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Abstract

Let R be a Noetherian ring. Two ideals I and J in R are projectively equivalent
in case the integral closure of Ii is equal to the integral closure of Jj for some i, j ∈
IN+. It is known that if I and J are projectively equivalent, then the set Rees I of Rees
valuation rings of I is equal to the set Rees J of Rees valuation rings of J and the values
of I and J with respect to these Rees valuation rings are proportional. We observe that
the converse also holds. In particular, if the ideal I has only one Rees valuation ring
V , then the ideals J projectively equivalent to I are precisely the ideals J such that
Rees J = {V }. In certain cases such as: (i) dimR = 1, or (ii) R is a two-dimensional
regular local domain, we observe that if I has more than one Rees valuation ring, then
there exist ideals J such that Rees I = Rees J , but J is not projectively equivalent to
I. If I and J are regular ideals of R, we prove that Rees I ∪ Rees J ⊆ Rees IJ with
equality holding if dimR ≤ 2, but not holding in general if dimR ≥ 3. We associate to
I and to the set P(I) of integrally closed ideals projectively equivalent to I a numerical
semigroup S(I) ⊆ IN such that S(I) = IN if and only if there exists J ∈ P(I) for which
P(I) = {(Jn)a : n ∈ IN+}.

1 INTRODUCTION.

All rings in this paper are commutative with a unit 1 6= 0. Let I be a regular ideal of the

Noetherian ring R (that is, I contains a regular element of R). The concept of projective

equivalence of ideals and the study of ideals projectively equivalent to I was introduced

by Samuel in [24] and further developed by Nagata in [15]. Making use of interesting

work of Rees in [23], McAdam, Ratliff and Sally in [14, Corollary 2.4] prove that the set

of integrally closed ideals projectively equivalent to I is linearly ordered by inclusion and

eventually periodic. They also prove [14, Proposition 2.10] that if an ideal J is projectively

equivalent to I, then I and J have the same Rees valuations and the values of I and J with

respect to these Rees valuations are proportional. Our goal in the present paper is to build

on the work in [14] and further develop the relationship between projective equivalence of

ideals and Rees valuations.
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2 THE REES VALUATION RINGS OF AN IDEAL.

In this section we review a description of the Rees valuations (and their valuation rings)

associated to an ideal I in a Noetherian ring R. For this, we need the following definitions.

(Throughout, IN denotes the set of nonnegative integers, and IN+ (resp., Q+, IR+) denotes

the set of positive integers (resp., rational numbers, real numbers).)

Definition 2.1 Let I be an ideal in a Noetherian ring R.

(2.1.1) Ia denotes the integral closure of I in R, so Ia = {b ∈ R | b satisfies an equation

of the form bn + i1b
n−1 + · · ·+ in = 0}, where ik ∈ Ik for k = 1, . . . , n. The ideal I is said

to be integrally closed in case I = Ia.

(2.1.2) R′ denotes the integral closure of R in its total quotient ring.

(2.1.3) For each x ∈ R, let vI(x) = max{k ∈ IN | x ∈ Ik} (as usual, I0 = R). (Let vI(x) =

∞ in case x ∈ Ik for all k ∈ IN.)

(2.1.4) For each x ∈ R, let vI(x) = limk→∞(vI (xk)
k ) (see (2.1.3) and Remark 2.2).

Remark 2.2 Concerning (2.1.4), Rees shows in [23] that: (a) vI(x) is well defined; (b) for

each k ∈ IN and x ∈ R, vI(x) ≥ k if and only if x ∈ (Ik)a (as usual, (I0)a = R); and, (c)

there exist valuations v1, . . . , vg defined on R (with values in IN∪{∞}) and positive integers

e1, . . . , eg such that, for each x ∈ R, vI(x) = min{vi(x)
ei
| i = 1, . . . , g}. In the case where

R is not an integral domain, we say that v is a valuation on R if {x ∈ R | v(x) = ∞}

is a prime ideal P of R, v(x) = v(y) if x + P = y + P , and the induced function v on the

integral domain R/P is a valuation.

To describe (2.2)(c) in more detail and to define the Rees valuation rings of I we need

the following definition and notation.

Definition 2.3 Let I be an ideal in a Noetherian ring R, let t be an indeterminate, and

let u = 1/t. Then the Rees ring R of R with respect to I is the graded subring R =

R[u, tI] of R[u, t]. (R = R[u], if I = (0).)

Notation 2.4 Let I be an ideal in a Noetherian ring R, let z1, . . . , zd be the minimal prime

ideals z in R such that z+ I 6= R, for i = 1, . . . , d let Ri = R/zi, let Fi be the quotient field

2



of Ri, let Ri = R(Ri, (I + zi)/zi), let pi,1, . . . , pi,hi be the (height one) prime divisors of

uRi
′, let wi,j be the valuation of the discrete valuation ring Wi,j = Ri

′
pi,j , let ei,j = wi,j(u),

let Vi,j = Wi,j ∩ Fi, and define vi,j on R by vi,j(x) = wi,j(x+ zi).

With this notation, Rees shows in [23] that vi,j is a valuation on R in the sense defined

above and that vi,j(x) =∞ if and only if x ∈ zi. Thus v1, . . . , vg (see (2.2)) are the valuations

v1,1, . . . , vd,hd resubscripted, and e1, . . . , eg are the corresponding ei,j resubscripted.

Recall that if I is an ideal in R and v is a valuation on R, then v(I) = min{v(b) | b ∈ I},

so R[I/b] ⊆ V if and only if v(b) = v(I) (where V is the valuation ring of v and the overbar

denotes residue class modulo the prime ideal {x ∈ R | v(x) =∞}). We use this frequently

in this paper.

Remark 2.5 With notation as in (2.4), we have:

(a) if I * zi, then ei,j = wi,j((I + zi)/zi) (= vi,j(I));

(b) if I ⊆ zi, then hi = 1, ei,1 = 1, and wi,1 is a trivial valuation on R (defined by: wi,1(x)

= 0, if x /∈ zi; wi,1(x) = ∞, if x ∈ zi);

(c) if I is a regular ideal of R, then the Rees valuations of I are all nontrivial.

Proof. For (a), if I * zi, then t((I+zi)/zi) ⊆Ri
′\pi,j , by [18, (3.6)], so t((I+zi)/zi)Wi,j

⊆ Wi,j \ pi,jWi,j, so wi,j(t((I + zi)/zi)) = 0. Therefore wi,j(u) = wi,j((I + zi)/zi) (since u

= 1/t), and wi,j(u) = ei,j (by (2.4)), so wi,j((I + zi)/zi) = ei,j .

For (b), if I ⊆ zi, then Ri = (R/zi)[u], so pi,1 = uRi
′ is the only prime divisor of uRi

′

and Wi,1 = Ri
′
pi,1, so ei,1 = wi,1(u) = 1 and wi,1((I + zi)/zi) = wi,1(0) = ∞. It follows

from this that vi,1 is a trivial valuation on R.

Statement (c) follows from the fact that a regular ideal is not contained in any minimal

prime ideal of the ring.

In the literature, the valuation rings Wi,j = Ri
′
pi,j of (2.4) are sometimes called the

Rees valuation rings of I, and this causes no problems when only one ideal I is under

consideration. However, when an ideal J that is projectively equivalent to I (see (3.1.1)

below) is also considered, then this definition of the Rees valuation rings applied to J , in

place of I, may yield different valuation rings from the Rees valuation rings Wi,j of I (see
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(3.3) below for a specific example). However, the rings V1,1, . . . , Vd,hd of (2.4) are the same

for all ideals that are projectively equivalent to I (as is shown in (3.4) below), so we make

the following definition.

Definition 2.6 The valuation rings V1,1, . . . , Vd,hd in (2.4) are the Rees valuation rings

of I. The set of Rees valuation rings of I is denoted Rees I.

Remark 2.7 Concerning (2.6), notice that if I ⊆ zi for some i = 1, . . . , d, then it follows

from (2.5)(b) that hi = 1, Vi,hi = Vi,1 = Fi, and ei,1 = 1.

Remark 2.8 The centers in R of the Rees valuation rings of I are the ideals φi
−1(pi,j ∩

(R/zi)), where φi is the natural homomorphism from R to R/zi. Therefore these centers

correspond to the prime divisors of (unR[u, tI])a ∩ R for all large n ∈ IN, so they are the

asymptotic prime divisors of I (see [10]). Therefore if these centers are the ideals P1, . . . , Pf ,

then Ass(R/(Ii)a) ⊆ {P1, . . . , Pf} for all i ∈ IN+ and equality holds for all large i ∈ IN.

In the next section we prove several results concerning the set of Rees valuations of ideals.

Toward this end, the following alternate construction of the nontrivial Rees valuation rings

of an ideal is helpful.

Construction 2.9 With the notation of (2.4), let z be a minimal prime ideal in R such

that I * z and z + I 6= R, let b1, . . . , bh be generators of I that are not in z, let an overbar

denote residue class modulo z, and let F be the quotient field of R. Let V be a discrete

valuation ring such that R ⊆ V ( F , and let N be the maximal ideal of V . Then V is a

Rees valuation ring of I if and only if there exists b ∈ {b1, . . . , bh} such that N ∩ A′ is a

height one prime ideal, where A = R[I/b]. Moreover, if V is a Rees valuation ring of I and

if B = R[I/c] ⊆ V , then V = B′N∩B′ .

Proof. By considering each of the rings R/z (with z a minimal prime ideal in R)

separately it may be assumed to begin with that R is a Noetherian integral domain. There-

fore [14, Proposition 3.1] applies to establish this equivalent way to define the set of Rees

valuations of I.
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For the final statement, it suffices to observe that if V is a valuation domain with

maximal ideal N that has R as a subring and b and c are elements of I such that IV =

bV = cV , then R[I/b]N∩R[I/b] = R[I/c]N∩R[I/c]; this equality is clear since c/b is a unit of

R[I/b]N∩R[I/b] and b/c is a unit of R[I/c]N∩R[I/c].

Remark 2.10 (a) If I = bR is a regular principal ideal in R, then it follows from (2.9)

that Rees I = {R′p1/z1, . . . , R
′
pg/zg}, where p1, . . . , pg are the prime divisors of bR′ and zi

= rad (R′pi) for i = 1, . . . , g (possibly zi ∩R′ = zj ∩R′ for some i, j).

(b) Every minimal prime divisor of an ideal I is the center of at least one Rees valuation

of I. Therefore for ideals I and J of R, if Rees I = Rees J , then I and J have the same

radical.

(c) For a fixed ideal I, let Γ(I) denote the set of ideals J such that Rees I = Rees J . It

would be interesting to have conditions on I or on the ring R in order that the set Γ(I)

have a unique maximal element with respect to inclusion. This is true for all ideals I

of a one-dimensional Noetherian integral domain R, for in this case, by statement (1) of

Example 3.5, rad (I) is the unique largest ideal of R having the same Rees valuations as I.

It is also true for all ideals I of a two-dimensional regular local domain R, for in this case,

as discussed in Example 3.8, every integrally closed ideal of R is uniquely a finite product

of simple complete ideals, and the product of the simple complete factors of Ia with no

repeated factors is the largest ideal having the same Rees valuations as I. It is also true for

an ideal I of a general Noetherian domain R if I has only one Rees valuation ring V , for

the integrally closed ideals J such that Rees J = {V } are all contracted from V and thus

are linearly ordered with respect to inclusion.

Remark 2.11 Let (R,M) be a Noetherian local domain and let R̂ denote the M -adic

completion of R. It follows from [10, (3.19)] and (2.8) that the following are equivalent: (a)

there exists a valuation domain V dominating R such that V ∈ Rees I for every nonzero

proper ideal I of R; (b) there exists a minimal prime ideal z of R̂ such that dim(R̂/z) = 1;

and, (c) there exists a height one maximal ideal in R′.
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3 REES VALUATION RINGS AND PROJECTIVELY
EQUIVALENT IDEALS.

It is shown in [14, Proposition 2.10] that if I is a regular ideal of a Noetherian ring, then

every ideal J projectively equivalent to I satisfies Rees I = Rees J and the values of I and

J with respect to these Rees valuation rings are proportional. We prove in Theorem 3.4

that the converse also holds. In particular, if I has only one Rees valuation ring V , then

the ideals J projectively equivalent to I are precisely the ideals J such that Rees J = {V }.

In Example 3.5, we consider projective equivalence and Rees valuation rings of ideals of a

one-dimensional Noetherian integral domain R. For an ideal I of R such that Rees I has

cardinality greater than one, we prove there exist ideals J of R such that Rees I = Rees J ,

but J is not projectively equivalent to I. In Proposition 3.6, we prove that if I and J

are regular ideals of a Noetherian ring, then Rees I ∪ Rees J ⊆ Rees IJ , with equality

holding if dimR ≤ 2. We observe in Remark (3.7.3) that equality does not hold in general

if dimR ≥ 3.

We recall the following definition.

Definition 3.1 Let I be an ideal in a Noetherian ring R. An ideal J in R is projectively

equivalent to I in case (Jj)a = (Ii)a (see (2.1.1)) for some i, j ∈ IN+.

Samuel introduced projectively equivalent ideals in 1952 in [24]. A number of properties

of projective equivalence can be found in [7], [8], [11], [12], [13], [14], [20], [21]. In this

section we explore the relation between projectively equivalent ideals and Rees valuation

rings.

Remark 3.2 Let R be a Noetherian ring. Then

(3.2.1) The relation “I is projectively equivalent to J” is an equivalence relation on I =

{I | I is an ideal of R}.

(3.2.2) If I and J are ideals in R and if i, j, k, l ∈ IN+ with i
j = k

l , then (Ii)a = (Jj)a if

and only if (Ik)a = (J l)a.

Proof. (3.2.1) follows readily from basic properties of integral closures of ideals, and

(3.2.2) is proved in [14, (2.1)(b)].
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The following example shows that projectively equivalent ideals may yield different

valuation rings Wi,j as in (2.4).

Example 3.3 Let R = K[[X]], where K is a field and X is an indeterminate, let I =

XR, and let J = X2R, so I and J are projectively equivalent (since (I2)a = I2 = J =

(J1)a). In this case, d = 1, z1 = (0), R(R, I) = R[u, tX] = R(R, I)′, p1,1 = uR[u, tX].

Thus W1,1 = R[u, tX]p1,1 is the only valuation ring W of I as in (2.4), and w1,1(u) =

1. On the other hand, R(R, J) = R[u, tX2] = R(R, J)′, p1,1 = (u,X)R[u, tX2]. Thus

W1,1
∗ = R[u, tX2]p1,1 is the only valuation ring W ∗ of J as in (2.4), and w1,1

∗(u) = 2,

since tX2 ∈ R[u, tX2] \ p1,1. Therefore the valuation rings W1,1 and W1,1
∗ differ, while

V1,1 = W1,1 ∩K((X)) = R = W ∗1,1 ∩K((X)) = V ∗1,1, so Rees I = Rees J .

With the definition of Rees valuation rings in (2.6), we have the following.

Theorem 3.4 Let I and J be regular ideals of the Noetherian ring R. The following are

equivalent:

1. I and J are projectively equivalent.

2. Rees I = Rees J and the values of I and J with respect to these Rees valuation rings

are proportional.

In particular, if the ideal I has only one Rees valuation ring V , then the ideals J projectively

equivalent to I are precisely the ideals J such that Rees J = {V }.

Proof. It is shown in [14, Proposition 2.10] that (1) implies (2). To prove that (2)

implies (1), notice first that by considering each of the rings R/z (with z a minimal prime

ideal in R), it suffices to prove (2) implies (1) in the case where R is a Noetherian integral

domain. Since V1, . . . , Vg are the Rees valuation rings of I it follows from (2.8) that, for

all i ∈ IN+, (Ii)a = ∩{IiVh ∩ R | h = 1, . . . , g}, and, similarly, for all j ∈ IN+, (Jj)a =

∩{JjVh ∩R | h = 1, . . . , g}. Therefore, if there exist i, j ∈ IN+ such that vh(I) = ( ji )vh(J)

for h = 1, . . . , g, then it follows that vh(I
i) = vh(J

j) for h = 1, . . . , g, so IiVh = JjVh for h

= 1, . . . , g, hence (Ii)a = ∩{IiVh ∩R | h = 1, . . . , g} = ∩{JjVh ∩R | h = 1, . . . , g} = (Jj)a.
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To prove the last statement, let v be the normalized valuation associated to the valuation

ring V , let j = v(I), and let i = v(J). Then v(Ii) = ij = v(Jj), so IiV = JjV , so

v(I) = ( ji )v(J), so the conclusion follows from the equivalence of (1) and (2).

Let I be a nonzero ideal in a Noetherian domain R. If V1, . . . , Vg are the Rees valuation

rings of I, then they may also be the Rees valuation rings of another ideal J of R such that

J is not projectively equivalent to I. To illustrate the concepts of projective equivalence

of ideals and Rees valuations rings, we consider in Example 3.5 the case where R is a

Noetherian domain with dimR = 1. In particular, Example 3.5 provides examples of ideals

I and J such that Rees I = Rees J , but I and J are not projectively equivalent.

Example 3.5 Let R be a Noetherian integral domain with dimR = 1. It is well known

that the integral closure R′ of R is a Dedekind domain. If I is a nonzero proper ideal of R,

then Rees I = {R′P }, where P varies over the maximal ideals of R′ such that I ⊆ P . Thus

for ideals I and J of R, we have

1. Rees I = Rees J if and only if rad I = rad J .

2. Rees IJ = Rees I ∪ Rees J .

3. For a nonzero ideal I of R, the set Rees I has cardinality greater than one if and only

if I is contained in more than one maximal ideal of R′.

4. If Rees I has cardinality greater than one, then there exist ideals J of R such that

Rees I = Rees J , but J is not projectively equivalent to I.

To prove this last statement, notice that if P,Q1, . . . , Qs are distinct maximal ideals of R′,

then PQ1 · · ·Qs ∩ R is the set of elements of R having positive value in the normalized

valuation v corresponding to R′P and also positive value in the normalized valuation wi

corresponding to R′Qi , for i = 1, . . . , s; while for each n ∈ IN+, PnQ1 · · ·Qs ∩ R is the

set of elements of R having v-value at least n and positive value with respect to each wi,

i = 1, . . . , s. Here we are using that the ideals Pn, Q1, . . . , Qs are pairwise comaximal in

R′. Assume that Rees I = {R′P , R′Q1
, . . . , R′Qs}, with s ∈ IN+. To show there exists an ideal

J of R with rad I = rad J (so Rees I = Rees J , by (3.5.1)) such that J is not projectively
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equivalent to I, it suffices to prove there exists n ∈ IN+ such that PnQ1 · · ·Qs ∩ R (

PQ1 · · ·Qs ∩ R. Since PQ1 · · ·Qs ∩R 6= (0) and ∩∞n=2(P
nQ1 · · ·Qs ∩ R) = (0), there must

exist n ∈ IN+ such that PnQ1 · · ·Qs ∩R ( PQ1 · · ·Qs ∩R.

As suggested by the referee, Example (3.5.4) can be demonstrated concretely by taking

R to be a one-dimensional semilocal normal Noetherian domain with distinct maximal ideals

m1 and m2. Let 0 6= a ∈ (m1 ∩m2) and x ∈ m1 \m2 and y ∈ m2 \m1. Then I = axR

and J = ayR have the same Rees valuations, but are not projectively equivalent.

In Proposition 3.6, we relate the Rees valuation rings of the ideals I and J with those of

their product IJ . In the case where the ambient ring is a two-dimensional pseudo-geometric

normal Noetherian local domain, Proposition 3.6 is due to Göhner [2, Lemma 2.1]. The

statement and proof of the first part of Proposition 3.6 are similar in spirit to a theorem of

K.Whittington [10, Prop. 3.26]. See also the forthcoming book by Craig Huneke and Irena

Swanson on integral closure of ideals for related information.

Proposition 3.6 Let I and J be regular ideals in a Noetherian ring R. Then Rees I ∪

Rees J ⊆ Rees IJ , with equality holding if dimR ≤ 2.

Proof. To prove both statements it may be assumed (as in the proof of Theorem 3.4)

that R is a Noetherian domain. And for the first statement it suffices (by symmetry) to

show that if V ∈ Rees I, then V ∈ Rees IJ .

For this, let I = (b1, . . . , bh)R and by (2.9) let b ∈ {b1, . . . , bh} such that V = A′N∩A′ ,

where A = R[I/b] (so v(I) = v(b)) and N is the maximal ideal of V . Let J = (c1, . . . , ck)R

and let c ∈ {c1, . . . , ck}) such that v(c) = v(J). Then v(bc) = v(I) + v(J) = v(IJ), so C =

R[(IJ)/(bc)] ⊆ V , hence C ′N∩C′ ⊆ V . However, R[I/b] = A ⊆ C = R[(IJ)/(bc)] (since IJ

= (c1I, . . . , ckI)R and c ∈ {c1, . . . , ck} imply that I/b ⊆ (IJ)/(bc)), so it follows that V =

C ′N∩C′ , so V ∈ Rees IJ by (2.9).

In view of Example 3.5 (and the first paragraph of this proof), the second statement

is clear if dimR = 1, so we assume dimR = 2. Let V ∈ Rees IJ and let N denote the

maximal ideal of V . Also, let b1, . . . , bh (resp., c1, . . . , ck) be generators of I (resp., J),

where the bi and cj may be assumed to be nonzero. Then b1c1, . . . , bhck generate IJ , so by
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(2.9) there exists bicj (i ∈ {1, . . . , h} and j ∈ {1, . . . , k}) such that V = C ′p′ , where C =

R[(IJ)/(bicj)] and p′ = N ∩C ′. Let b := bi and c := cj . Now v(IJ) = v(bc) (since (IJ)/(bc)

⊆ V ) = v(b) + v(c) ≥ v(I) + v(J) = v(IJ), so it follows that: v(I) = v(b); v(J) = v(c); A

= R[I/b] ⊆ C; and, B = R[J/c] ⊆ C. Let q = p′ ∩A′ and w = p′ ∩B′, so A′q ⊆ C ′p′ = V

and B′w ⊆ C ′p′ = V , so: if ht q = 1, then V = A′q ∈ Rees I (by (2.9)); and, if ht w = 1,

then V = B′w ∈ Rees J (by (2.9)). Therefore to show that Rees IJ ⊆ Rees I ∪ Rees J it

suffices to show that either: (a) ht q = 1; or, (b) ht w = 1. We now show that either (a) or

(b) holds.

By the Mori-Nagata theorem [16, (33.12)], A′, B′ and C ′ are normal Noetherian domains

of dimension at most two and hence are Cohen-Macaulay and therefore universally catenary.

Let D = A′[(IJ)/(bc)] = A′[J/c] = B′[I/b]. Notice that D′ = C ′. Also D is universally

catenary since it is a finitely generated integral domain over A′. Therefore A′, B′ and D

satisfy the altitude formula, (or in other terminology the dimension formula [9, Theorem

15.6]). Let p := p′ ∩D. Then ht p = ht p′ = 1. Assume that ht q = 2. Since D = A′[J/c],

the altitude formula implies for some n ∈ {1, . . . , k} that the image of cn/c in D/p is

transcendental over A′/q. It follows that the image of cn/c in B/(p ∩ B) is transcendental

over R/(p∩R). This implies that ht (p∩B) < ht (p∩R). Therefore ht (p∩B) = 1. Notice

that p∩B = w∩B. Since ht w ≤ ht (w∩B), it follows that ht w = 1, so (b) of the preceding

paragraph holds, hence V ∈ Rees J . A similar argument shows that if ht w = 2, then (a) of

the preceding paragraph holds, so V ∈ Rees I. It follows that Rees IJ ⊆ Rees I ∪ Rees J ,

so equality holds by the first statement.

Remark 3.7 Let I and J be regular ideals in a Noetherian ring R. Then:

(3.7.1) If V ∈ Rees IJ , and if J * N ∩ R, where N is the maximal ideal in V , then

V ∈ Rees I.

(3.7.2) If x is a regular element of R, then Rees (xI) = Rees (xR) ∪ Rees I.

(3.7.3) Let (R,M) be a 3-dimensional regular local domain where M = (x, y, z)R and let

I = (x, y)R and J = (x, z)R. Then the ord-valuation domain defined by the powers of M

is a Rees valuation ring of IJ = (x2, xy, xz, yz)R, but is not in Rees I ∪Rees J . Therefore

the equality statement of Proposition 3.6 fails if dimR = 3.
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Proof. For (3.7.1), let V ∈ Rees IJ . Then it follows from (2.9) that there exist b ∈

I and c ∈ J such that V = C ′N∩C′ , where C = R[(IJ)/(bc)] (and then v(bc) = v(IJ) =

v(I) + v(J) ≤ v(b) + v(c) = v(bc), so v(I) = v(b) and v(J) = v(c), where v is the valuation

of V ). It follows that A = R[I/b] ⊆ V . Now, if J * N ∩ R, then v(J) = 0 (so v(c) = 0),

so J/c ⊆ RN∩R, so it follows that C ⊆ A′N∩A′ . Since V = C ′N∩C′ , it follows that V =

A′N∩A′ , so V ∈ Rees I by (2.9).

For (3.7.2), it suffices, by (3.6), to show that Rees xI ⊆ Rees xR ∪ Rees I. For this, by

(2.9) there exists b ∈ I such that V = C ′p, where C = R[(xI)/(xb)] and p is a height one

prime divisor of xbC ′ (so v(xb) = v(xI), so v(b) = v(I)). If b /∈ p, then v(I) = v(b) = 0, so

I * p ∩R, hence V ∈ Rees xR by (3.7.1). On the other hand if b ∈ p, then since it is clear

that C = A, where A = R[I/b], it follows that p is a minimal prime divisor of bA′ = bC ′,

hence V ∈ Rees I by (2.9).

For (3.7.3), notice that the powers of I and the powers of J each define a valuation and

these are the unique Rees valuations of I and J . Indeed, Rees I = {R[y/x]xR[y/x]} and

Rees J = {R[z/x]xR[z/x]}. On the other hand, the ord-valuation domain defined by the

powers of M is V = R[y/x, z/x]xR[y/x,z/x]. Since R[xy/x2, xz/x2, yz/x2] = R[y/x, z/x], we

see that V ∈ Rees IJ .

Example 3.8 (cf. [14, (3.6)].) Let R be a two-dimensional regular local domain. Zariski

develops in [26, Appendix 5] the theory of complete (or integrally closed) ideals of R. He

proves that in R a product of complete ideals is again complete, and establishes a unique

factorization theorem: every complete ideal of R is uniquely expressible as a product of

simple complete ideals [26, pages 385-386]. Here an ideal I is said to be simple if it is not

the unit ideal and has no nontrivial factorizations. Since R is a unique factorization domain,

every nonzero ideal I of R is of the form I = xJ , where either J = R or J is primary for

the maximal ideal M of R. Since principal ideals of R are complete, the theory reduces

to a consideration of complete M -primary ideals. The simple complete M -primary ideals

of R are in one-to-one correspondence with the DVRs that birationally dominate R and

have the property that their residue field as an extension of R/M is not algebraic. If I is a

simple complete ideal of R, then I has a unique Rees valuation domain V [5, Theorem 4.2].
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It follows that the integrally closed ideals that are projectively equivalent to I are precisely

the ideals In for n ∈ IN+. In particular, every simple complete ideal of R is projectively

full in the sense of Definition 4.9. For an arbitrary nonzero proper ideal I of R, the Rees

valuation rings of I are in one-to-one correspondence with the distinct simple complete

ideals that are factors of the integral closure of I. We have Ia = Je11 · · · Jenn , where the Ji

are simple complete ideals and the ei are positive integers. If Ji is a height-one prime of

R, the Rees valuation ring associated to Ji is Vi = RJi , while if Ji is M -primary, then Vi is

the DVR that birationally dominates R described above. Let K be a nonzero proper ideal

of R and let Ka = Lf1
1 · · ·L

fm
m , where the Li are distinct simple complete ideals and the fi

are positive integers. Then Rees I = Rees K if and only if n = m and the set of simple

complete ideals {Ji}ni=1 is the same as the set {Li}mi=1. Necessary and sufficient conditions

for I and K to be projectively equivalent are that Rees I = Rees K, so Ia = Je11 · · · Jenn and

Ka = Jf1
1 · · · J

fn
n , and, in addition, the n-tuples e1, . . . , en and f1, . . . , fn are proportional,

i.e., there exist positive integers a and b such that aei = bfi for i = 1, . . . , n. In particular, if

I has more than one Rees valuation ring and if J1 and J2 are distinct simple complete ideals

of R that are factors of Ia, then J1Ia and J2Ia are complete ideals that are not projectively

equivalent, but have the same Rees valuation rings.

Remark 3.9 Since an ideal and its powers have the same blowup, if I and J are normal

projectively equivalent ideals of a Noetherian domain R, then the blowups of I and J are

equal. In the case where I and J are normal ideals of a two-dimensional regular local domain,

then I and J have the same blowup if Rees I = Rees J . However, Cutkosky shows in [1,

Example 2] the existence of an infinite set of normal ideals in a three-dimensional regular

local domain that have the same Rees valuations but have pairwise distinct blowups.

4 NUMERICAL SEMIGROUPS AND PROJECTIVELY
FULL IDEALS.

Let I be a regular ideal of the Noetherian ring R. In [14], McAdam, Ratliff and Sally prove

that the set P(I) of integrally closed ideals projectively equivalent to I is linearly ordered
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by inclusion and eventually periodic. (P(I) is eventually periodic means there exist

I1, . . . , Ih ∈ P(I) such that P(I) = {(I1
k1 · · · Ihkh)a |; each ki is a nonnegative integer}. (It

can be shown that this definition of “eventually periodic” is equivalent to the definition,

given in [14], that the set U in (4.1.3) is eventually periodic; see (4.2)(d).)) They also prove

the existence of a fixed d ∈ IN+ such that for every ideal J projectively equivalent to I

there exists n ∈ IN+ such that (In)a = (Jd)a. As we note in Remark 4.3, using results

proved in [14], there is naturally associated to I or to the projective equivalence class of I a

unique numerical semigroup. Here we are using the term numerical semigroup in the sense

of Herzog-Kunz [4] and Watanabe [25].

We recall the following definitions from [14].

Definition 4.1 Let I be a regular ideal in a Noetherian ring R.

(4.1.1) For α ∈ IR+ let Iα = {x ∈ R | vI(x) ≥ α}.

(4.1.2) W = {α ∈ IR+ | vI(x) = α for some x ∈ R} (see (2.1.4)).

(4.1.3) U = {α ∈ W | Iα is projectively equivalent to I} (see (4.1.1) and (3.1)), and

P = P(I) = {Iα | α ∈ U}.

Remark 4.2 Let R be a Noetherian ring and let I be a regular ideal in R. Then:

(a) for each α ∈ IR+, the ideal Iα of (4.1.1) is an integrally closed ideal (= (Iα)a) in R, and

for all k ∈ IN+ and for all Iα ∈ P(I) it holds that (Iα
k)a = Ikα, by [14, (2.1)(g) and (2.6)].

(b) for the set P of (4.1.3), P = {J | J is an integrally closed ideal in R that is projectively

equivalent to I}, and P is linearly ordered by inclusion, by [14, (2.4)];

(c) W and U are discrete subsets of Q+, by [14, (1.1) and (2.8)];

(d) there exist n∗ ∈ IN+ and a unique d ∈ IN+ such that: {α ∈ U | α ≥ n∗} = {n∗ + k
d |

k ∈ IN}; d is a common divisor (but not necessarily the greatest common divisor) of the

integers e1, . . . , eg of (2.2)(c); dα ∈ IN+ for all α ∈ U; and, for each J ∈ P, there exists n

∈ IN+ such that (Jd)a = (In)a, by [14, (2.8) and (2.9)].

Remark 4.3 With d as in (4.2)(d), the set of integers dU ∪ {0} is a numerical semigroup

in the sense of Herzog-Kunz [4] and Watanabe [25] that is naturally associated to I. We

denote this semigroup by S(I). It is an invariant of the projective equivalence class of I
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in the sense that if J is projectively equivalent to I, then S(J) = S(I). Thus S(I) is an

invariant of P(I). We are interested in considering properties of this semigroup.

In [6, Section 2], Itoh gave the following construction, that will be used below to gain

some information concerning W and U.

Proposition 4.4 Let I be a regular ideal in a Noetherian ring R, let n ∈ IN+, let R =

R[u, tI], let S = R[u1/n], let T = S′ ∩R[u1/n, t1/n], and let I[k/n] = uk/nT∩R. Then I[k/n]

= Ik/n for all k ∈ IN+.

Proof. T is a graded subring of R[u1/n, t1/n]. Also, if x ∈ R and k ∈ IN+, then x ∈

I[k/n] = uk/nT ∩ R if and only if xtk/n ∈ T if and only if xntk ∈ R′ ∩ R[u, t] (for T is an

integral extension of R, so xntk is integral over R and is in R[u, t]). And xntk ∈ R′∩R[u, t]

if and only if xn ∈ uk(R′ ∩R[u, t]) ∩R = (Ik)a if and only if x ∈ Ik/n (since xn ∈ (Ik)a =

Ik (by (4.2)(a)) if and only if vI(x
n) ≥ k (by (4.1.1)) if and only if nvI(x) ≥ k if and only

if vI(x) ≥ k/n if and only if x ∈ Ik/n, by (4.1.1))).

Remark 4.5 Let I be a regular ideal in a Noetherian ring R. Then:

(4.5.1) In (4.4) let n = d (with d as in (4.2)(d)) and let V1 = {k/d | k ∈ IN+}. Then U ⊆

V1 and V1 \U is a finite set.

(4.5.2) In (4.4) let n = e1 · · · eg (with e1, . . . , eg as in (2.2)(c)) and let V2 = {k/(e1 · · · eg) |

k ∈ IN+}. Then W ⊆ V2.

(4.5.3) {I[k/n]}k≥1 is a filtration of integrally closed ideals on R. Therefore if R is an

analytically unramified semi-local ring, then for all large k ∈ IN+ it holds that Imk/n =

Ik/n
m for all m ∈ IN+, so Ik/n is a normal ideal (that is, all powers of Ik/n are integrally

closed).

Proof. (4.5.1) is clear by (4.2)(d) together with (4.4), and (4.5.2) is clear by the

definitions of e1, . . . , eg and W together with (4.4).

For (4.5.3), uk/nT is integrally closed, so I[k/n] is integrally closed, so the conclusion

follows from (4.2)(a), (4.5.1), [17, (4.4.3)], and [19, Theorem (5.2) and (4.5)].
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Remark 4.6 It is shown in [22] that the set P(I) (together with R) forms a subfiltration

f∗ of the filtration e = {Ii/d}i≥0 of Proposition 4.4, as does f = {(Ii)a}i≥0, and the graded

subring of R = R[u, te] (= R[u, tI1/d, t
2I2/d, . . . ]) generated by either of the filtrations f∗

and g has homogeneous prime spectrum isomorphic to the homogeneous prime spectrum of

R; however, if I is not projectively full (see Definition 4.9), then the homogeneous prime

spectra of the Rees rings of f∗ and f are not isomorphic.

We next note some things concerning U (see (4.1.3)) and n∗ and d (with n∗ and d as

in (4.2)(d)) (recall that U, n∗, and d depend on I). For this, let U = {α1, α2, . . . } (with

α1 < α2 < · · · ), let P = {Iα1 , Iα2 , . . . } (so Iα1 ) Iα2 ) · · · ), and assume that αi = 1 (that

is, assume that Iαi is the ideal in P that is the integral closure of I). Then in what follows

U, n∗, d, and P will be denoted U(I), n∗(I), d(I), and P(I) (so {α ∈ U(I) | α ≥ n∗(I)}

= {n∗(I) + k
d(I) | k ∈ IN} and for each α ∈ U(I) it holds that (Iα

d(I))a = (In)a for some

n ∈ IN+ (by (4.2)(d)). For J ∈ P(I) let U(J) = {β1, β2, . . . } (with β1 < β2 < · · · ),

n∗(J), d(J), and P(J) = {Jβ1 , Jβ2 , . . . } (so Jβ1 ) Jβ2 ) · · · ) be defined analogously (so

{β ∈ U(J) | β ≥ n∗(J)} = {n∗(J) + k
d(J) | k ∈ IN} and for each β ∈ U(J) it holds that

(Jβ
d(J))a = (Jn)a for some n ∈ IN+).

Remark 4.7 (4.7.1) [14, (2.11)] If δ ∈ U(I) and J = Iδ ∈ P(I), then U(J) = {αδ | α ∈

U(I)}.

(4.7.2) [14, (2.3)] If (Ii)a = (Jj)a, then i
j ∈ U(I) and J = I i

j
. Also, if m,n ∈ IN+ and if

m
n ∈ U(I), then (I n

m

m)a = (In)a.

Proposition 4.8 Let I be a regular ideal in a Noetherian ring R and let J ∈ P(I). Then:

(4.8.1) P(I) = P(J).

(4.8.2) (Id(J))a = (Jd(I))a.

(4.8.3) If H,J ∈ P(I) and if (Jj)a = (Hh)a, then jd(J) = hd(H) and (Jd(H))a = (Hd(J))a.

(4.8.4) If δ ∈ U(I), then δ = d(Iδ)
d(I) .

(4.8.5) If H,J ∈ P(I) and if J ( H, then d(J) > d(H).

(4.8.6) If H,J ∈ P(I) and if J ( H, then n∗(H) ≥ n∗(J). Also, n∗(Iαj ) = 1 for all αj ≥

n∗(I).
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Proof. For (4.8.1), by definition P(I) (resp., P(J)) is the set of integrally closed ideals

in R that are projectively equivalent to I (resp., J). Since projective equivalence is an

equivalence relation, and since I and J are projectively equivalent, it follows that P(I) =

P(J).

For (4.8.2), by (4.2)(d) it follows that (Jd(I))a = (In)a for some n ∈ IN+. By raising both

sides of this equality to a large power (say the k-th power) it may be assumed that kd(I) ≥

n∗(J) and kn ≥ n∗(I). Therefore if m ∈ IN+ is such that m ≥ min{kd(I), kn}, then there

are exactly d(J) − 1 ideals in P(J) strictly between (Jm)a and (Jm+1)a (by (4.2)(d)) and

there are exactly d(I) − 1 ideals in P(I) strictly between (Im)a and (Im+1)a (by (4.2)(d)).

Therefore, it follows that in the chain (Jkd(I))a ) (Jkd(I)+1)a ) · · · ) (J (k+1)d(I))a there

are exactly d(I)d(J) − 1 ideals in P(J) strictly between (Jkd(I))a and (J (k+1)d(I))a, and in

the chain (Ikn)a ) (Ikn+1)a ) · · · ) (I(k+1)n)a there are exactly nd(I) − 1 ideals in P(I)

strictly between (Ikn)a and (I(k+1)n)a. Since the first and last ideals in these two chains

are the same (namely, (Ikn)a = (Jkd(I))a and (I(k+1)n)a = (J (k+1)d(I))a), and since P(J)

= P(I) (by (4.8.1)) (and since P(J) and P(I) are linearly ordered by inclusion), it follows

that nd(I)− 1 = d(J)d(I) − 1, hence n = d(J).

For (4.8.3), it follows from (4.8.2) that (Jd(I))a = (Id(J))a and (Hd(I))a = (Id(H))a.

Also, (Jj)a = (Hh)a, by hypothesis, so it follows that (Ijd(J))a = (Jjd(I))a = (Hhd(I))a =

(Ihd(H))a. Therefore jd(J) = hd(H), and (Jj)a = (Hh)a (by hypothesis), so (3.2.2) shows

that (Jd(H))a = (Hd(J))a.

For (4.8.4), let δ ∈ U(I), so δ = m
d(I) for some m ∈ IN+, by (4.2)(d). Then Iδ = I m

d(I)
∈

P(I) and (Iδ
d(I))a = (Im)a (by (4.7.2)) and (Iδ

d(I))a = (Id(Iδ))a (by (4.8.3)), so m = d(Iδ),

hence δ = d(Iδ)
d(I) .

For (4.8.5), since J ( H, it follows from (4.8.3) that (Hd(J))a = (Jd(H))a ( (Hd(H))a,

so d(J) > d(H).

For (4.8.6), let δ < γ in U(I) and let H = Iδ and J = Iγ in P(I). Then H ) J , δ =

d(H)
d(I) and γ = d(J)

d(I) (by (4.8.4)), and d(H) < d(J). Let α ∈ U(I), so α = d(Iα)
d(I) (by (4.8.4)),

and (4.7.1) shows that α
δ = (d(Iα))/(d(I))

(d(H))/(d(I)) = d(Iα)
d(H) ∈ U(H) and α

γ = (d(Iα))/(d(I))
(d(J))/(d(I)) = d(Iα)

d(J) ∈

U(J).

Now for β ≥ n∗(H) in U(H) there exists m ∈ IN such that β = n∗(H)+ m
d(H) . Therefore
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for m ∈ IN define βm by βm = n∗(H)+ m
d(H) = n∗(H)d(H)+m

d(H) , so βm ∈U(H) (by the definition

of n∗(H) and d(H)), βm
δ
γ ∈ U(J) (by (4.7.1)), and βm

δ
γ = βm

d(H)
d(J) = n∗(H)d(H)+m

d(J) . Since

d(H) < d(J), let z ∈ IN+ such that d(H) = d(J)− z, so n∗(H)d(H)+m
d(J) = n∗(H)(d(J)−z)+m

d(J) =

(n∗(H)+ −zd(H)
d(J) )+ m

d(J) , and this holds for all m ∈ IN. Therefore define n to be n∗(H)−w,

where w is defined by wd(J) = zn∗(H)− r with r ∈ IN such that 0 ≤ r < d(J) (note that

n = n∗(H)− w ≤ n∗(H)). Then it follows (from the preceding computation) that if m ≥

r (say m = r + k with k ∈ IN), then

(∗) for all k ∈ IN, βr+k =
n∗(H)d(H) + (r + k)

d(H)
∈ U(H) and βr+k

δ

γ
= n +

k

d(J)
∈ U(J).

Therefore, to show that n is the desired n∗(J), it remains to show that: (i) for each k ∈

IN, n + k
d(J) ∈ U(J); and, (ii) if σ ∈ U(J) is such that σ ≥ n , then σ = n + k

d(J) for some

k ∈ IN. However, (i) follows immediately from (*). And for (ii), σ can be written in the

form g
d(J) for some g ∈ IN+, so since σ ≥ n it follows that g = d(J)n + k for some k ∈

IN, hence σ = βr+k
δ
γ (by (*)). Therefore n∗(J) may be taken to be n , and then n∗(J) ≤

n∗(H).

For the final statement assume that δ ≥ n∗(I) ∈ U(I) and let β ≥ 1 in U(Iδ). Then δ

= d(Iδ)
d(I) , by (4.8.4), and β = α

δ for some α ≥ δ (with α ∈ U(I)). Therefore α = δ+ m
d(I) for

some m ∈ IN (since δ ≥ n∗(I)), so β = α
δ = 1 + m

δd(I) = 1 + m
d(Iδ) ∈ U(Iδ). It follows that

n∗(δ) may be chosen to be 1.

Definition 4.9 A regular ideal I in a Noetherian ring R is said to be projectively full

in case the only integrally closed ideals that are projectively equivalent to I are the ideals

(Ik)a with k ∈ IN+. If there exists J ∈ P(I) such that J is projectively full, then we say

that P(I) is projectively full. Such an ideal J , if it exists, must be the largest element of

P(I).

Remark 4.10 Concerning (4.9), note that it follows from (4.2)(d) that if the greatest com-

mon divisor of the integers e1, . . . , eg of (2.2) is 1, then I is projectively full. In particular,

if P is a prime ideal in R such that RP is a regular local ring, then P is projectively full

(since the integer e of (2.2) is 1 for the order valuation of RP ).
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Proposition 4.11 The following are equivalent for a regular ideal I in a Noetherian ring

R:

(4.11.1) There exists K ∈ P(I) that is projectively full.

(4.11.2) There exists K ∈ P(I) such that U(K) = IN+.

(4.11.3) There exists K ∈ P(I) such that d(K) = 1.

(4.11.4) I1/d(I) ∈ P(I).

Proof. Assume that (4.11.1) holds, let β ∈ U(K), and let J = Kβ. Then J is an

integrally closed ideal that is projectively equivalent to K, so there exists k ∈ IN+ such that

J = (Kk)a (by hypothesis) and (Kk)a = Kk (by (4.7.2)), hence β = k (since J = Kβ).

Therefore U(K) ⊆ IN+, and the opposite inclusion is clear (since Kk = (Kk)a ∈ U(K) for

all k ∈ IN+), hence (4.11.1) ⇒ (4.11.2).

Assume that (4.11.2) holds. Now for all k ∈ IN+ it holds that n∗(K) + k
d(K) ∈ U(K) =

IN+. Therefore d(K) = 1, so(4.11.2) ⇒ (4.11.3).

Assume that (4.11.3) holds. Then (Id(K))a = (Kd(I))a, by (4.8.2), so I1/d(I) = Id(K)/d(I)

(by hypothesis) = K, by (4.2)(a), and K ∈ P(I), by hypothesis. Therefore I1/d(I) ∈ P(I),

so (4.11.3) ⇒ (4.11.4).

Finally, assume that (4.11.4) holds and let J ∈ P(I). Then (Jd(I))a = (Id(J))a, by

(4.8.2), and (Id(J))a = Id(J), by (4.2.2)(a), so J = Id(J)/d(I) (by (4.7.2)) = (I1/d(I)
d(J))a (by

(4.2.2)(a)). Therefore, since I1/d(I) ∈ P(I), it follows from (4.9) that P(I) is projectively

full, hence (4.11.4) ⇒ (4.11.1).

Remark 4.12 Let I be a regular ideal of a Noetherian ring R. Then it follow from

(4.2.2)(d) that:

(a) I is projectively full if and only if d(I) = 1.

(b) I is projectively full if and only if there exists a large k ∈ IN+ such that Ik ) Ik+1 are

consecutive in P(I) if and only if this holds for all k ∈ IN+.

Remark 4.13 Let I be a nonzero proper ideal of a two-dimensional regular local domain

R and let Ia = Je11 · · · Jenn be the factorization of Ia as a product of distinct simple complete

ideals. Let d be the greatest common divisor of e1, . . . , en and let fi = ei/d for i = 1, . . . , n.
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Then K = J
f1
1 · · · J

fn
n is projectively full and Kd = Ia, so P(I) = P(K). Therefore P(I) is

projectively full for every nonzero proper ideal of a two-dimensional regular local domain.

In general, if R is a two-dimensional normal local domain with maximal ideal M and I

is an M -primary ideal, the set P(I) need not contain a projectively full ideal as we illustrate

in Example 4.14. In this example, the ideal I has only one Rees valuation and the numerical

semigroup S(I) associated to I is (2, 3)IN.

Example 4.14 Let k be an algebraically closed field of characteristic zero and let R =

k[[x, y, z]], where z2 = x3 + y7. It is readily seen that R is a two-dimensional normal local

domain. Consider the ideal I = (x, y2)R. It is shown in [3, Example 16, page 300] that I

has a unique Rees valuation ring V . Therefore xV = y2V , Ia = xV ∩ R, and the image of

x/y2 in the residue field of V is transcendental over k. The equality (z/y3)2 = (x/y2)3 + y

implies that z/y3 is integral over R[x/y2]. It also implies that zV = y3V and that the

image of z/y3 in the residue field of V is transcendental over k. Let J = y3V ∩ R. Then

(z, y3, xy, x2)R ⊆ J . To show I and J are projectively equivalent it suffices to show that

I3 and J2 have the same integral closure. Since I = (x, y2)R and V is the unique Rees

valuation of I, the integral closure of I3 is I3V ∩R and is the integral closure of (x3, y6)R.

We have J2V = I3V . Therefore (J2)a ⊆ (I3)a. To show the reverse inclusion, it suffices

to observe that x3 and y6 are in J2. Since y3 ∈ J , it is clear that y6 ∈ J2. Also we have

x3 = z2 − y7 and z2 and y7 are in J2, so x3 ∈ J2. Therefore I and J are projectively

equivalent. Notice that Ia = (y2, x, z)R ( M and there are no ideals properly between Ia

and M . To complete the proof that P(I) is not projectively full, it suffices to observe that

V is not a Rees valuation of M . Since (x, y)R is a reduction of M , the Rees valuation rings

of M are all extensions of the order valuation defined by the powers of the maximal ideal

of the two-dimensional regular local subdomain k[[x, y]] of R. In particular, if W is a Rees

valuation ring of M , then xW = yW . Since xV = y2V , V is not a Rees valuation ring of

M . Let v denote the normalized valuation with value group Z associated to the valuation

domain V . We have v(y) = 1, v(x) = 2, v(z) = 3, v(I) = 2 = d, v(J) = 3, and P(I) =

{I, J, (I2)a, (IJ)a, (I
3)a = (J2)a, (I

2J)a, . . . }.

An interesting question we have not been successful in answering is whether for a regular
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ideal I in a Noetherian ring R there always exists a finite integral extension ring T of R

such that P(IT ) contains a projectively full ideal. If R is a one-dimensional Noetherian

domain, then the integral closure R′ of R is a Dedekind domain and it is easily seen that

P(IR′) contains a projectively full ideal.

Remark 4.15 Let I be a nonzero proper ideal of a Noetherian integrally closed domain

R. With d as in (4.2.2)(d), it is natural to ask if there exist x ∈ R such that vI(x) = 1/d.

To illustrate that this is not true in general, let s, t be algebraically independent elements

over the field k and let R = k[s, t]. Consider the ideal I = (s2, t3)R. We observe that there

exists a unique V ∈ Rees I. Indeed, for V ∈ Rees I we have s2V = t3V and the image of

s2/t3 in the residue field of V is transcendental over k. Therefore z = s/t is in the maximal

ideal of V . We have s = tz and R[z] = k[t, z]. Moreover, Ia = (s2, st2, t3)R and V ∈ Rees I

is centered on a height-one prime ideal of R[s2/t3, st2/t3 = s/t] that lies over the maximal

ideal (s, t)R of R. Since s2/t3 = z2t2/t3 = z2/t, we see that V is a localization of k[t, z][z2/t]

at a height-one prime ideal that contains M = (t, z)k[t, z]. Since P = Mk[t, z][z2/t] is a

height-one prime ideal, we see that V is the localization of k[t, z][z2/t] at P . Let v denote

the normalized valuation associated to V . Then v(t) = 2, v(s) = 3, and v(I) = 6. The

integer d of (4.2.2)(d) is 6, while for x ∈ R the smallest possible positive value of vI(x) is

1/3. Indeed, vI(t) = 1/3 and vI(s) = 1/2, and therefore d = 6.

Remark 4.16 LetH, I,K and J be ideals of a Noetherian domain R. In analogy to a result

that holds for reductions of ideals, it is natural to ask whether H is projectively equivalent

to I and K is projectively equivalent to J implies that H + K is projectively equivalent

to I + J . To illustrate that this is not true in general, let s, t be algebraically independent

elements over the field k and let R = k[s, t]. Let H = (s, t2)R and I = (s2, t4)R. Also

let K = J = (s2, t)R. Then H and I are projectively equivalent as are also K and J , but

H +K = (s, t)R is not projectively equivalent to I + J = (s2, t)R.
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