holds for the family of models

{ B(J) : J an ideal, and ∃n ∈ N such that (In){p} ⊆ J ⊆ (In){q} }

Thus, in view of Theorem 2.10, by replacing I by some ideal integral over

one of its powers, we may assume that B(I) = B(I)(p) and that there is no

B(J) in the above family such that B(I) ≺ B(J) � X .

Since every projective model birational over Spec(R) is the blowup of some

ideal of R, we have X = B(K) for some ideal K of R. We have assumed

that B(I) ≺ B(K), so there is a prime q on B(I) that is not on B(K). Since

R/m is infinite, there is an element a of I for which all of the following
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finitely many prime ideals p are on the same affine piece S := R[I/a] of

B(I): (1) p is an associated prime of IB(I); (2) p is the contraction to B(I)

of an associated prime of IB(K); or (3) p is the prime q of B(I) chosen above

not on B(K).

Since KS(q) is a locally principal ideal of S(q), Spec(S(q)) dominates the

blowup B(KS) of KS over S. (If U is any local ring of B(KS), then it

must be dominated by some valuation ring V , which must in turn contain S′

and hence S(q). Consequently V must have a center on S(q) which in turn

must dominate the unique center U of V on B(KS).) Hence by Chevalley’s

Theorem [EGA, Chap II, (6.7.1), p.136], B(KS) is an affine blowup over S,

i.e., B(KS) = Spec(T ) where T is a domain between S and S(q) = R[I/a](q).

Since I extends to a locally principal ideal on these models, I and any

power of I have the same associated primes on these models. Thus, by (2.3),

InS∩R = InB(I)∩R = Ĩn and InT∩R = InB(K)∩R, the latter because, by

our choice of S, B(KS) contains all the associated primes of IB(K). We have

S < T ⊆ S(q) ⊆ S′ ⊆ R[1/a], the last inclusion because R is normal, so that

the local domains on B(I)′ in which a is a unit are localizations of R; and so

S =
⋃∞
n=1(InS ∩R)/an =

⋃∞
n=1(anS ∩R)/an and T =

⋃∞
n=1(anT ∩R)/an.

Thus there is an element t of T −S having the form t = b/an for some b in R;

and hence b = ant ∈ (anT ∩R)− (anS ∩R). Hence J := InB(K) ∩R > Ĩn,

which implies that B(I) ≺ B(J) � B(K) by [HJLS, Proposition 1.13(b)].

This contradicts our assumption above on I. �

3. First and higher coefficient domains.

(3.1) By (2.3), only a few of the local domains in the blowup of an ideal

are necessary to determine the contraction of the extension to an ideal to
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the blowup; we give names to the intersections of those “important” local

domains:

Definition 3.2. Suppose I is an ideal primary for the maximal ideal of a d-

dimensional local domainR and k ∈ {1, . . . , d}. We define the k-th coefficient

domain Dk of I to be the intersection of the local domains on the blowup B(I)

of dimension at most k in which the maximal ideal is an associated prime

of the extension of I. Thus, under the hypotheses of (2.11), IDk ∩ R =

IB(I)(k) ∩R = I{k}.

(3.3) Since R has infinite residue field by our hypotheses in (2.11), we

can choose an element a of I so that each of the local domains on B(I) in

which the maximal ideal is an associated prime of the extension of I is a

localization of the same “affine piece of the blowup” R[I/a]. Therefore the

k-th coefficient domain Dk of I is a localization of R[I/a] at the complement

of finite union of prime ideals of height at most k and hence is a semilocal

domain of dimension at most k. (Indeed, given a finite set of ideals J1, . . . , Jn

having a common reduction I, we can choose the element a of I so that, for

each i in {1, . . . , n}, the k-th coefficient domain of Ji is a localization of

R[Ji/a].) The associated primes of the extension of I of height at most k are

the same local domains on each of the models B(I), B(I)(k) and B(I)(k,I),

so by (2.3), I{k} = IDk ∩R = IB(I)(k) ∩ I = IB(I)(k,I) ∩R.

(3.4) Since I and the powers of I have the same blowup, I and each of its

powers have the same k-th coefficient domain for each k in {1, . . . , d}. It is

a consequence of Theorem 3.17 and Proposition 3.2 in [HJLS] that, if J is

an ideal such that I ⊆ J ⊆ I{k}, then I and J have the same k-th coefficient

domain.
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The k-th coefficient domain that we have found most useful is the first;

so the remainder of this section is devoted to first coefficient domains.

(3.5) The models B(I) and B(I)(1) are complete over R, so the Rees valua-

tion domains of I have centers on these models. Moreover, the Rees valuation

domains of I are the 1-dimensional local domains of the derived normal model

B(I)′ that dominate R. Each minimal prime of IB(I) is the contraction of a

minimal prime of IB(I)′, and since R is quasi-unmixed (so that the dimen-

sion formula holds between any affine piece of B(I) and its integral closure),

each minimal prime of IB(I)′ contracts to a minimal prime of IB(I). Thus,

the Rees valuation domains of I are obtained by taking integral closure of

the first coefficient domain of I and localizing at maximal ideals. The next

result follows immediately.

Proposition 3.6. The number of minimal primes of IB(I) is less than or

equal to the number of Rees valuation domains of I. In particular, if I has

only one Rees valuation domain, then the first coefficient domain of I is local,

i.e., it is itself the unique minimal prime of IB(I). �

(3.7) We can describe the minimal primes of IB(I), and hence the first

coefficient domain of I, in terms of the Rees algebra R[It] (respectively, the

extended Rees algebra R[t−1, It]) of I (t is an indeterminate): Let p be a

minimal prime of IR[It] (respectively, of t−1R[t−1, It]); then the intersec-

tion V of the localization R[It]p (respectively, R[t−1, It]p) with the field of

fractions of R is a minimal prime of IB(I). And every minimal prime of

IB(I) can be obtained in this way, since we can recover the localizations of

the Rees algebra at minimal primes of IR[It] (respectively of t−1) from the

minimal primes of IB(I): V (t) = R[It]p (respectively, V (t) = R[t−1, It]p).
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General Example 3.8. Let I = (a1, . . . , am)R be an ideal of R where the ele-

ments a1, . . . , am are independent in the sense of Kunz [Ku, Definition 4.13,

page 144]. Since the kernel of the R-algebra homomorphism of the poly-

nomial ring R[x1, . . . , xm] to the Rees algebra R[a1t, . . . , amt] taking xi to

ait is contained in rad(IR[x1, . . . xm]), it follows that the minimal primes

of IB(I) are in one-to-one correspondence with the minimal primes of I.

In particular, if I is generated by independent elements and rad(I) is a

prime ideal of R, then IB(I) has only one minimal prime. For example, if

(R,m) is 2-dimensional Cohen–Macaulay and I = (a, b)R is a 2-generated

m-primary ideal of R, then IB(I) has a unique minimal prime, namely,

R[a/b]mR[a/b]
∼= R(t)/(bt− a), the first coefficient domain of I.

For a specific example, let n be a positive integer, and in R = k[x, y](x,y)

let I = (xn, yn)R. Then for t an indeterminate,

k(yn/xn)[x, y](x,y)
∼= R(t)/(xnt− yn)

is the first coefficient domain D of I. Note that D is a complete intersection

(and hence Gorenstein) of multiplicity n, and that D has the m-adic (or

“ord”) valuation domain as its integral closure.

(3.9) If each of IB(I) and JB(J) has a unique minimal prime, say D and E

respectively, and if D′ 6= E′, then IJB(IJ) has two distinct minimal primes.

(For, if V is a Rees valuation domain of I that dominates D but does not

contain E′, then the center of V on B(IJ) is a minimal prime of IJB(IJ) that

does not dominate E.) If each of I, J has a unique Rees valuation domain,

and if these Rees valuation domains are not the same, then IJB(IJ) has

precisely two minimal primes.

(3.10) Let I ⊆ J be ideals primary for the maximal ideal of R, with J
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integral over I, and let D and E be the first coefficient domains of I and J

respectively. Then D ⊆ E ⊆ D′; also, I and J have the same Rees valuation

domains, and D′ = E′ is the intersection of the Rees valuation domains of I

and J . Since I{1} = ID ∩ R and J{1} = IE ∩ R, it is clear that if D = E,

then I{1} = J{1}. Conversely, if I{1} = J{1}, then D = E (since I and I{1}

have the same first coefficient domain, and similarly for J).

Question 3.11. Is the first coefficient domain D associated to an ideal I

unique in the following sense: if E is a 1-dimensional semilocal domain bi-

rationally containing R such that InE ∩R = (In){1} for all n, does it follow

that E ⊆ D?

Theorem 3.12. Suppose (R,m) is a normal, analytically unramified quasi-

unmixed local domain with R/m infinite and I is an m-primary ideal of R.

Let D be the first coefficient domain of I, and let E be an integral domain

between D and the integral closure D′ of D. Then E is the first coefficient

domain of an ideal integral over a power of I.

Proof. Assume by way of contradiction that there does not exist such an

ideal J . The family of domains between D and E satisfies the ascending

chain condition, so by replacing I by an ideal integral over one of its powers,

we may assume that D is maximal in E with respect to the property of being

the first coefficient domain of an ideal integral over a power of I.

Let Jn = InE ∩ R. Since D′ is the intersection of the Rees valuation

domains of I, InD′ ∩ R = (In)′ for each positive integer n. Hence In ⊆

Jn ⊆ (In)′. Since Jn is contracted from E and JnE = InE is principal,

E contains the first coefficient domain of Jn. There exists a ∈ I such that

ID = aD. Let S = R[1/a] ∩ D and T = R[1/a] ∩ E. Then since we
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can distribute localization over these finite intersections, D and E are the

localizations of S and T respectively at the complement of the union of the

minimal primes of aS and aT . Since D < E, we have S < T . Let t ∈ T −S.

Then t = b/an, where b ∈ R and b ∈ anT ∩ R = anE ∩ R = Jn, but

b 6∈ anS ∩R = anD ∩R = (In){1}. Therefore the first coefficient domain of

Jn properly contains D. This contradiction to the choice of D completes the

proof. �

(3.13) It is not true that the family of minimal primes of JB(J) for various

ideals J gives I{1}, for a particular I, in the same way that the Rees valuation

domains of various J give I ′; i.e., I ′ =
⋂
{IV ∩ R} where V varies over the

Rees valuation domains of various J , but
⋂
{IS ∩ R}, where S varies over

the minimal primes of various JB(J), need not be I{1}. Indeed, if (R,m) is

a 2-dimensional Cohen–Macaulay local domain, then any m-primary ideal

of R is contracted from a minimal prime in the blowup of an ideal: If (a, b)R

is a reduction of the m-primary ideal I, then I = IR[a/b]mR[a/b] ∩ R and

R[a/b]mR[a/b] is the unique minimal prime of the blowup of the ideal (a, b)R.

Example 3.14. There can exist two (or more) local first coefficient domains

D,E with the same integral closure and the same multiplicity and yet D 6= E:

Suppose R = k[x, y](x,y), consider the two minimal reductions I = (x2, y2)R

and J = (x2 + y2, xy)R of m2B(m), and let D,E be the first coefficient

domains of I, J respectively. Then the residue field of D is k((y/x)2), while

that of E is k((x2 + y2)/xy).

(3.15) Assume that {Di} is the set of minimal primes of the extension

to its blowup of an m-primary ideal I of a local domain (R,m) with R/m

infinite, and let D =
⋂n
i=1Di be the first coefficient domain of I. We would
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like to relate the Hilbert polynomial and the multiplicity of I to those of

the extensions of I to D and to the Di. If an ideal J of R is generated by a

system of parameters, then by General Example 3.8 and [Ku, Corollary 4.19,

page 147], JB(J) has only one minimal prime, say E. Moreover, by [Ka,

Theorem 1.1] the multiplicity e(J) of J is equal to the multiplicity e(JE)

of JE. Since the residue field R/m is infinite, any m-primary ideal I has a

reduction J such that J is generated by a system of parameters. Since JE

is principal, we have e(I) = e(J) = e(JE) = λE(E/JE) = λE(D/JD) =

λE(D/ID). Denoting by ki the dimension of the residue field of Di as an

extension of the canonical image of the residue field of E in that of Di, and

using [ZS, Corollary 1, page 299], we have the following equation relating

e(I) to e(IDi):

e(I) = e(ID1)k1 + · · ·+ e(IDn)kn .

4. First coefficient ideals and ideals of reduction number at most

one.

(4.1) Let I be an m-primary ideal in a Cohen–Macaulay local domain

(R,m) with R/m infinite. If I has reduction number at most one, i.e., if

I2 = JI for some minimal reduction J of I, then all powers of I are e1-ideals.

One way to see this is as follows: By [V, Lemma 1 and Theorem 1], the graded

ring G(I) of I is Cohen–Macaulay, so the extended Rees algebra R[t−1, It]

is Cohen–Macaulay, so B(I) is also Cohen–Macaulay. Since G(I) is Cohen–

Macaulay, all powers of I are contracted from B(I) [HLS, (1.2)], and since

B(I) is Cohen–Macaulay, all powers of I are e1-ideals [HJLS, Corollary 3.11].

(4.2) Under the hypotheses of (4.1), if I has reduction number at most one,

i.e., I2 = JI for some minimal reduction J of I, then this equation holds for
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every minimal reduction of I [Hc, Theorem 2.1]. If in addition dim(R) = 2

and I has reduction number at most one, then any power of I has reduction

number at most one. (Proof: From the equation (a, b)I = I2 we conclude

that (In)2 = (a, b)2n−1I ⊆ (an, bn)In, which implies that (In)2 = (an, bn)In

as required.)

In this section, we further explore the similarities and relationship between

the concepts of ideals of reduction number at most one and e1-ideals. We

begin with a sequence of results to show that, under reasonable hypotheses,

both classes are closed under intersection.

Proposition 4.3. Let I be an ideal generated by a regular sequence in a

Noetherian ring. Then the set of ideals J for which I ⊆ J and IJ = J2

is closed under finite intersection. If this set satisfies the descending chain

condition, e.g., if I is generated by a system of parameters in a Cohen–

Macaulay local ring, then it is closed under arbitrary intersection.

Proof. Let J,K be two ideals in this set; it suffices to show that I(J ∩K) =

(J ∩ K)2, and for this it is enough to take f, g in J ∩ K and show that

fg ∈ I(J ∩K). Let a1, . . . , ar be a regular sequence that generates I; then

since IJ = J2 and IK = K2, we can find elements x1, . . . , xr in J and

y1, . . . , yr in K so that

a1x1 + · · ·+ arxr = fg

a1y1 + · · ·+ aryr = fg .

Subtraction yields

a1(x1 − y1) + · · ·+ ar(xr − yr) = 0 ,
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and since a1, . . . , ar is a regular sequence, each xi−yi must be in the ideal I

generated by a1, . . . , ar [Ma, Lemma 1, page 96]. Thus xi = (xi− yi) + yi ∈

J ∩ (I +K) = J ∩K. �

Corollary 4.4. Suppose (R,m) is a Cohen–Macaulay local ring with infinite

residue field R/m and I is an m-primary ideal. If the family of ideals integral

over I and having reduction number at most one is nonempty, then it has a

unique minimal element. �

Proposition 4.5. Let (R,m) be a quasi-unmixed analytically unramified

local domain with R/m infinite, and let I be an m-primary ideal. Then the

set of e1-ideals containing and integral over I is closed under intersection.

Proof. Since the family of all ideals containing I satisfies the descending chain

condition, it is enough to show that, if J1, J2 are e1-ideals containing and

integral over I, then J = J1 ∩ J2 is also an e1-ideal; i.e., that J is contracted

from its first coefficient ideal E. Let D,E1, E2 be the first coefficient domains

of I, J1, J2 respectively, and let a be an element of I for which ID = aD.

Then since E1, E2 contain and are integral over E, which in turn contains

and is integral over D, we have

JE = aE ⊆ a(E1 ∩E2) = aE1 ∩ aE2 = J1E1 ∩ J2E2 ,

and since J1, J2 are contracted from E1, E2 respectively, we have

J ⊆ JE ∩R ⊆ (JE1 ∩ J2E2) ∩R = J1 ∩ J2 = J ,

which completes the proof. �

(4.6) Suppose (R,m) is a Cohen–Macaulay local ring with infinite residue

field and I is an m-primary ideal. If dim(R) ≥ 2 and if the element a of I
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is superficial for I, then I has reduction number at most one iff the image

of I in R/aR does. This is clear from [Hu, Theorem 2.1] in view of the fact

that the Hilbert coefficients e0 and e1 are unchanged in passing from I to its

image in R/aR. Thus, the following lemma, essentially set in dimension 1,

will be helpful to us in dimension 2. We call an ideal I (in a commutative

ring with unity) that contains a nonzerodivisor stable iff it has an element a

such that I2 = aI (i.e., iff it has a principal reduction and reduction number

at most one).

Lemma 4.7. Let D be a Noetherian domain of which the integral closure D′

is a finitely generated D-module, and let q be an ideal of D that is integral

over a principal ideal generated by an element of the conductor c of D′ into

D. Then the Ratliff–Rush ideal q̃ associated to q is stable.

Proof. Since q̃ is contracted from its blowup E, which is a subring of D′, it

is also contained in c, so we may assume that q is Ratliff–Rush. Suppose

q is integral over cD where c ∈ c; then q = qE ∩ D = cE ∩ D = cE, so

q2 = (cE)2 = c2E = cq. �

Theorem 4.8. Let (R,m) be a 2-dimensional Cohen–Macaulay analytically

unramified local domain with R/m infinite; let I = (a, b)R be an m-primary

ideal, with first coefficient domain D = R(t)/(bt − a); let J be an e1-ideal

integral over I, and let E be the first coefficient domain of J . Then:

(a) E is the blowup of JD;

(b) e0(J) = e0(JD) and e1(J) = e1(JD) = λD(E/D);

(c) J has reduction number at most one iff JD is stable; and

(d) if JD is contained in the conductor of D′ into D, then JD is stable iff

JD is a Ratliff–Rush ideal.
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Proof. Both Spec(E) and B(JD) consist of the local domains containing D

minimal with respect to domination among those in which the extension of J

is principal; so (a) holds. Note that since the extension of J to each of these

local rings is principal and integral over the extension of ID = bD, we have

JE = bE. Since bt− a is superficial for JR(t), the first assertions of (b) are

well known; and if we choose n sufficiently large that E = Jn/bn, then we see

that e1(JD) = λ(D/InD) − λ(D/JnD) = λ(JnD/InD) = λ(bnE/bnD) =

λ(E/D). The implication in (c) that, if IJ = J2, then bJD = (JD)2 is

clear; so suppose JD is stable. Then e0(J) − e1(J) = e0(JD) − e1(JD) =

λD(D/JD) = λR(t)(R(t)/JR(t)) = λR(R/J), so J has reduction number at

most one by [Hu, Theorem 2.1]. For (d), if JD is stable, then JD is always

Ratliff–Rush by [HLS, (1.1)]; and the converse follows from Lemma 4.7. �

(4.9) If f : R→ S is a surjective ring homomorphism of Noetherian rings,

then the preimage in R of an integrally closed ideal in S is integrally closed

in R. Also if J is a Ratliff-Rush ideal in S and f−1(J) = I contains a regular

element of R, then I is a Ratliff-Rush ideal of R. We observe in Example 4.10

that the corresponding statement for e1-ideals fails: if p is a height-1 prime

of a 2-dimensional RLR (R,m) and J is an m-primary ideal in R such that

p ⊂ J , it may happen that J/p is an e1-ideal in R/p, but J is not an e1-ideal

in R.

Example 4.10. Let R = k[[x, y]], I = (x4, y4)R, and S = k[[t4, t5]] = R/(x4−

y5)R, where x 7→ t5 and y 7→ t4. Then the image of I in S is t16S, with

integral closure t16k[[t]]. Let J = (t16, t18, t19)S. Then J is an e1-ideal

of S, but the preimage of J in R is (x4, x3y, x2y2, y4)R, which is properly

contained in its e1-closure (x, y)4R.
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Proposition 4.11. Suppose (S,n) is a Cohen–Macaulay local ring of di-

mension d for which S/n is infinite and I = (a1, . . . , ad)S is n-primary.

Suppose (I : n) is integral over I. Then (I : n) has reduction number at

most one.

Proof. We write J for (I : n). In view of (4.6), by passing modulo elements

of I superficial for J , we can reduce to the case where S is a 1-dimensional

Cohen–Macaulay local ring. In this case I = aS and J = (aS : n) = a(n−1),

where the inverse is taken in the total quotient ring of S. Since we are

assuming that J is integral over aS, the ring S is not a DVR. Hence nn−1 =

n, so (n−1)2 = n−1 and therefore J2 = a2(n−1)2 = a(an−1) = IJ . �

(4.12) Suppose R, in addition to the hypotheses of (2.11), is Cohen–

Macaulay of dimension 2. We want to explore the consequences of two ideals

sharing the same blowup or the same first coefficient domain. Let J1, J2 be

m-primary e1-ideals, and assume that J1 has reduction number at most one.

If they share a common blowup and have powers Jm1 , J
n
2 that share a common

reduction I, then we may assume that the exponents are sufficiently large

that both powers are Ratliff–Rush ideals. Then they are both the contrac-

tion of the extension of I to their common blowup and hence are equal; so by

[Sa, Corollary 2.6] and [Hu, Theorem 2.1], e2(J2) = e2(Jm2 ) = e2(Jn1 ) = 0,

and J2 has reduction number at most one. We can replace the assumption

that they share a common blowup with the assumptions that they share a

common first coefficient domain and that B(J2) is Cohen–Macaulay (this is

always true if Question 2.12(3) has a positive answer), and the same argu-

ment shows that J2 has reduction number at most one. But if we assume

only that they have a common first coefficient domain, or if we remove the
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assumption that they have powers with a common reduction, we do not see

that the property of reduction number at most one transfers from one to the

other.

5. In a two-dimensional regular local ring.

(5.1) In this section we provide general and specific examples, in the con-

text of a 2-dimensional RLR, of the concepts we have introduced earlier.

We begin by noting that we can give meaning to the concept of coefficient

ideals that are not primary for the maximal ideal in a local domain, but in a

2-dimensional RLR, the study of coefficient ideals reduces to the m-primary

case.

(5.2) Let I be an ideal in a Noetherian domain D of dimension d and

m ∈ {1, . . . , d}. With the motivation of Theorem 3.17 of [HJLS], in [HJLS,

Definition 3.21] the definition of the em-ideal I{m} associated with I is ex-

tended to the case where D is not local or I is not primary for the maximal

ideal of D: I{m} := IB(I)(m,I) ∩D. Now it is shown in [HLS, (1.10)] that

I = aJ does not in general imply Ĩ = aJ̃ . But this misbehavior does

not occur in integrally closed domains, e.g., RLRs [HLS, (1.12)(ii)]. Sim-

ilarly, in an integrally closed domain D the corresponding fact holds for

all associated em-ideals: For I an ideal in D, a in R − 0 and m < d, if

x ∈ (aI){m} = (aI)B(aI)(m,I) ∩D, then

x/a ∈
⋂
{IS : S ∈ B(I)(m,I)} ⊆

⋂
{S : S ∈ B(I)(m,I)}

⊆
⋂
{valuation domains between D and its field of fractions} = D ,

so x ∈ (aI)B(I)(m,I) ∩ aD = a(I{m}); since the reverse inclusion always

holds, we have (aI){m} = a(I{m}). Thus, it is immediate that the result

corresponding to [HLS, (1.12)(iii)] is valid for all the associated em-ideals
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with the above definition: If I = aJ and I = I{m}, then J = J{m}. Since

every nonzero ideal of a 2-dimensional RLR (R,m) is a principal multiple of

an m-primary ideal and the blowups of these two isomorphic ideals are the

same, the study of associated e1-ideals for arbitrary nonzero ideals I reduces

to that of m-primary ideals. More precisely, we have I = aJ , where J is an

m-primary ideal; if one of I, J is Ratliff–Rush, then so is the other, and if

one is an e1-ideal, then so is the other.

(5.3) In a 2-dimensional RLR (R,m), let x, y be a regular system of param-

eters, let J be an ideal with integral closure a power mn of m, let I = (a, b)R

be a minimal reduction of J , and let D = R(t)/(bt− a)R(t) be the first co-

efficient domain of I. Then we claim that JD is contained in the conductor

c of D′ = V , the ord-valuation domain, into D. Since J is contained in mn,

to prove the claim it is enough to show that mn−1D′ ⊆ c: The residue fields

of D, V are k(a/b), k(x/y) respectively, and the maximal ideal of V is the

extension of that of D; so the length of a V -module as a D-module is the

degree of the residue field extension [k(x/y) : k(a/b)] times its length as a

V -module. Since bt− a ∈ IR(t), we have

n2 = λR(R/I) = λR(t)(R(t)/IR(t)) = λD(D/ID)

= λD(D/bD) = λD(V/bV ) + λD(bV/bD)− λD(V/D) = λD(V/bV )

= ord(b) · [k(x/y) : k(a/b)] = n · [k(x/y) : k(a/b)] ,

so [k(x/y) : k(a/b)] = n. Thus, the generator x/y of k(x/y) over k(a/b) sat-

isfies a monic polynomial of degree n over the smaller field; so by Nakayama’s

lemma, the elements 1, x/y, (x/y)2, . . . , (x/y)n−1 form a D-module basis for

V . Thus, yn−1 ∈ c, and yn−1 generates mn−1V .

It follows by Theorem 4.8 that an e1-ideal in a 2-dimensional RLR whose
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integral closure is a power of the maximal ideal has reduction number at

most one iff its extension to its first coefficient domain is Ratliff–Rush. Ex-

ample 5.4 shows that these conditions need not hold.

Example 5.4. In R = k[x, y](x,y), let J = (x7, y7, x5y3 + x3y5, x6y4)R.

Then HJ (n) = 49
(
n+1

2

)
− 10

(
n
1

)
+ 1, so R[Jt] is not Cohen–Macaulay and

J has reduction number greater than one. Using the computer program

MACAULAY, written by David Bayer and Michael Stillman, we find that J

has reduction number 2 and that a minimal projective resolution of R[It] as

a module over the polynomial ring S in 4 variables over R has the form

0 −→ S1 ϕ4−→ S7 ϕ3−→ S13 ϕ2−→ S8 ϕ1−→ S1 ϕ0−→ R[It] −→ 0

and the entries of the matrix ϕ4 generate the homogeneous maximal ideal

of S. Therefore, from the Auslander-Buchsbaum formula [Ma, page 114]

it follows that depth(R[It]) = 2; and if we homogeneously localize at any

of the homogeneous primes containing kerϕ0 other than the homogeneous

maximal ideal of S, the projective dimension decreases. Again, using the

Auslander–Buchsbaum formula, it follows that the resulting localizations

of R[It] are Cohen–Macaulay; i.e., B(I) is Cohen–Macaulay. Also, since

R[It] is not Cohen–Macaulay, neither is the associated graded ring G(I)

[HM, Proposition 2.6] [JV, Theorem 4.1] [Sh2, Corollary 4(f)]; so by [HM,

Theorem 2.1] we have depth(G(I)) = depth(R[It])− 1 > 0. By [HLS, (1.2)]

all powers of J are contracted from B(J) and hence [HJLS, Corollary 3.11]

are e1-ideals.

Another example of an ideal J of R = k[x, y](x,y) having reduction number

greater than one, but for which the Rees algebra R[Jt] satisfies Serre’s S2-

condition and so B(J) is Cohen–Macaulay, is
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J = (x8, y8, x6y3 + x3y6, x4y7)R .

The Hilbert polynomial of this ideal is 64
(
n+1

2

)
−14

(
n
1

)
+1. For both of these

ideals the Hilbert function agrees with its Hilbert polynomial for all positive

n.

(5.5) Let (R,m) be a 2-dimensional RLR with regular system of param-

eters x, y, let I = (xn, yn)R, and let J be an ideal integral over I. By

the Northcott inequality, λ(J/I) ≤ e1(J). Thus, if e1(J) = 0, then J

has reduction number 0. If e1(J) = 1, then J has reduction number at

most one by Proposition 4.11. If e1(J) = 2, then (cf. Theorem 4.8) since

λD(JE/ID) = 2, so either JD = JE is stable, and hence J has reduction

number at most one, or λD(JD/ID) = 1, so that again J has reduction at

most one by Proposition 4.11. Example 5.4 has e1(J) = 10. Is it possible to

find an e1-ideal J that does not have reduction number at most one, but for

which e1(J) < 10?

(5.6) We return to the notation of (5.3), and continue that discussion with

a general remark: For any 1-dimensional local domain S that birationally

dominates R and has integral closure V , the multiplicity of S is the degree

of the residue field k(x/y) of V over the residue field of S. (For, the maximal

ideal of V is xV , and the multiplicity of S is λS(S/xS) = λS(V/xV ), which is

the residual degree.) Thus, in particular, D has multiplicity n. Also, D has

embedding dimension 2. The first coefficient domain of the ideal J contains

D and is contained in D′ = V ; its multiplicity divides n. In Example 5.7,

we see that if n > 2, there can be a first coefficient domain strictly between

D and V which also has multiplicity n.
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Example 5.7. Let R = k[x, y](x,y) and J = (x6, x5y, x3y2, y5)R. Then

the integral closure J ′ of J is obtained by adjoining to J the monomials

xy4, x2y3, and the factorization of J ′ into a product of complete simple

ideals is J ′ = (x, y)3R · (x3, x2y, y2)R. So the ideal J has two Rees valu-

ation domains, the ord valuation domain V = R[y/x]mR[y/x] and the DVR

W which is the integral closure of R[y2/x3]mR[y2/x3]. Consider the affine

piece R[x3/y2, x2/y, y3/x3] of B(J). Both the Rees valuation domains of

J contain this affine piece and are centered on distinct height-one primes

of it. Moreover, we see that W is a localization of this domain, for x3/y2

is a generator for the residue field of W over k and x2/y is an element of

W -value one. On the other hand, if E denotes the 1-dimensional local do-

main of B(J) dominated by V , then we claim that E is not Gorenstein: Let

D = R[y3/x3]mR[y3/x3]. Note that D has multiplicity 3 and integral closure

D′ = V = D[y/x]. Using that 1, x/y, x2/y2 is a module basis for V over D

and hence a module basis of V over E = D[x2/y], one can check that the

conductor of V to E is the maximal ideal (x, y, x2/y)E of E. Therefore the

length of E modulo the conductor of V to E is one, while λE(V/E) = 2, so

E is not Gorenstein.

Additional comments about the 1-dimensional local domain E of the above

example: If J1 = (x3, x2y2, y3)R, then E is also a minimal prime of J1B(J1),

indeed, the first coefficient domain of J1B(J1). For, J1 has V as its unique

Rees valuation domain, and R[x2/y, x3/y3] is an affine piece of the blowup

of J1 for which the localization at the center of the ord valuation is D[x2/y],

where D = R[x3/y3]mR[x3/y3] as above. It is remarked in (E5) of [HJLS,

Examples 6.1] that the ideal J1 has Hilbert coefficients e0 = 9, e1 = 1, e2 = 0

and reduction number one. So all the powers of J1 are e1-ideals.
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(5.8) Suppose (R,m) is a 2-dimensional RLR and S is a 1-dimensional

semilocal domain that birationally dominates R and is a ring of fractions

of a finitely generated R-algebra. It would be interesting to have necessary

and sufficient conditions in order that S is the first coefficient domain of an

ideal of R. It is well known that the integral closure S′ of S is the first

coefficient domain of an integrally closed m-primary ideal, since it is a finite

intersection of DVRs, which are the Rees valuation domains of such an ideal.
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