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A New Class of Approximating Functions

Fixed uniform mesh Moving mesh

▶ Feature: moving the mesh
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A New Class of Approximating Functions

1-32-32-24-24-1, 2962 parameters, 20
hours1

1-20-1, 41 parameters, 30 seconds

▶ Important: efficient nonlinear solver

1Zhiqiang Cai et al. “Deep least-squares methods: An unsupervised learning-based numerical
method for solving elliptic PDEs”. In: Journal of Computational Physics (2020)
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Broader Goals

We look at problems with numerical challenges such as

▶ Boundary/interior layers: e.g., singularly perturbed elliptic
problems.

▶ Shocks/discontinuities and unknown interface: e.g., hyperbolic
conservation laws, advection reaction problems.
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Shallow Neural Networks

▶ One-dimensional shallow (ReLU) neural network:

Mn(0, 1) =

{
c0 +

n∑
i=1

ciσ(x − bi ) : ci ∈ R, bi ∈ [0, 1]

}

x
bi

σ(x − bi ) = max{0, x − bi}

0

▶ Piecewise linear function
▶ Parameters

1 ci → linear parameters
2 bi → non-linear parameters (breaking points)
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Example

Fixed uniform mesh Moving mesh

Fig: NN approximation to u(x) =
√
x with 12 breakpoints
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Shallow Neural Networks

▶ In fact the error, is (L∞ norm)
▶ O(n−1/2) on a fixed uniform mesh.
▶ O(n−1) on a moving mesh.

▶ Drawback: Finding optimal breaking points ↔ solving a
high-dimensional non-convex optimization problem
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Neural Network Method for 1D Diffusion–Reaction

Diffusion-Reaction problem:{
−u′′(x) + u(x) = f (x), x ∈ (0, 1),

u(0) = u(1) = 0.

Ritz formulation:

u = argmin
v∈H1

0 (0,1)

J(v), J(v) =
1

2

∫ 1

0

[
(v ′)2 + v2

]
dx −

∫ 1

0
fv dx .

Neural network approximation:

un = argmin
v∈Mn(0,1)
v(0)=v(1)=0

J(v).
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First-Order Optimality Conditions

Minimization problem:

un = argmin
v∈Mn(0,1)
v(0)=v(1)=0

J(v)

Neural network representation:

un(x ; c,b) = c0 +
n∑

i=1

ci σ(x − bi ),

where
c = (c0, . . . , cn)

T , b = (b1, . . . , bn)
T .

First-order optimality conditions:

∇cJ(c,b) = 0, ∇bJ(c,b) = 0.
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Optimality Conditions

For a given fixed b
∇cJ(c,b) = 0

is a system of linear equations for c.
Difficulties:

▶ Coefficient matrix

A(b) =

(∫ 1

0
σ′(x − bi )σ

′(x − bj)dx

)
ij

, κ(A) = O(nh−1
min)

▶ Mass matrix

M(b) =

(∫ 1

0
σ(x − bi )σ(x − bj)dx

)
ij

, κ(M) = O(nh−3
min)

are both dense and ill-conditioned.
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Optimality Conditions

For a given fixed c
∇bJ(c,b) = 0

is a system of nonlinear algebraic equations for b.
Difficulties:

▶ ReLU is not differentiable at 0.

▶ The Hessian matrix ∇2
bJ(c,b) could be singular.
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Optimality Conditions

How do we overcome these challenges?

▶ The mass and coefficient matrices can be factorized as products of
tri-diagonal matrices.

▶ A reduced nonlinear system is obtained by removing breakpoints
that make the Hessian singular.

▶ Exact inversions can be done in O(n) operations.

César Herrera (Purdue) Neural Network Methods October 2025 15 / 23



Iterative Method

Given the parameters (c(k),b(k)), we compute (c(k+1),b(k+1)) as follows:

(i) Compute c(k+1) by solving the system of linear equations

∇cJ(c,b
(k)) = 0.

(ii) Compute b(k+1) using a Newton iteration

b(k+1) = b(k) −
[
∇2

bJ(c
(k+1),b(k))

]−1
∇bJ(c

(k+1),b(k)).

The computational cost of each iteration is O(n).
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Numerical Experiment

Initial NN Approximation Optimized NN Approximation-200 itr

Fig: Solving −ε2u′′(x) + u(x) = f (x), ε2 = 10−4
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Allen-Cahn Equation

▶ Scalar Allen-Cahn equation

ut(x , t) = ε2uxx(x , t)−
(
u(x , t)3 − u(x , t)

)
▶ First order CSS

uk − uk−1

∆t
= ε2ukxx − (uk)3 + uk−1

▶ Absolute stable.
▶ Semilinear Diffusion-reaction problem for each time step.
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Numerical Experiment: Finite Element Approximation

Initial condition

Final state

Finite element approximation, 20 uniform breakpoints
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Neural Network Method Semilinear Diffusion–Reaction

Semilinear Diffusion-Reaction problem:{
−u′′(x) + (u(x))3 = f (x), x ∈ (0, 1),

u(0) = u(1) = 0.

Can we extend our iterative NN method for these problems?

Yes!

The method can be generalized without losing efficiency: each iteration
still costs O(n).
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Numerical Experiment: NN Approximation

20 fixed breakpoints 20 moving breakpoints

Fig: Solving ut = ε2uxx −
(
u3 − u

)
, ε2 = 10−5
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Conclusions and Remarks

▶ Key points of our NN method for 1D diffusion-reaction problems.
▶ Efficiently moves the mesh for singularly perturbed problems.
▶ Local convergence was analyzed.
▶ Can be extended to semilinear problems and Allen-Cahn equation.

▶ Ongoing work: 2D Advection-Reaction Equation.
▶ For more details see:

▶ Z. Cai, A. Doktorova, R. D. Falgout, and C. Herrera. Efficient Shallow Ritz
Method For 1D Diffusion Problems. arXiv:2404.17750.

▶ Z. Cai, A. Doktorova, R. D. Falgout, and C. Herrera. Efficient Shallow Ritz
Method For 1D Diffusion-Reaction Problems. SISC, 2025.

▶ Website: math.purdue.edu/herre125/
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