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Let M be a finitely generated module over a principal ideal domain D. As discussed in

Jacobson, if M is generated by elements x1, . . . , xn and if D(n) denotes the free D-module

with ordered basis (e1, . . . , en), then there exists a surjective D-module homomorphism

η : D(n) → M defined by setting η(ei) = xi, i = 1, . . . , n. Let K = ker η. Associated to

each element e ∈ D(n) there is a unique coset e + K = {e + k | k ∈ K} of K in D(n). The

collection of all such cosets is denoted D(n)/K and is given the structure of a D-module in

a natural way. The elements of M are identified with the cosets e+K, and M ∼= D(n)/K.

If f1, . . . , fm generate the submodule K, then fi =
∑n

j=1 aijej for 1 ≤ i ≤ m and the

matrix A = (aij) ∈ Dm×n is called the relations matrix for M with respect to the ordered

set of generators (f1, . . . , fm) in terms of the ordered basis (e1, . . . , en). Jacobson proves

that for invertible matrices Q ∈ Dm×m and P ∈ Dn×n the matrix A′ = QAP−1 is also

a relations matrix for M . Jacobson also proves in Theorem 3.8 that A is equivalent to a

matrix which has the “diagonal” form diag{d1, d2, . . . , dr, 0, . . . 0}, where the di 6= 0 and

di|dj if i ≤ j. A matrix equivalent to A having this diagonal form is called a normal

form for A. The diagonal elements of a normal form are called invariant factors of A.

In Theorem 3.9 Jacobson gives formulas for the invariant factors of the matrix A ∈ Dm×n

and proves their uniqueness up to units of D.

Assume now that M is a finitely generated torsion module M over the principal ideal

domain D. Using that a relation matrix for M is equivalent to a diagonal matrix, we

obtain a representation for M as a direct sum of cyclic D-modules

M = Dz1 ⊕ · · · ⊕ Dzn,

where ann zi = (di) for each i and (d1) ⊇ (d2) ⊇ · · · ⊇ (dn) are nonzero proper ideals of D

that are called the invariant factors of M . If D is the polynomial ring F [x], where F is a

field, then the ideals (di) are generated by monic polynomials and these monic polynomials

are called the invariant factors of M . If D = Z, then the ideals (di) are generated by

positive integers and these positive integers are called the invariant factors of M . We

want to prove uniqueness of these invariant factors. To prove this directly amounts to

proving the following: suppose m and n are positive integers and (a1) ⊇ (a2) ⊇ · · · ⊇ (an)
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and (b1) ⊇ (b2) ⊇ · · · ⊇ (bm) are nonzero proper ideals of the principal ideal domain D

such that

D/(a1) ⊕ · · · ⊕ D/(an) = M = D/(b1) ⊕ · · · ⊕ D/(bm),

then m = n and (ai) = (bi) for i = 1, . . . , n. It is easy to see that ann M = (an) and

ann M = (bm). Hence (an) = (bm).

Let (p) be a maximal ideal of D. Then

p(D/(a1)) ⊕ · · · ⊕ p(D/(an)) = pM = p(D/(b1)) ⊕ · · · ⊕ p(D/(bm)).

Moreover

(1) p(D/(ai) = ((p) + (ai))/(ai) = D/(ai), if ai is not a multiple of p, and

(2) p(D/(ai) = (p)/(ai), if ai is a multiple of p.

Thus if ai is a multiple of p, then D/(ai)
p(D/(ai)

∼= D/(p), while if ai is not a multiple of p, then
D/(ai)

p(D/(ai)
= 0. A similar statement holds with respect to the bi.

The quotient module M/pM is annihilated by (p) and hence is a vector space over the

field D/(p). Moreover, direct sums behave well with respect to this quotient, so if a1 is a

multiple of p, then each ai is a multiple of p and M/pM is an n-dimensional vector space

over D/(p). It is now easy to see that m = n, for by symmetry we may assume n ≥ m.

Let (p) be a maximal ideal such that a1 is a multiple of p. Then M/pM is n-dimensional

as a vector space over D/(p). Considering the direct sum of the D/(bi), it follows that

m = n and b1 is a multiple of p. Letting p vary over all maximal ideals of D, it follows

that each prime p that divides a1 also divides b1. By symmetry, a1 and b1 are contained

in exactly the same maximal ideals of D.

To show that (a1) = (b1) we have to work a little harder. In addition to M/pM , we

consider psM/ps+1M for s a positive integer. We have

ps(D/(a1)) ⊕ · · · ⊕ ps(D/(an)) = psM = ps(D/(b1)) ⊕ · · · ⊕ ps(D/(bm)),

and likewise for ps+1 Moreover

(1) ps+1(D/(ai)) = (ps+1)+(ai)
(ai)

= (ps)+(ai)
(ai)

, if ai is not a multiple of ps+1, and

(2) ps+1(D/(ai)) = (ps+1)
(ai)

, if ai is a multiple of ps+1.
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Thus if ai is a multiple of ps+1, then the quotient module

ps(D/(ai)
ps+1(D/(ai)

∼= D/(p),

while if ai is not a multiple of ps+1, then this quotient module is zero. A similar statement

holds with respect to the bi. It follows that a1 is a multiple of ps+1 if and only if b1 is a

multiple of ps+1 for each maximal ideal (p) of D and each nonnegative integer s. Therefore

(a1) = (b1).

Thus if ai is a multiple of ps+1, then the quotient module

ps(D/(ai))/ps+1(D/(ai)) ∼= D/(p),

while if ai is not a multiple of ps+1, then this quotient module is zero. A similar statement

holds with respect to the bi. It follows that a1 is a multiple of ps+1 if and only if b1 is a

multiple of ps+1 for each maximal ideal (p) of D and each nonnegative integer s. Therefore

(a1) = (b1).

To show that (ai) = (bi) we modify the argument above as follows: we have already

seen that n = m. Observe that ai is a multiple of ps+1 if and only if psM/ps+1M has

dimension at least n − i + 1 as a vector space over D/(p) if and only if bi is a multiple of

ps+1. Therefore (ai) = (bi) for i = 1, . . . , n.

Let me now make some comments on the elementary divisors of a finitely generated

torsion module M over a principal ideal domain D. Exercise 1 from Section 3.9 in Ja-

cobson gives a nice illustration of elementary divisors. Let me use x instead of λ for the

indeterminate. Then D = R[x] and M is the direct sum of cyclic D-modules whose order

ideals are generated by the polynomials

(x − 1)3, (x2 + 1)2, (x − 1)(x2 + 1)4, (x + 2)(x2 + 1)2.

Thus

M =
D

(x − 1)3
⊕ D

(x2 + 1)2
⊕ D

(x − 1)(x2 + 1)4
⊕ D

((x + 2)(x2 + 1)2
.

To obtain the primary decomposition of M , we write

D

(x − 1)(x2 + 1)4
∼= D

(x − 1)
⊕ D

(x2 + 1)4
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and
D

(x + 2)(x2 + 1)2
∼= D

(x + 2)
⊕ D

(x2 + 1)2
.

Thus M has 3 primary components, the one associated to (x + 2) is D/(x + 2), the one

associated to (x − 1) is D/(x − 1) ⊕ D/(x − 1)3 and the one associated to (x2 + 1) is

D

(x2 + 1)2
⊕ D

(x2 + 1)2
⊕ D

(x2 + 1)4
.

The elementary divisors of M are the ideals

(x + 2), (x − 1), (x − 1)3, (x2 + 1)2, (x2 + 1)2, (x2 + 1)4.

It is now easy to read off the invariant factors of M from its elementary divisors. The

invariant factors of M are

(x2 + 1)2, (x − 1)(x2 + 1)2, (x + 2)(x − 1)3(x2 + 1)4.

I suggest you try the following questions/exercises concerning subgroups and submod-

ules.

Let p be a prime integer and let M = Z /(p) ⊕ Z /(p2).

(1) How many cyclic subgroups of order p2 does M have ?

(2) Prove that every cyclic subgroup of M of order p2 is a direct summand of M .

(3) How many subgroups of order p does M have ?

(4) Among the subgroups of M of order p, how many are direct summands of M ?

(5) How many subgroups of order p does the group Z /(p) ⊕ Z /(p2) ⊕ Z /(p3) have ?

Let F = Z /p Z be the finite field with p elements and consider the F [x]-module

V = F [x]/(x2) ⊕ F [x]/(x3).

(1) How many F [x]-submodules with p elements does V have?

(2) How many cyclic F [x]-submodules with p2 elements does V have?

(3) How many noncyclic F [x]-submodules with p2 elements does V have?

(4) Among the cyclic F [x]-submodules of V with p2 elements, how many are direct

summands of V ?

(5) How many cyclic F [x]-submodules with p3 elements does V have ?


