Math 558 Exercises

- (1) Let R be a commutative ring and let P be a prime ideal of the power series ring R[[x]]. Let P(0) denote the ideal in R of constant terms of elements of P.
 - (i) If $x \notin P$ and P(0) is generated by n elements of R, prove that P is generated by n elements of R[[x]].
 - (ii) If x ∈ P and P(0) is generated by n elements of R, prove that P is generated by n+1 elements of R[[x]].
 - (iii) If R is a PID, prove that every prime ideal of R[[x]] of height one is principal.
- (2) Let R be a DVR with maximal ideal yR and let S = R[[x]] be the formal power series ring over R in the variable x. Let $f \in S$. Recall that f is a unit in S if and only if the constant term of f is a unit in R.
 - (a) If g is a factor of f and S/fS is a finite R-module, then S/gS is a finite R-module.
 - (b) If n is a positive integer and $f := x^n + y$, then S/fS is a DVR that is a finite R-module if and only if $R = \hat{R}$, i.e., R is complete.
 - (c) If f is irreducible and $fS \neq xS$, then S/fS is a finite R-module implies that R is complete.
 - (d) If R is complete, then S/fS is a finite R-module for each nonzero f in S such that $fS \cap R = (0)$.

Suggestion: For item (c) use that if R is not complete, then by Nakayama's lemma, the completion of R is not a finite R-module.

(3) Let R be an integral domain and let f ∈ R[[x]] be a nonzero nonunit of the formal power series ring R[[x]]. Prove that the principal ideal fR[[x]] is closed in the (x)-adic topology, that is, fR[[x]] = ∩_{m>0}(f, x^m)R[[x]].

Suggestion: Reduce to the case where c = f(0) is nonzero. Then f is a unit in the formal power series ring $R[\frac{1}{c}][[x]]$. If $g \in \bigcap_{m \ge 0} (f, x^m) R[[x]]$, then g = fh for some $h \in R[\frac{1}{c}][[x]]$, say $h = \sum_{n \ge 0} h_n x^n$, with $h_n \in R[\frac{1}{c}]$. Let $m \ge 1$. As $g \in (f, x^m) R[[x]]$, $g = fq + x^m r$, for some $q, r \in R[[x]]$. Thus $g = fh = fq + x^m r$, hence $f(h - q) = x^m r$. As $f(0) \ne 0$, $h - q = x^m s$, for some $s \in R[\frac{1}{c}[[x]]$. Hence $h_0, h_1, \ldots, h_{m-1} \in R$.

(4) Let R be a commutative ring and let f = ∑_{n≥0} f_nxⁿ ∈ R[[x]] be a power series having the property that its leading form f_r is a regular element of R, that is, ord f = r, so f₀ = f₁ = ··· = f_{r-1} = 0, and f_r is a regular element of R. As in the previous exercise, prove that the principal ideal fR[[x]] is closed in the (x)-adic topology.

- (5) Let a be a nonunit in an integral domain R and let $b \in \bigcap_{n=1}^{\infty} a^n R$. Prove that $b \in (a-x)R[[x]] \cap R$.
- (6) Let $\phi : (R, \mathbf{m}) \hookrightarrow (S, \mathbf{n})$ be an injective local map of the Noetherian local ring (R, \mathbf{m}) into the Noetherian local ring (S, \mathbf{n}) . Let $\widehat{R} = \varprojlim_n R/\mathbf{m}^n$ denote the **m**-adic completion of R and let $\widehat{S} = \varprojlim_n S/\mathbf{n}^n$ denote the **n**-adic completion of S.
 - (i) Prove that there exists a map $\widehat{\phi}: \widehat{R} \to \widehat{S}$ that extends the map $\phi: R \hookrightarrow S$.
 - (ii) Prove that φ̂ is injective if and only if for each positive integer n there exists a positive integer s_n such that n^{s_n} ∩R ⊆ mⁿ.
 - (iii) Prove that $\hat{\phi}$ is injective if and only if for each positive integer *n* the ideal \mathbf{m}^n is closed in the topology on *R* defined by the ideals $\{\mathbf{n}^n \cap R\}_{n \in \mathbb{N}}$, i.e., the topology on *R* that defines *R* as a subspace of *S*.
- - (i) Prove that R is a subspace of S.
 - (ii) Prove that \widehat{R} is an algebraic retract of \widehat{S} , i.e., $\widehat{R} \hookrightarrow \widehat{S}$ and there exists a surjective map $\pi : \widehat{S} \to \widehat{R}$ such that π restricts to the identity map on the subring \widehat{R} of \widehat{S} .
- (8) Let k be a field and let R be the localized polynomial ring $k[x]_{xk[x]}$, and thus $\widehat{R} = k[[x]]$. Let $n \ge 2$ be a positive integer. If the field k has characteristic p > 0, assume that n is not a multiple of p.
 - (i) Prove that there exists $y \in k[[x]]$ such that $y^n = 1 + x$.
 - (ii) For y as in (i), let $S := R[yx] \hookrightarrow k[[x]]$. Prove that S is a local ring integral over R with maximal ideal (x, yx)S. By the previous exercise, $\widehat{R} = k[[x]]$ is an algebraic retract of \widehat{S} .
 - (iii) Prove that the integral closure \overline{S} of S is not local. Indeed, if the field k contains a primitive n-th root of unity, then \overline{S} has n distinct maximal ideals. Deduce that $\widehat{R} \neq \widehat{S}$, so \widehat{R} is a nontrivial algebraic retract of \widehat{S} .
- (9) Let I = (a₁,..., a_n)A be an ideal in a Noetherian ring A and let denote the I-adic completion of A. Prove that up to isomorphism

$$\widehat{A} = \frac{A[[x_1, \dots, x_n]]}{(x_1 - a_1, \dots, x_n - a_n)A[[x_1, \dots, x_n]]},$$

where $A[[x_1, \ldots, x_n]]$ is the formal power series ring in the variables x_1, \ldots, x_n over A.