Name: _____

PUID:

Instructions:

- 1. The point value of each exercise occurs to the left of the problem.
- 2. Write your answer in the box, if one is provided.
- 3. No books or notes or calculators are allowed.

Page	Points Possible	Points
2	16	
3	19	
4	21	
5	20	
6	16	
7	20	
8	18	
9	16	
10	18	
11	20	
12	16	
Total	200	

- **1.** (16 pts) Let p be a prime integer and let $G = \frac{\mathbb{Z}}{(p^2)} \oplus \frac{\mathbb{Z}}{(p)}$ be the direct sum of a cyclic group of order p^2 and a cyclic group of order p.
 - (a) How many subgroups of G have order p?

(b) How many subgroups H of order p of G are direct summands of G, i.e., are such that $G = H \oplus H'$ for some subgroup H' of G? Justify your answer.

2. (6 pts) State true or false and justify: If G and G' are abelian groups of order 42, then G and G' are isomorphic.

3. (6 pts) If t_0, t_1, \ldots, t_n are n+1 distinct elements of a field F and c_0, c_1, \ldots, c_n are elements of F, write down a polynomial $g(x) \in F[x]$ of degree $\leq n$ such that $g(t_i) = c_i$ for each $i \in \{0, 1, \ldots, n\}$.

4. (7 pts) Let \mathbb{Q} denote the field of rational numbers. Give an example of a linear operator $T: \mathbb{Q}^3 \to \mathbb{Q}^3$ having the property that the only *T*-invariant subspaces are the whole space and the zero subspace. Explain why your example has this property.

- 5. (21 pts) Let $A \in \mathbb{C}^{5 \times 5}$ be a diagonal matrix with exactly four distinct entries on its main diagonal.
 - (a) What is the dimension of the vector space over $\mathbb C$ of matrices that are polynomials in A?

(b) What is the dimension of the vector space over \mathbb{C} of matrices $B \in \mathbb{C}^{5 \times 5}$ such that AB = BA?

(c) If $B \in \mathbb{C}^{5 \times 5}$ is a diagonal matrix with exactly four distinct entries on its main diagonal, is B similar to a polynomial in A? Justify your answer.

- 6. (20 pts) Let A and B in $\mathbb{Q}^{n \times n}$ be $n \times n$ matrices and let $I \in \mathbb{Q}^{n \times n}$ denote the identity matrix.
 - (a) State true or false and justify: If A and B are similar over an extension field F of \mathbb{Q} , then A and B are similar over \mathbb{Q} .

(b) Let M and N be $n \times n$ matrices over the polynomial ring $\mathbb{Q}[x]$. Define "M and N are equivalent over $\mathbb{Q}[x]$ ".

(c) State true or false and justify: If det(xI - A) = det(xI - B), then xI - A and xI - B are equivalent.

(d) State true or false and justify: If xI - A and xI - B are equivalent over $\mathbb{Q}[x]$, then A and B are similar over \mathbb{Q} .

7. (8 pts) Let V be a five-dimensional vector space over the field F and let $T: V \to V$ be a linear operator such that rank T = 1. List all polynomials $p(x) \in F[x]$ that are possibly the minimal polynomial of T. Explain.

8. (8 pts) List up to isomorphism all abelian groups of order 16.

- **9.** (20 pts) Let V be an abelian group generated by elements a, b, c. Assume that 2a = 6b, 2b = 6c, 2c = 6a, and that these three relations generate all the relations on a, b, c.
 - (a) Write down a relation matrix for V.
 - (b) Find generators x, y, z for V such that $V = \langle x \rangle \oplus \langle y \rangle \oplus \langle z \rangle$ is the direct sum of cyclic subgroups generated by x, y, z.

(c) Express your generators x, y, z in terms of a, b, c.

(d) What is the order of V?

- 10. (18 pts) Let V be a finite-dimensional vector space over an infinite field F and let $T : V \to V$ be a linear operator. Give to V the structure of a module over the polynomial ring F[x] by defining $x\alpha = T(\alpha)$ for each $\alpha \in V$.
 - (a) Outline a proof that V is a direct sum of cyclic F[x]-modules.

(b) In terms of the expression for V as a direct sum of cyclic F[x]-modules, what are necessary and sufficient conditions in order that V have only finitely many T-invariant F-subspaces? Explain.

- **11.** (16 pts) Let V be a finite dimensional inner product space over \mathbb{C} and let $T: V \to V$ be a linear operator.
 - (a) Define the adjoint T^* of T.

(b) If $T = T^*$, prove that every characteristic value of T is a real number.

(c) Assume that $T = T^*$ and that c and d are distinct characteristic values of T. If α and β in V are such that $T\alpha = c\alpha$ and $T\beta = d\beta$, prove that α and β are orthogonal.

(d) If W is a T-invariant subspace of V, prove or disprove that the orthogonal complement W^{\perp} must be T^{*}-invariant.

12. (9 pts) Let V be a vector space over an infinite field F. Prove that V is not the union of finitely many proper subspaces.

13. (9 pts) Let V be a finite-dimensional vector space over an infinite field F and let $\alpha_1, \ldots, \alpha_m$ be finitely many nonzero vectors in V. Prove that there exists a linear functional f on V such that $f(\alpha_i) \neq 0$ for each i with $1 \leq i \leq m$.

14. (5 pts) State true or false and justify: If N_1 and N_2 are 4×4 nilpotent matrices over the field F and if N_1 and N_2 have the same minimal polynomial, then N_1 and N_2 are similar.

15. (5 pts) State true or false and justify: If A and B are $n \times n$ matrices over a field F, then AB and BA have the same characteristic polynomial.

16. (5 pts) State true or false and justify: If A and B are $n \times n$ matrices over a field F, then AB and BA have the same minimal polynomial.

17. (5 pts) State true or false and justify: If V is a finite-dimensional vector space and W_1 and W_2 are subspaces of V such that $V = W_1 \oplus W_2$, then for any subspace W of V we have $W = (W \cap W_1) \oplus (W \cap W_2)$.

18. (5 pts) State true or false and justify: For every symmetric matrix $A \in \mathbb{R}^{n \times n}$ there exists a matrix $B \in \mathbb{R}^{n \times n}$ such that $B^3 = A$.

19. (11 pts) Classify up to similarity all matrices $A \in \mathbb{C}^{3 \times 3}$ such that $A^3 = I$, where I is the identity matrix, i.e., write down all possibilities for the Jordan form of A.