Math 554  Uniqueness of Invariant Factors April 2, 2010 Heinzer

Let M be a finitely generated module over a principal ideal domain D. As discussed in
Jacobson, if M is generated by elements x1,...,z, and if D™ denotes the free D-module
with ordered basis (eq,...,ey), then there exists a surjective D-module homomorphism
n: D™ — M defined by setting n(e;) = 23, i = 1,...,n. Let K = ker7. Associated to
each element e € D(™ there is a unique coset e + K = {e +k | k € K} of K in D™, The
collection of all such cosets is denoted D™ /K and is given the structure of a D-module in
a natural way. The elements of M are identified with the cosets e + K, and M = D" /K.
If f1,..., fin generate the submodule K, then f; = Z?Zl a;jej for 1 < 4 < m and the
matrix A = (a;;) € D™ ™ is called the relations matriz for M with respect to the ordered
set of generators (fi,..., fi) in terms of the ordered basis (ei,...,e,). Jacobson proves
that for invertible matrices Q@ € D™ ™ and P € D™*" the matrix A’ = QAP~! is also
a relations matrix for M. Jacobson also proves in Theorem 3.8 that A is equivalent to a
matrix which has the “diagonal” form diag{d;,ds,...,d;,0,...0}, where the d; # 0 and
d;ld; if i < j. A matrix equivalent to A having this diagonal form is called a normal
form for A. The diagonal elements of a normal form are called invariant factors of A.
In Theorem 3.9 Jacobson gives formulas for the invariant factors of the matrix A € D™*"™
and proves their uniqueness up to units of D.

Assume now that M is a finitely generated torsion module M over the principal ideal
domain D. Using that a relation matrix for M is equivalent to a diagonal matrix, we

obtain a representation for M as a direct sum of cyclic D-modules
M = Dz &---® Dz,

where ann z; = (d;) for each i and (dy) 2 (d2) 2 - -+ D (d,,) are nonzero proper ideals of D
that are called the invariant factors of M. If D is the polynomial ring F|x|, where F'is a
field, then the ideals (d;) are generated by monic polynomials and these monic polynomials
are called the invariant factors of M. If D = Z, then the ideals (d;) are generated by
positive integers and these positive integers are called the invariant factors of M. We
want to prove uniqueness of these invariant factors. To prove this directly amounts to

proving the following: suppose m and n are positive integers and (aq) 2 (az) 2 --- 2 (ay)



2

and (b1) 2 (b2) 2 -+ D (by,) are nonzero proper ideals of the principal ideal domain D

such that
D/(a1) &---® Df(an) = M = D/(b1) ®--- @ D/(bm),

then m = n and (a;) = (b;) for i = 1,...,n. It is easy to see that ann M = (a,) and
ann M = (by,). Hence (ay) = (bm).
Let (p) be a maximal ideal of D. Then

p(D/(a1)) & - @® p(D/(an)) = pM = p(D/(b1)) & & p(D/(bm)).
Moreover

(1) p(D/(a;) = ((p) + (a:))/(a;) = D/(a;), if a; is not a multiple of p, and
(2) p(D/(a;) = (p)/(a;), if a; is a multiple of p.

Thus if a; is a multiple of p, then p?lj/ﬁ?;}) = D/(p), while if a; is not a multiple of p, then
p?D/%éL)i) = 0. A similar statement holds with respect to the b;.

The quotient module M /pM is annihilated by (p) and hence is a vector space over the
field D/(p). Moreover, direct sums behave well with respect to this quotient, so if a; is a
multiple of p, then each a; is a multiple of p and M /pM is an n-dimensional vector space
over D/(p). It is now easy to see that m = n, for by symmetry we may assume n > m.
Let (p) be a maximal ideal such that a; is a multiple of p. Then M /pM is n-dimensional
as a vector space over D/(p). Considering the direct sum of the D/(b;), it follows that
m = n and bp is a multiple of p. Letting p vary over all maximal ideals of D, it follows
that each prime p that divides a1 also divides b;. By symmetry, a; and b, are contained
in exactly the same maximal ideals of D.

To show that (a1) = (b1) we have to work a little harder. In addition to M/pM, we

consider p* M /p**1 M for s a positive integer. We have

p’(D/(a1)) @+ @ p*(D/(an)) = p’M = p*(D/(b1)) &--- & p*(D/(bm)),
and likewise for p**! Moreover
(1) p*tY(D/(a;)) = (" )+(a) (P)+(21) it 4, is not a multiple of p**+!, and

(a;)
(2) p*tY(D/(a;)) = (p(a 7, if a; is a multiple of pstL.




s+1

Thus if a; is a multiple of p*™*, then the quotient module

P(D/(a)
p**1(D/(a:)
s+1

= D/(p),

while if a; is not a multiple of p*™", then this quotient module is zero. A similar statement
holds with respect to the b;. It follows that a; is a multiple of p**! if and only if b; is a
multiple of p**! for each maximal ideal (p) of D and each nonnegative integer s. Therefore

(a1) = (b1).

Thus if a; is a multiple of p**!, then the quotient module

p*(D/(a:))/p**(D/(ai)) = D/(p),

st1 then this quotient module is zero. A similar statement

while if a; is not a multiple of p
holds with respect to the b;. It follows that a; is a multiple of p**! if and only if b; is a
multiple of p**! for each maximal ideal (p) of D and each nonnegative integer s. Therefore
(a1) = (b1).

To show that (a;) = (b;) we modify the argument above as follows: we have already
seen that n = m. Observe that a; is a multiple of p**! if and only if p*M/p*T'M has

dimension at least n — i + 1 as a vector space over D/(p) if and only if b; is a multiple of

p*tL. Therefore (a;) = (b;) for i =1,...,n.

Let me now make some comments on the elementary divisors of a finitely generated
torsion module M over a principal ideal domain D. FExercise 1 from Section 3.9 in Ja-
cobson gives a nice illustration of elementary divisors. Let me use x instead of A for the
indeterminate. Then D = R[z] and M is the direct sum of cyclic D-modules whose order

ideals are generated by the polynomials
(@—17% (@+1?% (@-)E"+1D (z+2)(="+ 1%

Thus
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M= @2 @ Gon@ait @ Gr@e?

To obtain the primary decomposition of M, we write
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and
D D D

)@ +12 @+2) © @rE
Thus M has 3 primary components, the one associated to (z + 2) is D/(z + 2), the one

0

associated to (z — 1) is D/(x — 1) @ D/(x — 1)3 and the one associated to (22 + 1) is
D e D e D
(.CU2 + 1)2 (xQ + 1)2 (x2 + 1)4

The elementary divisors of M are the ideals

(x+2), (x-1), (xz-13 (2+1)? (@*+1)?% @+
It is now easy to read off the invariant factors of M from its elementary divisors. The
invariant factors of M are

(:c2 + 1)2, (x — 1)(x2 + 1)2, (x+2)(x— 1)3(302 + 1)4.

I suggest you try the following questions/exercises concerning subgroups and submod-

ules.

Let p be a prime integer and let M = Z /(p) ® Z /(p?).

(1) How many cyclic subgroups of order p? does M have ?
2) Prove that every cyclic subgroup of M of order p? is a direct summand of M.

)

)
3) How many subgroups of order p does M have 7
4) Among the subgroups of M of order p, how many are direct summands of M 7
)

(
(
(
(5) How many subgroups of order p does the group Z /(p) ® Z /(p?) ® Z /(p?) have ?
Let F' =7 /pZ be the finite field with p elements and consider the F'[z]-module

V = Flal/(2) & Flz)/(+%)

1) How many F[z]-submodules with p elements does V' have?

2
3

How many cyclic F[z]-submodules with p? elements does V have?

(1)
(2)
(3) How many noncyclic F[z]-submodules with p? elements does V have?

(4) Among the cyclic F[z]-submodules of V' with p? elements, how many are direct
summands of V' ?

(5) How many cyclic F[z]-submodules with p? elements does V have ?



