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A New Class of Approximating Functions

— 000 =—————— ——u
A Un ! tn
0.0 q .
I Break points -0.25 1 1 Break points
=0.50 A
—0.5 4
=0.75 A
=1.0 1 -1.00 A
=125 4
—1.51
-1.50 4
2.0 ‘Vn_—av. 175
[ R R A R A B R | —2.00
-1.00-0.75-0.50-0.25 0.00 025 050 075 1.00 -1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00
Fixed uniform mesh Moving mesh

Feature: moving the mesh
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Broader Goals

We look at problems with numerical challenges such as
Boundary/interior layers: e.g., singularly perturbed elliptic
problems.

Shocks/discontinuities and unknown interface: e.g., hyperbolic
conservation laws, advection reaction problems.
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Shallow Neural Networks

One-dimensional shallow (ReLU) neural network:
M,(0,1) = {Co—l-ZC, — b; :C,-ER,b,-E[O,l]}

o(x — bj) = max{0, x — b;}
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Piecewise linear function
Parameters

Q ¢ — linear parameters
Q b; — non-linear parameters (breaking points)
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Example
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Shallow Neural Networks

In fact the error, is (L°° norm)

O(n~'/?) on a fixed uniform mesh.
O(n~!) on a moving mesh.

Drawback: Finding optimal breaking points <+ solving a
high-dimensional non-convex optimization problem
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Neural Network Method for 1D Diffusion—Reaction

Diffusion-Reaction problem:

{u”(x) + u(x
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Ritz formulation:

1 1
u= argmin J(v), J(v) = 1/ [(V')? + v?] dx — / fv dx.
veH:(0,1) 2o 0
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Ritz formulation:

1 1 1
u= argmin J(v), J(v) = / [(V')? + v?] dx — / fv dx.
veH1(0,1) 2 /o 0
Neural network approximation:
up, = argmin J(v).
veEM,(0,1)
v(0)=v(1)=0
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First-Order Optimality Conditions

Minimization problem:

up = argmin J(v)
vEM,(0,1)
v(0)=v(1)=0

Neural network representation:
n
up(x;c,b) = o + Z cio(x — bj),
i=1

where
c=(co,---, Cn

First-order optimality conditions:

V.J(c,b) =0, VyJ(c,b) = 0.
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Optimality Conditions

For a given fixed b
Ved(e,b) =0

is a system of linear equations for c.
Difficulties:

Coefficient matrix

Uy

A(b) = </01 o'(x — bj)o'(x — bj)dX> , #(A) = O(nhei)

Mass matrix

are both dense and ill-conditioned.
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Optimality Conditions

For a given fixed ¢
VbJ(C, b) =0

is a system of nonlinear algebraic equations for b.
Difficulties:
ReLU is not differentiable at 0.

The Hessian matrix V2J(c,b) could be singular.
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Optimality Conditions

How do we overcome these challenges?

The mass and coefficient matrices can be factorized as products of
tri-diagonal matrices.

A reduced nonlinear system is obtained by removing breakpoints
that make the Hessian singular.

Exact inversions can be done in O(n) operations.
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[terative Method

Given the parameters (c(¥), b(¥)), we compute (c(k+1), b(kt1) as follows:
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[terative Method

Given the parameters (c(¥), b(¥)), we compute (c(k+1), b(kt1) as follows:

Compute c(k1) by solving the system of linear equations

VeJ(c, b)) = 0.

Compute b(**1) ysing a Newton iteration
b1 — pk) _ [2 (kD) p)] " v, stk D), p(k)).

The computational cost of each iteration is O(n).
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Numerical Experimen
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Fig: Solving —2u”(x) + u(x) = f(x), €2 = 10~*
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Allen-Cahn Equation

Scalar Allen-Cahn equation
ue(x, t) = 2t (x, t) — (u(x, t)* — u(x, t))
First order CSS

uk _ uk—l

N — E2U)I:X o (uk)3 + ukfl

Absolute stable.
Semilinear Diffusion-reaction problem for each time step.
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Numerical Experiment: Finite Element Approximation

025

0550

075

-100

1.0 4

0.59

Initial condition 0.0

—0.5

—-1.0 1

—
— Ly

1 Break points

Final state

César Herrera (Purdue)

Neural Network Methods

Finite element approximation, 20 uniform breakpoints

October 2025 20/23



Neural Network Method Semilinear Diffusion—Reaction

Semilinear Diffusion-Reaction problem:
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Neural Network Method Semilinear Diffusion—Reaction

Semilinear Diffusion-Reaction problem:

Can we extend our iterative NN method for these problems?
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Neural Network Method Semilinear Diffusion—Reaction

Semilinear Diffusion-Reaction problem:

Can we extend our iterative NN method for these problems?

Yes!

The method can be generalized without losing efficiency: each iteration
still costs O(n).
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Numerical Experiment: NN Approximation
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Fig: Solving ut = Uy — (u3 — u), e2 =102
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Conclusions and Remarks

Key points of our NN method for 1D diffusion-reaction problems.

Efficiently moves the mesh for singularly perturbed problems.
Local convergence was analyzed.
Can be extended to semilinear problems and Allen-Cahn equation.

Ongoing work: 2D Advection-Reaction Equation.
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