Math 554 Practice Problems for test April 14 Heinzer March 31, 2010

- 1. Let V be an abelian group and assume that (v_1, \ldots, v_n) are generators of V. Describe a process for obtaining for some positive integer m an $m \times n$ matrix $A \in \mathbb{Z}^{m \times n}$ such that if $\phi : \mathbb{Z}^m \to \mathbb{Z}^n$ is the Z-module homomorphism defined by right multiplication by A (i.e., if $\vec{x} = (x_1, \ldots, x_m) \in \mathbb{Z}^m$, then $\phi(\vec{x}) = \vec{x}A$), then $V \cong \mathbb{Z}^n/\phi(\mathbb{Z}^m)$. Recall that such a matrix A is said to be a relation matrix of V.
- 2. Consider the abelian group $V = \mathbb{Z}/(5^4) \oplus \mathbb{Z}/(5^3) \oplus \mathbb{Z}$.
- (i) Write down a relation matrix for V as a \mathbb{Z} -module.
- (ii) Let W be the cyclic subgroup of V generated by the image of the element $(5^2, 5, 5)$ in $\mathbb{Z}/(5^4) \oplus \mathbb{Z}/(5^3) \oplus \mathbb{Z} = V$. Write down a relation matrix for W.
- (iii) Write down a relation matrix for the quotient module V/W.
 - 3. Let A be an 5×4 matrix with integer coefficients and let $\phi : \mathbb{Z}^5 \to \mathbb{Z}^4$ be defined by right multiplication by A.
- (i) Prove or disprove: if ϕ is surjective, then the determinants of the 4×4 minors of A generate the unit ideal of \mathbb{Z} .
- (ii) Prove or disprove: if ϕ is surjective, then there exists a matrix $B \in \mathbb{Z}^{4 \times 5}$ such that BA is the 4×4 identity matrix.
- 4. Let $V = \mathbb{Z}^2$ and let L be the submodule of V spanned by the rows of $A = \begin{bmatrix} 6 & 4 \\ 8 & 12 \end{bmatrix}$. Find a basis $(\vec{\alpha}_1, \vec{\alpha}_2)$ of V and integers c_1, c_2 so that $c_1 \vec{\alpha}_1, c_2 \vec{\alpha}_2$ is a basis for L.

With regard to this last exercise, we have seen in general that if D is a principal ideal domain (PID), n is a positive integer and $D^{(n)}$ is a free D-module of rank n, then every submodule of $D^{(n)}$ is free of rank $\leq n$. Let $\{e_1, \ldots, e_n\}$ be an ordered basis for $D^{(n)}$. Let L be a submodule of $D^{(n)}$ and let $\{f_1, \ldots, f_m\}$, $m \leq n$ be an ordered basis for L. With respect to these bases, the inclusion map $L \hookrightarrow D^{(n)}$ is defined by right multiplication with respect to the matrix $A = (a_{ij})$, where $f_i = \sum_{j=1}^n a_{ij}e_j$, for $1 \leq i \leq m$. There exist invertible matrices $P \in D^{m \times m}$ and $Q \in D^{n \times n}$ such that $PAQ^{-1} = B \in D^{m \times n}$, where B is a 'diagonal' matrix in the sense that the only nonzero elements of B are on the main diagonal. Moreover, P and Q can be chosen so that the diagonal entries of B are d_1, d_2, \ldots, d_m , where $d_1|d_2, d_2|d_3, \ldots, d_{m-1}|d_m$. Consider the equality PA = BQ. Since Q is invertible over D, the row vectors $\vec{q_1}, \ldots, \vec{q_n}$ of Q are an ordered basis for $D^{(n)}$. The row vectors of BQ are $d_1\vec{q_1}, \ldots, d_m\vec{q_m}$, and the row vectors f_1, \ldots, f_m of A are an ordered basis for L. Since $P \in D^{m \times m}$ is invertible over D, the row vectors of PA are an ordered basis for L. In view of the equality PA = BQ, the row vectors of PA are $d_1\vec{q_1}, \ldots, d_m\vec{q_m}$. It follows that $d_m \neq 0$. This procedure of finding an ordered basis $\{\vec{q_1}, \ldots, \vec{q_n}\}$ for $D^{(n)}$ such that $\{d_1\vec{q_1}, \ldots, d_m\vec{q_m}\}$ is an ordered basis for a given submodule L is sometimes called the 'stacked basis' property.

5. Let F be a field, let x be an indeterminate over F, and consider the polynomial ring F[x]. Let r and s and $a_1 \ge a_2 \ge \cdots \ge a_r$ and $b_1 \ge b_2 \ge \cdots \ge b_s$ be positive integers. Suppose

$$V = F[x]/(x^{a_1}) \oplus F[x]/(x^{a_2}) \oplus \cdots \oplus F[x]/(x^{a_r})$$

and

$$W = F[x]/(x^{b_1}) \oplus F[x]/(x^{b_2}) \oplus \cdots \oplus F[x]/(x^{b_s}).$$

If the F[x]-modules V and W are isomorphic, prove the structure theorem that asserts that r = s, and that $a_i = b_i$ for i = 1, ..., r.

- 6. Determine, up to isomorphism, the number of abelian groups of order 16.
- 7. Determine, up to isomorphism, the number of abelian groups of order 360.
- 8. For $D = \mathbb{R}[x]$, express the *D*-module $M = D^{(3)} / \langle f_1, f_2, f_3 \rangle$ as a direct sum of cyclic *D*-modules, where $f_1 = (2x 1, x, x^2 + 3)$, $f_2 = (x, x, x^2)$, and $f_3 = (x + 1, 2x, 2x^2 3)$. Also determine the invariant factor ideals of the module *M*.
- 9. For $D = \mathbb{R}[x]$, express the *D*-module $V = D^{(3)} / \langle g_1, g_2, g_3 \rangle$ as a direct sum of cyclic *D*-modules, where $g_1 = (x + 1, 2, -6), g_2 = (1, x, -3)$, and $g_3 = (1, 1, x 4)$. Also determine the invariant factor ideals of the module V.
- 10. Express the abelian group $\mathbb{Z}^{(3)}/\langle f_1, f_2, f_3 \rangle$ as a direct sum of cyclic groups, where $f_1 = (4, 2, -6), f_2 = (6, -6, 12), \text{ and } f_3 = (10, -4, 6)$. Also determine the invariant factor ideals of this group.