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Abstract. We consider a variation of the usual I-adic completion of a Noe-

therian ring R. Instead of successive powers of a fixed ideal I, we use a
multi-adic filtration formed from a more general descending sequence {In}∞

n=0

of ideals. We develop the mechanics of a multi-adic completion R
∗ of R.

With additional hypotheses on the ideals of the filtration, we show that R
∗

is Noetherian. In the case where R is local, we prove that R
∗ is excellent, or

Henselian or universally catenary if R has the stated property.

1. Introduction

Let R be a commutative ring with identity. A filtration on R is a decreasing

sequence {In}
∞
n=0 of ideals of R. Associated to a filtration there is a well-defined

completion R∗ = lim
←−
n

R/In, and a canonical homomorphism ψ : R → R∗ [13,

Chapter 9]. If
⋂∞

n=0 In = (0), then ψ is injective and R may be regarded as a

subring of R∗ [13, page 401]. In the terminology of Northcott, a filtration {In}
∞
n=0

is said to be multiplicative if I0 = R and InIm ⊆ In+m, for all m ≥ 0, n ≥ 0 [13,

page 408]. A well-known example of a multiplicative filtration on R is the I-adic

filtration {In}∞n=0, where I is a fixed ideal of R.

In this article we consider filtrations of ideals of R that are not multiplicative,

and examine the completions associated to these filtrations. We assume the ring

R is Noetherian. Instead of successive powers of a fixed ideal I, we use a filtration

formed from a more general descending sequence {In}
∞
n=0 of ideals. We require that,

for each n > 0, the nth ideal In is contained in the nth power of the Jacobson radical

of R, and that Ink ⊆ I
k
n for all k, n ≥ 0. We call the associated completion a multi-

adic completion, and denote it by R∗. The basics of the multi-adic construction

and the relationship between this completion and certain ideal-adic completions are

considered in Section 2. In Section 3, we prove, for {In} as described above, that R∗

is Noetherian. Let (R,m) be a Noetherian local ring. If R is excellent, Henselian

or universally catenary, we prove in Section 4 that R∗ has the same property.
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We were inspired to pursue this project partly because of our continuing interest

in exploring completions and power series. In our previous work we construct

various examples of rings inside relatively well understood rings such as the (x)-

adic completion k[y][[x]] of a polynomial ring k[x, y] in two variables x and y over

a field k [4], [5]. We obtain examples that demonstrate that certain properties of a

ring may fail to extend to its m-adic completion, where m is a maximal ideal [6].

The process of passing to completion gives an analytic flavor to algebra. Often

we view completions in terms of power series, or in terms of coherent sequences as

in [1, pages 103-104]. Sometimes results are established by demonstrating for each

n that they hold at the nth stage in the inverse limit.

Multi-adic completions are interesting from another point of view. Many coun-

terexamples in commutative algebra can be considered as subrings of R∗/J , where

R∗ is a multi-adic completion of a localized polynomial ring R over a countable

ground field and J is an ideal of R∗. In particular, certain counterexamples of

Brodmann and Rotthaus, Heitmann, Nishimura, Ogoma, Rotthaus and Weston

can be interpreted in this way, cf. [2], [3], [7], [11], [12], [14], [15], [16], [17], [20].

For most of these examples, a particular enumeration, {p1, p2, . . . }, of countably

many non-associate prime elements is chosen and the ideals In are defined to be

In := (p1p2 . . . pn)n. The Noetherian property in these examples is a trivial con-

sequence of the fact that every ideal of R∗ that contains one of the ideals In, or a

power of In, is extended from R. In general, an advantage of R∗ over the In-adic

completion R̂n is that an ideal of R∗ is more likely to be extended from R than is

an ideal of R̂n.

All rings we consider are assumed to be commutative with identity. A general

reference for our notation and terminology is [8].

2. Basic mechanics for the multi-adic construction

Setting 2.1. Let R be a Noetherian ring with Jacobson radical J , and let N denote

the set of positive integers. For each n ∈ N, let Qn be an ideal of R. Assume that

the sequence {Qn} is descending, that is Qn+1 ⊆ Qn, and that Qn ⊆ J
n, for each

n ∈ N. Also assume, for each pair of integers k, n ∈ N, that Qnk ⊆ Q
k
n.

Let F = {Qk}k≥0 be the filtration

R = Q0 ⊇ Q1 ⊇ · · · ⊇ Qk ⊇ Qk+1 ⊇ · · ·

of R and define

(2.1.1) R∗ := lim
←−

k

R/Qk

to be the completion of R with respect to F .
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Let R̂ := lim
←−

k

R/J k denote the completion of R with respect to the powers of

the Jacobson radical J of R, and for each n ∈ N, let

(2.1.2) R̂n := lim
←−

k

R/Qk
n

denote the completion of R with respect to the powers of Qn.

Remark 2.2. Assume notation as in Setting 2.1. For each fixed n ∈ N, we have

R∗ = lim
←−

k

R/Qk = lim
←−

k

R/Qnk,

where k ∈ N varies. This holds because the limit of a subsequence is the same as

the limit of the original sequence.

We establish in Proposition 2.3 canonical inclusion relations among R̂ and the

completions defined in (2.1.1) and (2.1.2).

Proposition 2.3. Let the notation be as in Setting 2.1. For each n ∈ N, we have

canonical inclusions

R ⊆ R∗ ⊆ R̂n ⊆ R̂n−1 ⊆ · · · ⊆ R̂1 ⊆ R̂.

Proof. The inclusion R ⊆ R∗ is clear since the intersection of the ideals Qk is zero.

For the inclusion R∗ ⊆ R̂n, by Remark 2.2, R∗ = lim
←−

k

R/Qnk. Notice that

Qnk ⊆ Q
k
n ⊆ Q

k
n−1 ⊆ · · · ⊆ J

k.

Now Lemma 2.4 (below) completes the proof of Proposition 2.3. �

The following lemma establishes injectivity in more generality for completions

with respect to ideal filtrations (see also [13, Section 9.5]). Here the respective

completions are defined using coherent sequences as in [1, pages 103-104].

Lemma 2.4. Let R be a Noetherian ring with Jacobson radical J and let {Hk}k∈N,

{Ik}k∈N and {Lk}k∈N be descending sequences of ideals of R such that, for each

k ∈ N, we have inclusions

Lk ⊆ Ik ⊆ Hk ⊆ J
k.

We denote the families of natural surjections arising from these inclusions as:

δk : R/Lk → R/Ik, λk : R/Ik → R/Hk and θk : R/Hk → R/J k,

and the completions with respect to these families as:

R̂L := lim
←−

k

R/Lk, R̂I := lim
←−

k

R/Ik R̂H := lim
←−

k

R/Hk and R̂ := lim
←−

k

R/J k.

Then

(1) These families of surjections induce canonical injective maps ∆, Λ and Θ

among the completions as shown in the diagram below.
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(2) For each positive integer k we have a commutative diagram as displayed

below, where the vertical maps are the natural surjections.

R/Lk
δk−−−−→ R/Ik

λk−−−−→ R/Hk
θk−−−−→ R/J k

x
x

x
x

R̂L
∆

−−−−→ R̂I
Λ

−−−−→ R̂H
Θ

−−−−→ R̂ .

(3) The composition Λ · ∆ is the canonical map induced by the natural sur-

jections λk · δk : R/Lk → R/Hk. Similarly, the other compositions in

the bottom row are the canonical maps induced by the appropriate natural

surjections.

Proof. In each case there is a unique homomorphism of the completions. For ex-

ample, the family of homomorphisms {δk}k∈N induces a unique homomorphism

(2.1) R̂L
∆

−−−−→ R̂I .

To define ∆, let x = (xk)k∈N ∈ R̂L, where each xk ∈ R/Lk. Then δk(xk) ∈ R/Ik

and we define ∆(x) := (δk(xk))k∈N ∈ R̂I .

To show the maps on the completions are injective, consider for example the

map ∆. Suppose x = (xk)k∈N ∈ lim
←−

k

R/Lk with ∆(x) = 0. Then δk(xk) = 0 in

R/Ik, that is, xk ∈ Ik/Lk = Ik(R/Lk), for every k ∈ N. For v ∈ N, consider the

following commutative diagram:

(2.2)

R/Lk
δk−−−−→ R/Ik

βk,kv

x αk,kv

x

R/Lkv
δkv−−−−→ R/Ikv

where βk,kv and αk,kv are the canonical surjections associated with the inverse

limits. We have xkv ∈ Ikv/Lkv = Ikv(R/Lkv). Therefore

xk = βk,kv(xkv) ∈ Ikv(R/Lk) ⊆ J kv(R/Lk),

for every v ∈ N. Since J (R/Lk) is contained in the Jacobson radical of R/Lk and

R/Lk is Noetherian, we have
⋂

v∈N

J kv(R/Lk) = (0).

Therefore xk = 0 for each k ∈ N, so ∆ is injective. The remaining assertions are

clear. �

Lemma 2.5. With R∗ and R̂n as in Setting 2.1, we have

R∗ =
⋂

n∈N

R̂n.
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Proof. The inclusion “⊆” is shown in Proposition 2.3. For the reverse inclusion,

fix positive integers n and k, and let Lℓ = Qnkℓ, Iℓ = Qℓ
nk and Hℓ = Qℓ

n for each

ℓ ∈ N. Then Lℓ ⊆ Iℓ ⊆ Hℓ ⊆ J
ℓ, as in Lemma 2.4 and

R̂L := lim
←−

ℓ

R/Qnkℓ = R∗, R̂I := lim
←−

ℓ

R/Qℓ
nk = R̂nk, R̂H := lim

←−
ℓ

R/Qℓ
n = R̂n.

(Also, as before, R̂ := lim
←−

ℓ

R/J ℓ.) We define ϕn, ϕnk, ϕnk,n, θ and ϕ to be the

canonical injective homomorphisms given by Lemma 2.4 among the rings displayed

in the following diagram.

R̂ R̂n
θ

R∗ R̂nk

(2.5.1)

ϕ ϕnk,n
ϕn

ϕnk

By Lemma 2.4, Diagram 2.5.1 is commutative.

Let ŷ ∈
⋂

n∈N
R̂n. We show that there is an element ξ ∈ R∗ such that ϕ(ξ) = ŷ.

This is sufficient to ensure that ŷ ∈ R∗, since the maps θt are injective and Diagram

2.5.1 is commutative.

First, we define ξ: For each t ∈ N, we have

ŷ = (y1,t, y2,t, . . . , ) ∈ lim
←−

ℓ

R/Qℓ
t = R̂t,

where y1,t ∈ R/Qt, y2,t ∈ R/Q2
t and y2,t + Qt/Q

2
t = y1,t in R/Qt, · · · and so

forth, is a coherent sequence as in [1, pp. 103-104]. Now take zt ∈ R so that

zt + Qt = y1,t. Thus ŷ − zt ∈ QtR̂t. For positive integers s and t with s ≥ t, we

have Qs ⊆ Qt. Therefore zt − zs ∈ QtR̂t ∩ R = QtR. Thus ξ := (zt)t∈N ∈ R
∗. We

have ŷ−zt ∈ QtR̂t ⊆ J
tR̂, for all t ∈ N. Hence ϕ(ξ) = ŷ. This completes the proof

of Lemma 2.5. �

The following special case of Setting 2.1 is used by Brodmann, Rotthaus, Ogoma,

Heitmann, Weston and Nishimura for the construction of numerous examples.

Setting 2.6. Let R be a Noetherian ring with Jacobson radical J . For each i ∈ N,

let pi ∈ J be a non-zero-divisor (that is a regular element) on R.

For each n ∈ N, let qn = (p1 · · · pn)n. Let F0 = {(qk)}k≥0 be the filtration

R ⊇ (q1) ⊇ · · · ⊇ (qk) ⊇ (qk+1) ⊇ · · ·

of R and define R∗ := lim
←−

k

R/(qk) to be the completion of R with respect to F0.

Remark 2.7. In Setting 2.6, assume further that R = K[x1, . . . , xn](x1,...,xn),

the localized polynomial ring over a countable field K, and that {p1, p2, . . .} is

an enumeration of all the prime elements (up to associates) in R. As in 2.6, let
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R∗ := lim
←−
n

R/(qn), where each qn = (p1 · · · pn)n. The ring R∗ is often useful for the

construction of Noetherian local rings with a bad locus (regular, CM, normal). In

particular, the authors listed in the paragraph preceding Setting 2.6 make use of

special subrings of this multi-adic completion R∗ for their counterexamples. The

first such example was constructed by Rotthaus in [16]. In this paper, a regular lo-

cal Nagata ring A is obtained which contains a prime element ω so that the singular

locus of the quotient ring A/(ω) is not closed. This ring A is situated between the

localized polynomial ring R and its ∗-completion R∗; thus, in general R∗ is bigger

than R. In the Rotthaus example, the singular locus of (A/(ω))∗ is defined by a

height one prime ideal Q that intersects A/(ω) in (0). Since all ideals Q+ (pn) are

extended from A/(ω), the singular locus of A/(ω) is not closed.

3. Preserving Noetherian under multi-adic completion

Theorem 3.1. With notation as in Setting 2.1, the ring R∗ defined in (2.1.1) is

Noetherian.

Proof. It suffices to show each ideal I of R∗ is finitely generated. Since R̂ is Noe-

therian, there exist f1, . . . , fs ∈ I such that IR̂ = (f1, . . . , fs)R̂. Since R̂n →֒ R̂ is

faithfully flat, IR̂n = IR̂ ∩ R̂n = (f1, . . . , fs)R̂n, for each n ∈ N.

Let f ∈ I ⊆ R∗. Then f ∈ IR̂1, and so

f =

s∑

i=1

b̂i0fi,

where b̂i0 ∈ R̂1. Consider R as “Q0”, and so b̂i0 ∈ Q0R̂1. Since R̂1/Q1R̂1
∼= R/Q1,

for all i with 1 ≤ i ≤ s, we have b̂i0 = ai0 + ĉi1, where ai0 ∈ R = Q0R and

ĉi1 ∈ Q1R̂1. Then

f =

s∑

i=1

ai0fi +

s∑

i=1

ĉi1fi.

Notice that

d̂1 :=
s∑

i=1

ĉi1fi ∈ (Q1I)R̂1 ∩R
∗ ⊆ R̂2.

By the faithful flatness of the extension R̂2 →֒ R̂1, we see d̂1 ∈ (Q1I)R̂2, and

therefore there exist b̂i1 ∈ Q1R̂2 with

d̂1 =

s∑

i=1

b̂i1fi.

As before, using that R̂2/Q2R̂2
∼= R/Q2, we can write b̂i1 = ai1+ ĉi2, where ai1 ∈ R

and ĉi2 ∈ Q2R̂2. This implies that ai1 ∈ Q1R̂2 ∩R = Q1. We have:

f =

s∑

i=1

(ai0 + ai1)fi +

s∑

i=1

ĉi2fi.
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Now set

d̂2 :=

s∑

i=1

ĉi2fi.

Then d̂2 ∈ (Q2I)R̂2 ∩R
∗ ⊆ R̂3 and, since the extension R̂3 →֒ R̂2 is faithfully flat,

we have d̂2 ∈ (Q2I)R̂3. We repeat the process. By a simple induction argument,

f =
s∑

i=1

(ai0 + ai1 + ai2 + . . .)fi,

where aij ∈ Qj and ai0 + ai1 + ai2 + . . . ∈ R∗. Thus f ∈ (f1, . . . , fs)R
∗. Hence I is

finitely generated and R∗ is Noetherian. �

Corollary 3.2. With notation as in Setting 2.1, the maps R →֒ R∗, R∗ →֒ R̂n and

R∗ →֒ R̂ are faithfully flat.

We use Proposition 3.3 in the next section on preserving excellence.

Proposition 3.3. Assume notation as in Setting 2.1, and let the ring R∗ be defined

as in (2.1.1). If M is a finitely generated R∗-module, then

M ∼= lim
←−

k

(M/QkM),

that is, M is ∗-complete.

Proof. If F = (R∗)n is a finitely generated free R∗-module, then one can see directly

that

F ∼= lim
←−

k

F/QkF,

and so F is ∗-complete.

Let M be a finitely generated R∗-module. Consider an exact sequence:

0 −→ N −→ F −→M −→ 0,

where F is a finitely generated free R∗-module. This induces an exact sequence:

0 −→ Ñ −→ F ∗ −→M∗ −→ 0,

where Ñ is the completion ofN with respect to the induced filtration {QkF∩N}k≥0,

cf. [1, (10.3)].

This gives a commutative diagram:

0 −−−−→ N −−−−→ F −−−−→ M −−−−→ 0
y ∼=

y γ

y

0 −−−−→ Ñ −−−−→ F ∗ −−−−→ M∗ −−−−→ 0
where γ is the canonical map γ : M −→ M∗. The diagram shows that γ is

surjective. We have
∞⋂

k=1

(QkM) ⊆

∞⋂

k=1

JkM = (0),
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where the last equality is by [1, (10.19)]. Therefore γ is also injective. �

Remark 3.4. Let the notation be as in Setting 2.1, and let B be a finite R∗-algebra.

Let B̂n
∼= B ⊗R∗ R̂n denote the Qn-adic completion of B. By Proposition 2.3, and

Corollary 3.2, we have a sequence of inclusions:

B →֒ · · · →֒ B̂n+1 →֒ B̂n →֒ . . . →֒ B̂1 →֒ B̂,

where B̂ denotes the completion of B with respect to JB. Let J0 denote the

Jacobson radical of B. Since every maximal ideal of B lies over a maximal ideal of

R∗, we have JB ⊆ J0.

Theorem 3.5. With the notation of Setting 2.1, let B be a finite R∗-algebra and

let B̂n
∼= B ⊗R∗ R̂n denote the Qn-adic completion of B. Let Î be an ideal of B̂,

let I := Î ∩ B, and let In := Î ∩ B̂n, for each n ∈ N. If Î = InB̂, for all n, then

Î = IB̂.

Proof. By replacing B by B/I, we may assume that (0) = I = Î ∩B. To prove the

theorem, it suffices to show that Î = 0.

For each n ∈ N, we define ideals cn of B̂n and an of B:

cn := In +QnB̂n, an := cn ∩B.

Since B/QnB = B̂n/QnB̂n, the ideals of B containing Qn are in one-to-one

inclusion-preserving correspondence with the ideals of B̂n containing QnB̂n, and so

(3.5.1) anB̂n = cn, an+1B̂n = an+1B̂n+1B̂n = cn+1B̂n.

Since B̂ is faithfully flat over B̂n and Î is extended,

(3.5.2) In+1B̂n = (In+1B̂) ∩ B̂n = Î ∩ B̂n = In.

Thus, for all n ∈ N, we have, using (3.5.1), (3.5.2) and Qn+1B̂n ⊆ QnB̂n:

anB̂n = cn = In +QnB̂n = In+1B̂n +QnB̂n = cn+1B̂n +QnB̂n = an+1B̂n +QnB̂n.

Since B̂n is faithfully flat over B, the equation above implies that

(3.5.3) an+1 +QnB = (an+1B̂n +QnB̂n) ∩B = anB̂n ∩B = an.

Thus also

(3.5.4) anB̂ ⊆ an+1B̂ +QnB̂ ⊆ In+1B̂ +QnB̂ = Î +QnB̂.

Now Qn ⊆ J
nB̂ and J ⊆ J0, and so using (3.5.4)

⋂

n∈N

(anB̂) ⊆
⋂

n∈N

(Î +QnB̂) ⊆
⋂

n∈N

(Î + J nB̂) = Î .

Since Î ∩B = (0), we have

0 = Î ∩B ⊇ (
⋂

nnN

(anB̂)) ∩B ⊇
⋂

n∈N

((anB̂) ∩B) =
⋂

n∈N

an,
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where the last equality is because B̂ is faithfully flat over B. Thus
⋂

n∈N
an = (0).

Claim. Î = (0).

Proof of Claim. Suppose Î 6= 0. Then there exists d ∈ N so that Î * J d
0 B̂. By

hypothesis, Î = IdB̂, and so IdB̂ * J d
0 B̂. Since B̂ is faithfully flat over B̂d, we

have Id * J d
0 B̂d. By (3.5.1),

adB̂d = cd = Id +QdB̂d * J d
0 B̂d,

and so there exists an element yd ∈ ad with yd /∈ J
d
0 .

By (3.5.3), ad+1 +QdB = ad. Hence there exists yd+1 ∈ ad+1 and qd ∈ QdB so

that yd+1 + qd = yd. Recursively we construct sequences of elements yn ∈ an and

qn ∈ QnB, for each n ≥ d, so that yn+1 + qn = yn.

The sequence ξ = (yn + QnB) ∈ lim
←−
n

B/QnB = B corresponds to a nonzero

element y ∈ B so that, for every n ≥ d, we have y = yn + gn, for some element

gn ∈ QnB. This shows that y ∈ an, for all n ≥ d, and therefore
⋂

n∈N
an 6= 0, a

contradiction. Thus Î = (0). �

4. Preserving excellence and Henselian under multi-adic completion

The first four results of this section concern preservation of excellence.

Theorem 4.1. Assume notation as in Setting 2.1, and let the ring R∗ be defined

as in (2.1.1). If (R,m) is an excellent local ring, then R∗ is excellent.

The following result is critical to the proof of Theorem 4.1.

Lemma 4.2. [8, Theorem 32.5, page 259] Let A be a semilocal Noetherian ring.

Assume that (B̂)Q is a regular local ring, for every local domain (B,n) that is a

localization of a finite A-algebra and for every prime ideal Q of the n-adic comple-

tion B̂ such that Q ∩B = (0). Then A is a G-ring, that is, A →֒ Âp is regular for

every prime ideal p of A; thus all of the formal fibers of all the local rings of A are

geometrically regular.

We use Proposition 4.3 in the proof of Theorem 4.1.

Proposition 4.3. Let (R,m) be a Noetherian local ring with geometrically regular

formal fibers. Then R∗ has geometrically regular formal fibers.

Proof. Let B be a domain that is a finite R∗-algebra and let P ∈ Sing(B̂), that is,

B̂P is not a regular local ring. To prove that R∗ has geometrically regular formal

fibers, by Lemma 4.2, it suffices to prove that P ∩B 6= (0).

The Noetherian complete local ring R̂ has the property J-2 in the sense of

Matsumura, that is, for every finite R̂-algebra, such as B̂, the subset Reg(Spec(B̂)),
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of primes where the localization of B̂ is regular is an open subset, c.f. [9, pp. 246–

249]. Thus there is a radical ideal Î in B̂ so that

Sing(B̂) = V(Î).

If Î = (0), that is, (0) is a radical ideal, then B̂ is a reduced ring and, for all

minimal primes Q of B̂, the localization B̂Q is a field, contradicting Q ∈ Sing(B̂).

Thus Î 6= (0). For all n ∈ N:

B̂n
∼= R̂n ⊗R∗ B

is a finite R̂n-algebra. Since by [17] R̂n has geometrically regular formal fibers so

has B̂n. This implies that Î is extended from B̂n for all n ∈ N. By Theorem 3.5,

Î is extended from B, so Î = IB̂, where 0 6= I := Î ∩ B. Since Î ⊆ P , we have

(0) 6= I ⊆ P ∩B. �

Proof of Theorem 4.1 It remains to show that R∗ is universally catenary. We

have injective local homomorphisms R →֒ R∗ →֒ R̂, and R∗ is Noetherian with

R̂∗ = R̂. Proposition 4.4 below implies that R∗ is universally catenary. �

Proposition 4.4. Let (A,m) be a Noetherian local universally catenary ring and

let (B,n) be a Noetherian local subring of the m-adic completion Â of A with

A ⊆ B ⊆ Â and B̂ = Â, where B̂ is the n-adic completion of B. Then B is

universally catenary.

Proof. By [8, Theorem 31.7], it suffices to show for P ∈ Spec(B) that Â/P Â is

equidimensional. We may assume that P ∩A = (0), and hence we may assume that

A is a domain.

Let Q and W in Spec(Â) be minimal primes over PÂ.

Claim: dim(Â/Q) = dim(Â/W ).

Proof of Claim: Since B is Noetherian, the canonical morphisms BP −→ ÂQ and

BP −→ ÂW are flat. By [8, Theorem 15.1],

dim(ÂQ) = dim(BP ) + dim(ÂQ/PÂQ), dim(ÂW ) = dim(BP ) + dim(ÂW /PÂW ).

Since Q and W are minimal over PÂ, it follows that:

dim(ÂQ) = dim(ÂW ) = dim(BP ).

Let q ⊆ Q and w ⊆W be minimal primes of Â so that:

dim(ÂQ) = dim(ÂQ/qÂQ) and dim(ÂW ) = dim(ÂW /wÂW ).

Since we have reduced to the case where A is a universally catenary domain, its

completion Â is equidimensional and therefore:

dim(Â/q) = dim(Â/w).
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Since a complete local ring is catenary [8, Theorem 29.4], we have:

dim(Â/q) = dim(ÂQ/qÂQ) + dim(Â/Q),

dim(Â/w) = dim(ÂW /wÂW ) + dim(Â/W ).

Since dim(Â/q) = dim(Â/w) and dim(ÂQ) = dim(ÂW ), it follows that

dim(Â/Q) = dim(Â/W ).

This completes the proof of Proposition 4.4. �

Remark 4.5. Let R be a universally catenary Noetherian local ring. Proposi-

tion 4.4 implies that every Noetherian local subring B of R̂ with R ⊆ B and B̂ = R̂

is universally catenary. Hence, for each ideal I of R, the I-adic completion of R

is universally catenary. Also R∗ as in Setting 2.1 is universally catenary. Proposi-

tion 4.4 also implies that the Henselization of R is universally catenary. Seydi shows

that the I-adic completions of universally catenary rings are universally catenary

in [19]. Proposition 4.4 establishes this result for a larger class of rings.

Proposition 4.6. With notation as in Setting 2.1, let (R,m, k) be a Noetherian

local ring. If R is Henselian, then R∗ is Henselian.

Proof. Assume that R is Henselian. It is well known that every ideal-adic comple-

tion of R is Henselian, cf. [18, p.6]. Thus R̂n is Henselian for all n ∈ N. Let n

denote the nilradical of R̂. Then n ∩R∗ is the nilradical of R∗, and to prove R∗ is

Henselian, it suffices to prove that R′ := R∗/(n∩R∗) is Henselian [10, (43.15)]. To

prove R′ is Henselian, by [18, Prop. 3, page 76], it suffices to show:

If f ∈ R′[x] is a monic polynomial and its image f̄ ∈ k[x] has a simple root, then

f has a root in R′.

Let f ∈ R′[x] be a monic polynomial such that f̄ ∈ k[x] has a simple root. Since

R̂n/(n ∩ R̂n) is Henselian, for each n ∈ N, there exists α̂n ∈ R̂n/(n ∩ R̂n) with

f(α̂n) = 0. Since f is monic and R̂/(n ∩ R̂) is reduced, f has only finitely many

roots in R̂/(n ∩ R̂). Thus there is an α so that α = α̂n, for infinitely many n ∈ N.

By Lemma 2.5, R∗ =
⋂

n∈N
R̂n. Hence

R′ = R∗/(n ∩R∗) =
⋂

n∈N

R̂n/(n ∩ R̂n),

and so there exists α ∈ R′ such that f(α) = 0. �
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