Convergence Analysis for 1D Neural Network Method

César Herrera¹ Zhiqiang Cai¹ Anastassia Doktorova¹ Robert D. Falgout²

¹Department of Mathematics, Purdue University ²Lawrence Livermore National Laboratory

> Finite Element Circus April 2025

Shallow Neural Networks and Free Knot Linear Splines

- 2 Best Neural Network Approximation
- Block Gauss-Seidel/Newton Methods
- 4 Local Convergence Analysis
- Example: Diffusion Problems

Free Knot Linear Splines

 \triangleright C^0 piecewise linear functions on a fixed mesh in [0,1]:

$$S_1^0(\Delta) = \left\{\sum_{i=1}^n c_i \phi_i(x) : c_i \in \mathbb{R}
ight\},$$

where

 \triangleright C^0 piecewise linear functions on a moving mesh in [0,1]:

$$S_1^0(n) = \left\{ \sum_{i=1}^n c_i \phi_i(x; x_{i-1}, x_i, x_{i+1}) : c_i \in \mathbb{R}, x_i \in [0, 1] \right\}$$

Free Knot Linear Splines

Figure: Continuous piecewise linear approximation to $u(x) = \sqrt{x}$ with 12 breakpoints.

April 2025

ln fact the error, is (L^{∞} norm)

- $\mathcal{O}(n^{1/2})$ on a fixed uniform mesh.
- \triangleright $\mathcal{O}(n)$ on a moving mesh.

Drawbacks

- Finding optimal breaking points ↔ solving a high-dimensional non-convex optimization problem
- 2D or 3D free knot splines?

Shallow Neural Networks

One-dimensional shallow neural network:

$$\mathcal{M}_n([0,1]) = \mathcal{M}_n(I) = \left\{ c_0 + \sum_{i=1}^n c_i \sigma(x-b_i) : c_i \in \mathbb{R}, b_i \in [0,1] \right\}$$
$$\sigma(x-b_i)$$

Free knot linear splines and shallow neural networks are equivalent¹.

¹I. Daubechies et al. "Nonlinear Approximation and (Deep) ReLU Networks". English (US). in: *Constructive Approximation* 55.1 (Feb. 2022), pp. 127–172. ISSN: 0176-4276. DOI: 10.1007/s00365-021-09548-z.

Why Neural Networks?

Figure: Singularly perturbed reaction-diffusion equation approximated by NN with 32 breakpoints.

César Herrera (Purdue)	Convergence for 1D Neural Network Method	April 2025 7	/ 25

- Shallow Neural Networks and Free Knot Linear Splines
- Best Neural Network Approximation
- Block Gauss-Seidel/Newton Methods
- 4 Local Convergence Analysis
- Example: Diffusion Problems

For a function

$$u_n \in \mathcal{M}_n(I) = \left\{ c_0 + \sum_{i=1}^n c_i \sigma(x - b_i) : c_i \in \mathbb{R}, b_i \in [0, 1]
ight\}.$$

Linear parameters: $\mathbf{c} = (c_0, \dots, c_n)^T \in \mathbb{R}^{n+1}$ **Nonlinear parameters:** $\mathbf{b} = (b_1, \dots, b_n)^T \in \mathbb{R}^n$ **Optimizable parameters:** $\mathbf{r} = (c_0, c_1, \dots, c_n, b_1, \dots, b_n)^T \in \mathbb{R}^{2n+1}$ **Best Neural Network Approximation:** Given $J : \mathbb{R}^{2n+1} \to \mathbb{R}$, find $\mathbf{r}^* \in \mathbb{R}^{2n+1}$ such that

$$J(\mathbf{r}^*) = \min_{\mathbf{r} \in \mathbb{R}^{2n+1}} J(\mathbf{r}).$$

Examples of Functionals

I For the one-dimensional diffusion problem

$$\begin{cases} -u''(x) = f(x), & x \in I = (0,1), \\ u(0) = 0, & u(1) = 0 \end{cases}$$

Best Ritz Approximation: Minimize

$$J(v) = \frac{1}{2} \int_0^1 (v(x)')^2 dx - \int_0^1 f(x)v(x)dx$$

(a) Given $u \in L^2([0, 1])$. **Nonlinear Least-Squares:** Minimize

$$J(v) = \frac{1}{2} \int_0^1 (v(x) - u(x))^2 dx$$

- Shallow Neural Networks and Free Knot Linear Splines
- 2 Best Neural Network Approximation
- 3 Block Gauss-Seidel/Newton Methods
- 4 Local Convergence Analysis
- Example: Diffusion Problems

Given a twice differentiable $J : \mathbb{R}^{2n+1} \to \mathbb{R}$ and $\mathbf{r}^* = \begin{pmatrix} \mathbf{c}^* \\ \mathbf{b}^* \end{pmatrix}$ such that

$$J(\mathbf{r}^*) = \min_{\mathbf{r} \in \mathbb{R}^{2n+1}} J(\mathbf{r}).$$

Then optimality conditions yield

$$abla_{\mathbf{c}} J(\mathbf{r}^*) = \mathbf{0} \quad \text{and} \quad
abla_{\mathbf{b}} J(\mathbf{r}^*) = \mathbf{0}.$$

Optimality Conditions (Elliptic PDEs)

For a given fixed \boldsymbol{b}

$$abla_{\mathbf{c}} J(\mathbf{r}) =
abla_{\mathbf{c}} J(\mathbf{c}, \mathbf{b}) = 0$$

is a system of **linear** equations for **c**. **Difficulties:**

Coefficient matrix

$$A(\mathbf{b}) = \int_0^1 \mathbf{H} \mathbf{H}^T dx = \left(\int_0^1 \sigma'(x-b_i)\sigma'(x-b_j)dx\right)_{ij}$$

Mass matrix

$$M(\mathbf{b}) = \int_0^1 \mathbf{\Sigma} \mathbf{\Sigma}^T dx = \left(\int_0^1 \sigma(x - b_i) \sigma(x - b_j) dx \right)_{ij}$$

are both dense and ill-conditioned.

Optimality Conditions (Elliptic PDEs)

For a given fixed \boldsymbol{c}

$$abla_{\mathbf{b}} J(\mathbf{r}) =
abla_{\mathbf{b}} J(\mathbf{c}, \mathbf{b}) = 0$$

is a system of **nonlinear** algebraic equations for **b**. **Difficulties:**

- ReLU is not differentiable everywhere.
- **•** The Hessian matrix $\nabla^2_{\mathbf{h}} J(\mathbf{r})$ could be singular.

How to overcome these difficulties?

- arXiv:2404.17750
- arXiv:2407.01496

Require: Initial network parameters $c^{(0)}$, $b^{(0)}$, and target function J **Ensure:** Network parameters c, b

.....

for k = 0, 1... do

▷ Linear parameters

$$\mathbf{c}^{(k+1)} \leftarrow \mathbf{c}^{(k)} - \left[\nabla_{\mathbf{c}}^2 J(\mathbf{c}^{(k)}, \mathbf{b}^{(k)})\right]^{-1} \nabla_{\mathbf{c}} J(\mathbf{c}^{(k)}, \mathbf{b}^{(k)})$$

▷ Nonlinear parameters

$$\mathbf{b}^{(k+1)} \leftarrow \mathbf{b}^{(k)} - \left[\nabla_{\mathbf{b}}^2 J(\mathbf{c}^{(k+1)}, \mathbf{b}^{(k)})\right]^{-1} \nabla_{\mathbf{b}} J(\mathbf{c}^{(k+1)}, \mathbf{b}^{(k)})$$

end for

- Shallow Neural Networks and Free Knot Linear Splines
- 2 Best Neural Network Approximation
- Block Gauss-Seidel/Newton Methods
- 4 Local Convergence Analysis
- 5 Example: Diffusion Problems

The method outlined before can be considered as a fixed point iteration

$$\mathbf{r}^{k+1} = G(\mathbf{r}^k)$$
 for $k = 0, 1 \dots$

for some differentiable function $G : \mathbb{R}^{2n+1} \to \mathbb{R}^{2n+1}$. Local convergence condition²: For a minimizer \mathbf{r}^* , this method is locally convergent if

$$\|\mathbf{J}_G(\mathbf{r}^*)\| = \sigma < 1. \tag{1}$$

Questions:

- **(**) How can we compute $\mathbf{J}_G(\mathbf{r}^*)$ for our particular *G*?
- Output is the second state of the second st

²J.M. Ortega and W.C. Rheinboldt. *Iterative Solution of Nonlinear Equations in Several Variables*. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, 1970.

Jacobian of G and Convergence Condition

Hessian Matrix

$$\nabla^2 J(\mathbf{r}) = \begin{pmatrix} \nabla_{\mathbf{c}} (\nabla_{\mathbf{c}} J(\mathbf{r}))^T & \nabla_{\mathbf{c}} (\nabla_{\mathbf{b}} J(\mathbf{r}))^T \\ \nabla_{\mathbf{b}} (\nabla_{\mathbf{c}} J(\mathbf{r}))^T & \nabla_{\mathbf{b}} (\nabla_{\mathbf{b}} J(\mathbf{r}))^T \end{pmatrix} = \begin{pmatrix} \mathcal{A}_{11}(\mathbf{r}) & \mathcal{A}_{12}(\mathbf{r}) \\ \mathcal{A}_{21}(\mathbf{r}) & \mathcal{A}_{22}(\mathbf{r}) \end{pmatrix}$$

Lemma

If \bm{r}^* is a local minimum and $\nabla^2 J(\bm{r}^*)$ is s.p.d. then

$$\mathbf{J}_{G}(\mathbf{r}^{*}) = I - \begin{pmatrix} \mathcal{A}_{11}(\mathbf{r}^{*}) & \mathbf{0} \\ \mathcal{A}_{21}(\mathbf{r}^{*}) & \mathcal{A}_{22}(\mathbf{r}^{*}) \end{pmatrix}^{-1} \nabla^{2} J(\mathbf{r}^{*}).$$

Local Convergence Condition: $\nabla^2 J(\mathbf{r}^*)$ is s.p.d.

- Shallow Neural Networks and Free Knot Linear Splines
- 2 Best Neural Network Approximation
- 3 Block Gauss-Seidel/Newton Methods
- 4 Local Convergence Analysis
- 5 Example: Diffusion Problems

For the one-dimensional diffusion problem

$$\begin{cases} -u''(x) = f(x), & x \in I = (0, 1), \\ u(0) = 0, & u(1) = 0. \end{cases}$$

Best Ritz Approximation: Minimize

$$J(v) = \frac{1}{2} \int_0^1 (v(x)')^2 dx - \int_0^1 f(x)v(x) dx$$

1D Diffusion Problem

Hessian Matrix (at the minimizer r*)

$$\nabla^2 J(\mathbf{r}) = \begin{pmatrix} \mathcal{A}_{11}(\mathbf{r}^*) & \mathcal{A}_{22}(\mathbf{r}^*) \\ \mathcal{A}_{21}(\mathbf{r}^*) & \mathcal{A}_{22}(\mathbf{r}^*) \end{pmatrix},$$

where

Hessian of nonlinear parameters:

$$\mathcal{A}_{22}(\mathbf{r}^*) = \nabla_{\mathbf{b}}^2 J(\mathbf{b}) = -\operatorname{diag}(c_1 f(b_1), c_2 f(b_2), \dots, c_n f(b_n))$$

Invertibility condition:

$$c_i f(b_i) \neq 0.$$

Local convergence condition:

$$|c_i f(b_i)| \ge \frac{3c_i^2}{2h_i},\tag{2}$$

where $h_i = \min\{b_{i+1} - b_i, b_i - b_{i-1}\}.$

Fixing neurons: If some optimal b_i does not satisfy (2) that neuron will be fixed and local convergence is garanteed.

Numerical Experiment

Approximating the function

$$u(x) = x\left(\exp\left(-\frac{(x-\frac{1}{3})^2}{0.01}\right) - \exp\left(-\frac{4}{9\times0.01}\right)\right)$$

Figure: u(x) approximated by NN. Left: 20 uniform breakpoints, $e_n = 0.250$. Right: optimized NN model with 20 breakpoints, 100 iterations, $e_n = 0.102$.

- NN Methods were analized as fixed point iterations.
- **Sufficient condition:** $\nabla^2 J(\mathbf{r}^*)$ s.p.d.
- Explicit formulas for $\nabla^2 J(\mathbf{r}^*)$ in:
 - 1D diffusion problems
 - 1D diffusion-reaction problems
 - 1D least-squares approximation

Conditions incorporated into the algorithm implementation.

For more details, see

- Z. Cai, A. Doktorova, R. D. Falgout, and C. Herrera. Efficient Shallow Ritz Method For 1D Diffusion Problems. arXiv:2404.17750, 2024.
- Z. Cai, A. Doktorova, R. D. Falgout, and C. Herrera. Fast Iterative Solver For Neural Network Method: II. 1D Diffusion-Reaction Problems And Data Fitting. arXiv:2407.01496, 2024.
- Z. Cai, A. Doktorova, R. D. Falgout, and C. Herrera. Convergence Analysis for 1D Neural Network Method. To be submitted.