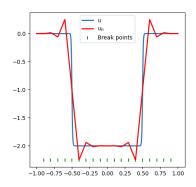
Efficient Neural Network Methods for Numerical PDEs: Singularly Perturbed Problems

César Herrera 1

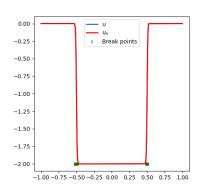
> ¹Department of Mathematics, Purdue University ²Lawrence Livermore National Laboratory

> > Finite Element Circus October 2025

A New Class of Approximating Functions



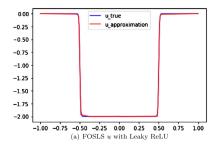
Fixed uniform mesh



Moving mesh

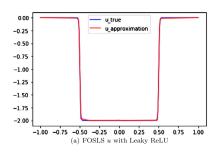
Feature: moving the mesh

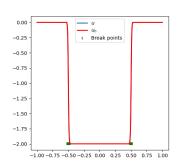
A New Class of Approximating Functions



1-32-32-24-24-1, 2962 parameters, 20 hours¹

A New Class of Approximating Functions





1-20-1, 41 parameters, 30 seconds

3/23

► Important: efficient nonlinear solver

¹Zhiqiang Cai et al. "Deep least-squares methods: An unsupervised learning-based numerical method for solving elliptic PDEs". In: *Journal of Computational Physics* (2020)

Broader Goals

We look at problems with numerical challenges such as

- ▶ Boundary/interior layers: e.g., singularly perturbed elliptic problems.
- ➤ Shocks/discontinuities and unknown interface: e.g., hyperbolic conservation laws, advection reaction problems.

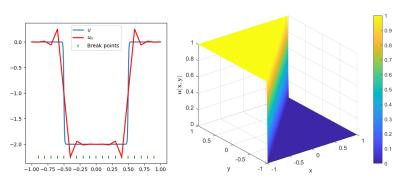


Table of Contents

Shallow Neural Networks

2 Diffusion-Reaction Equation

Allen-Cahn Equation

Table of Contents

Shallow Neural Networks

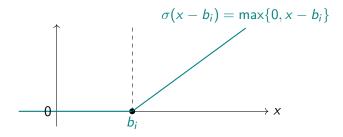
② Diffusion-Reaction Equation

3 Allen-Cahn Equation

Shallow Neural Networks

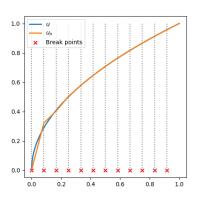
One-dimensional shallow (ReLU) neural network:

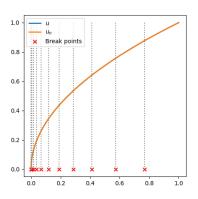
$$\mathcal{M}_n(0,1) = \left\{ c_0 + \sum_{i=1}^n c_i \sigma(x - b_i) : c_i \in \mathbb{R}, b_i \in [0,1] \right\}$$



- Piecewise linear function
- Parameters
 - $\mathbf{0}$ $c_i \rightarrow \mathbf{linear}$ parameters
 - $b_i \rightarrow \text{non-linear parameters (breaking points)}$

Example





Fixed uniform mesh

Moving mesh

Fig: NN approximation to $u(x) = \sqrt{x}$ with 12 breakpoints

Shallow Neural Networks

- ▶ In fact the error, is $(L^{\infty} \text{ norm})$
 - \triangleright $\mathcal{O}(n^{-1/2})$ on a fixed uniform mesh.
 - $ightharpoonup \mathcal{O}(n^{-1})$ on a moving mesh.
- ▶ Drawback: Finding optimal breaking points ↔ solving a high-dimensional non-convex optimization problem

Table of Contents

Shallow Neural Networks

2 Diffusion-Reaction Equation

3 Allen-Cahn Equation

Neural Network Method for 1D Diffusion-Reaction

Diffusion-Reaction problem:

$$\begin{cases} -u''(x) + u(x) = f(x), & x \in (0,1), \\ u(0) = u(1) = 0. \end{cases}$$

Ritz formulation:

$$u = \underset{v \in H_0^1(0,1)}{\min} J(v), \qquad J(v) = \frac{1}{2} \int_0^1 [(v')^2 + v^2] dx - \int_0^1 fv dx.$$

Neural network approximation:

$$u_n = \underset{v \in \mathcal{M}_n(0,1)}{\arg \min} J(v).$$

$$v(0)=v(1)=0$$

Neural Network Method for 1D Diffusion-Reaction

Diffusion-Reaction problem:

$$\begin{cases} -u''(x) + u(x) = f(x), & x \in (0,1), \\ u(0) = u(1) = 0. \end{cases}$$

Ritz formulation:

$$u = \underset{v \in H_0^1(0,1)}{\min} J(v), \qquad J(v) = \frac{1}{2} \int_0^1 \left[(v')^2 + v^2 \right] dx - \int_0^1 fv \, dx.$$

Neural network approximation:

$$u_n = \underset{\substack{v \in \mathcal{M}_n(0,1) \\ v(0) = v(1) = 0}}{\arg \min} J(v).$$

First-Order Optimality Conditions

Minimization problem:

$$u_n = \underset{\substack{v \in \mathcal{M}_n(0,1) \\ v(0) = v(1) = 0}}{\arg \min} J(v)$$

Neural network representation:

$$u_n(x; \mathbf{c}, \mathbf{b}) = c_0 + \sum_{i=1}^n c_i \, \sigma(x - b_i),$$

where

$$\mathbf{c} = (c_0, \dots, c_n)^T, \qquad \mathbf{b} = (b_1, \dots, b_n)^T.$$

First-order optimality conditions:

$$\nabla_{\mathbf{c}}J(\mathbf{c},\mathbf{b})=\mathbf{0}, \qquad \nabla_{\mathbf{b}}J(\mathbf{c},\mathbf{b})=\mathbf{0}.$$

Optimality Conditions

For a given fixed **b**

$$\nabla_{\mathbf{c}}J(\mathbf{c},\mathbf{b})=\mathbf{0}$$

is a system of **linear** equations for **c**.

Difficulties:

Coefficient matrix

$$A(\mathbf{b}) = \left(\int_0^1 \sigma'(x - b_i)\sigma'(x - b_j)dx\right)_{ij}, \quad \kappa(A) = \mathcal{O}(nh_{\min}^{-1})$$

Mass matrix

$$M(\mathbf{b}) = \left(\int_0^1 \sigma(x-b_i)\sigma(x-b_j)dx\right)_{ij}, \quad \kappa(M) = \mathcal{O}(nh_{\min}^{-3})$$

are both dense and ill-conditioned.

Optimality Conditions

For a given fixed **c**

$$\nabla_{\mathbf{b}}J(\mathbf{c},\mathbf{b})=0$$

is a system of **nonlinear** algebraic equations for \mathbf{b} .

Difficulties:

- ReLU is not differentiable at 0.
- ► The Hessian matrix $\nabla_{\mathbf{b}}^2 J(\mathbf{c}, \mathbf{b})$ could be singular.

Optimality Conditions

How do we overcome these challenges?

- ► The mass and coefficient matrices can be factorized as products of tri-diagonal matrices.
- A **reduced nonlinear system** is obtained by removing breakpoints that make the Hessian **singular**.
- **Exact inversions** can be done in O(n) operations.

Iterative Method

Given the parameters $(\mathbf{c}^{(k)}, \mathbf{b}^{(k)})$, we compute $(\mathbf{c}^{(k+1)}, \mathbf{b}^{(k+1)})$ as follows:

(i) Compute $c^{(k+1)}$ by solving the system of linear equations

$$\nabla_{\mathbf{c}}J(\mathbf{c},\mathbf{b}^{(k)})=\mathbf{0}$$

(ii) Compute $\mathbf{b}^{(k+1)}$ using a **Newton iteration**

$$\mathbf{b}^{(k+1)} = \mathbf{b}^{(k)} - \left[\nabla_{\mathbf{b}}^2 J(\mathbf{c}^{(k+1)}, \mathbf{b}^{(k)})\right]^{-1} \nabla_{\mathbf{b}} J(\mathbf{c}^{(k+1)}, \mathbf{b}^{(k)}).$$

The **computational cost** of each iteration is O(n).

Iterative Method

Given the parameters $(\mathbf{c}^{(k)}, \mathbf{b}^{(k)})$, we compute $(\mathbf{c}^{(k+1)}, \mathbf{b}^{(k+1)})$ as follows:

(i) Compute $c^{(k+1)}$ by solving the system of linear equations

$$\nabla_{\mathbf{c}} J(\mathbf{c}, \mathbf{b}^{(k)}) = \mathbf{0}.$$

(ii) Compute $\mathbf{b}^{(k+1)}$ using a **Newton iteration**

$$\mathbf{b}^{(k+1)} = \mathbf{b}^{(k)} - \left[\nabla_{\mathbf{b}}^2 J(\mathbf{c}^{(k+1)}, \mathbf{b}^{(k)}) \right]^{-1} \nabla_{\mathbf{b}} J(\mathbf{c}^{(k+1)}, \mathbf{b}^{(k)}).$$

The **computational cost** of each iteration is O(n).

Iterative Method

Given the parameters $(\mathbf{c}^{(k)}, \mathbf{b}^{(k)})$, we compute $(\mathbf{c}^{(k+1)}, \mathbf{b}^{(k+1)})$ as follows:

(i) Compute $c^{(k+1)}$ by solving the system of linear equations

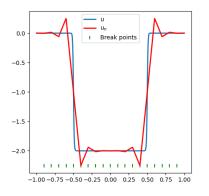
$$\nabla_{\mathbf{c}}J(\mathbf{c},\mathbf{b}^{(k)})=\mathbf{0}.$$

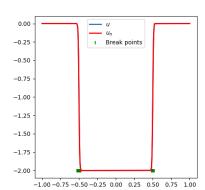
(ii) Compute $\mathbf{b}^{(k+1)}$ using a **Newton iteration**

$$\mathbf{b}^{(k+1)} = \mathbf{b}^{(k)} - \left[\nabla_{\mathbf{b}}^2 J(\mathbf{c}^{(k+1)}, \mathbf{b}^{(k)}) \right]^{-1} \nabla_{\mathbf{b}} J(\mathbf{c}^{(k+1)}, \mathbf{b}^{(k)}).$$

The **computational cost** of each iteration is $\mathcal{O}(n)$.

Numerical Experiment





Initial NN Approximation

Optimized NN Approximation-200 itr

Fig: Solving
$$-\varepsilon^2 u''(x) + u(x) = f(x)$$
, $\varepsilon^2 = 10^{-4}$

Table of Contents

Shallow Neural Networks

Diffusion-Reaction Equation

Allen-Cahn Equation

Allen-Cahn Equation

Scalar Allen-Cahn equation

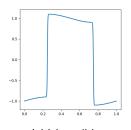
$$u_t(x,t) = \varepsilon^2 u_{xx}(x,t) - \left(u(x,t)^3 - u(x,t)\right)$$

First order CSS

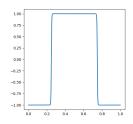
$$\frac{u^{k} - u^{k-1}}{\Delta t} = \varepsilon^{2} u_{xx}^{k} - (u^{k})^{3} + u^{k-1}$$

- Absolute stable.
- Semilinear Diffusion-reaction problem for each time step.

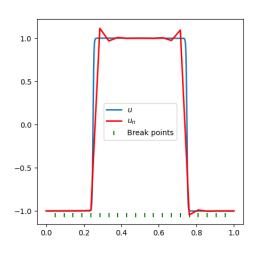
Numerical Experiment: Finite Element Approximation



Initial condition



Final state



Finite element approximation, 20 uniform breakpoints

Neural Network Method Semilinear Diffusion-Reaction

Semilinear Diffusion-Reaction problem:

$$\begin{cases} -u''(x) + (u(x))^3 = f(x), & x \in (0,1), \\ u(0) = u(1) = 0. \end{cases}$$

Neural Network Method Semilinear Diffusion-Reaction

Semilinear Diffusion-Reaction problem:

$$\begin{cases} -u''(x) + (u(x))^3 = f(x), & x \in (0,1), \\ u(0) = u(1) = 0. \end{cases}$$

Can we extend our iterative NN method for these problems?

Neural Network Method Semilinear Diffusion-Reaction

Semilinear Diffusion-Reaction problem:

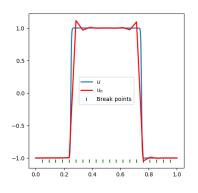
$$\begin{cases} -u''(x) + (u(x))^3 = f(x), & x \in (0,1), \\ u(0) = u(1) = 0. \end{cases}$$

Can we extend our iterative NN method for these problems?

Yes!

The method can be generalized without losing efficiency: each iteration still costs O(n).

Numerical Experiment: NN Approximation



1.00 0.75 0.50 0.25 0.00 -0.25-0.50-0.75 Break points -1.00 0.2 0.0 0.4 0.6 0.8 1.0

20 fixed breakpoints

20 moving breakpoints

Fig: Solving
$$u_t = \varepsilon^2 u_{\rm xx} - \left(u^3 - u\right)$$
, $\varepsilon^2 = 10^{-5}$

Conclusions and Remarks

- Key points of our NN method for 1D diffusion-reaction problems.
 - Efficiently **moves the mesh** for singularly perturbed problems.
 - Local convergence was analyzed.
 - ► Can be extended to semilinear problems and Allen-Cahn equation.
- Ongoing work: 2D Advection-Reaction Equation.
- For more details see:
 - Z. Cai, A. Doktorova, R. D. Falgout, and C. Herrera. Efficient Shallow Ritz Method For 1D Diffusion Problems. arXiv:2404.17750.
 - Z. Cai, A. Doktorova, R. D. Falgout, and C. Herrera. Efficient Shallow Ritz Method For 1D Diffusion-Reaction Problems. SISC, 2025.
 - Website: math.purdue.edu/herre125/

Conclusions and Remarks

- Key points of our NN method for 1D diffusion-reaction problems.
 - Efficiently **moves the mesh** for singularly perturbed problems.
 - **Local convergence** was analyzed.
 - Can be extended to semilinear problems and Allen-Cahn equation.
- Ongoing work: 2D Advection-Reaction Equation.
- For more details see:
 - Z. Cai, A. Doktorova, R. D. Falgout, and C. Herrera. Efficient Shallow Ritz Method For 1D Diffusion Problems. arXiv:2404.17750.
 - Z. Cai, A. Doktorova, R. D. Falgout, and C. Herrera. Efficient Shallow Ritz Method For 1D Diffusion-Reaction Problems. SISC, 2025.
 - Website: math.purdue.edu/herre125/