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1 Introduction

This paper is a continuation of paper [1]. In [1] the long-time asymptotics is dis-
cussed of the Cauchy problem solution for the Korteweg-de Vries (KdV) equation

qt(x, t) = 6q(x, t)qx(x, t)− qxxx(x, t), (x, t) ∈ R× R+, (1)

with steplike initial data q(x, 0) = q0(x) of the following type:{
q0(x)→ 0, as x→ +∞,
q0(x)→ c2, as x→ −∞. (2)

Such an initial profile corresponds to the rarefaction wave. Its asymptotics is well
understood on a physical level of rigor ([10], [15], [12]). In [1] the asymptotics of
the solution for (1)-(2) is studied mathematically rigorously for the regions ahead
of the back wave front by use of the nonlinear steepest descent method ([6]). As
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for the region behind the back wave front, in [1] a respective model Riemann-
Hilbert (RH) problem is studied in the nonresonant case. This allows us to
conjecture that the solution is asymptotically close to the respective background
constant c2, plus a decaying ”radiation part” of order O(t−1/2). Moreover, for
this second term of the asymptotical expansion a formula was given which had
the same form as for the decaying initial data (q0(x)→ 0 as x→ ±∞).

The objects of the present paper are: (a) to justify the asymptotical expansion
for the solution of (1)-(2) with respect to large t in the region x < (−6c2 − ε)t;
(b) to check a possible influence of the resonance on the asymptotical expansion;
(c) to clarify the formula for the second term.

We will assume that the initial profile (2) satisfies the following condition:∫ +∞

0
e(c+κ)x(|q0(x)|+|q0(−x)−c2|)dx <∞, x4q(i)(x) ∈ L1(R), i = 1, ..., 8, (3)

where κ > 0 is a small number. Under this condition the solution of the Cauchy
problem (1)-(2) exists in the classical sense and is unique in the domain (x, t) ∈
R × [0, T ] for any T > 0. Moreover, for each t it tends to the background
constants 0, c2 with the first moment of perturbation finite at least (cf. [8]).
Note that condition (3) is more restrictive than the decay condition from [1]. In
fact, as we see later, namely (3) appears naturally in the domain behind the back
wave front, especially in the resonant case. We prove the following

Theorem 1. Let q(x, t) be the solution of the Cauchy problem (1)-(3). Then
for arbitrary small ε > 0 in the domain x < (−6c2− ε)t the following asymptotics
is valid as t→∞:

q(x, t) = c2 +

√
4ν(a)a

3t
sin(16ta3 − ν(a) log(192ta3) + ∆(a)) + o(t−γ) (4)

for some 1/2 < γ < 1. Here

a =

√
−c

2

2
− x

12t
, ν(a) = − 1

2π
log
(
1− |R(a)|2

)
, (5)

∆(a) =
π

4
+ arg(R(a)) + arg(Γ(iν(a))) +

1

π

∫
R\[−a,a]

log

(
1− |R(s)|2

1− |R(a)|2

)
ds

s− a
,

Γ(z) is the Gamma-function and R(k) is the left reflection coefficient of the initial
data q0(x).

Remark 0.1. The radiation part of formula (4) given by the left scattering
data looks almost identical to that one which corresponds to the radiation part in
the decaying case ([9]) up to two signs: in front of the left reflection coefficient and
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in front of the integral in ∆(a). However the investigation of Riemann-Hilbert
problems associated with the steplike initial profile has distinctions respectively to
the decaying case, especially in the resonant case.

Note also that in order to simplify presentation we changed notations com-
parably with [1], omitting some indices.

2 Statement of the RH problem

Recall first briefly some facts from the scattering theory on steplike backgrounds
([4], [5], [7]). Let q(x, t) be the solution of the Cauchy problem (1)-(3). Consider

the underlying spectral problem for the operator H(t) = − d2

dx2 + q(x, t) on the
whole axis:

(H(t)f)(x) := λf(x), x ∈ R, (6)

where λ ∈ C is the spectral parameter. As is known, the spectrum of the op-
erator H(t) consists of an absolutely continuous part R+ and a finite number of
negative eigenvalues −κ2

1 < · · · < −κ2
N < 0. The (absolutely) continuous spec-

trum consists of a part [0, c2] of multiplicity one and a part [c2,∞) of multiplicity
two. Instead of λ in equation (6) it is suitable for us to use another spectral
parameter k =

√
λ− c2. Here for the square root we choose the standard branch

such that the function k = k(λ) is a bijection between the domains C\R+ and
D := C+\(0, ic]. The solutions of the equation (6) will be considered as functions
of the parameter k ∈ D = D ∪ ∂D. In particular, the equation (6) has two Jost
solutions φ(k, x, t) and φ1(k, x, t), satisfying the conditions

lim
x→+∞

e−i
√
k2+c2xφ1(k, x, t) = lim

x→−∞
eikxφ(k, x, t) = 1, k ∈ D.

The Jost solutions satisfy the scattering relation

T (k, t)φ1(k, x, t) = φ(k, x, t) +R(k, t)φ(k, x, t), k ∈ R,

where T (k, t), R(k, t) are the left transmission and reflection coefficients. For
the transmission coefficient the following formula is valid T (k, t) = 2ikW−1(k, t),
where

W (k, t) := φ′1,x(k, x, t)φ(k, x, t)− φ1(k, x, t)φ′x(k, x, t)

is the Wronskian of the Jost solutions. The Wronskian is a holomorphic function
in the domain D, it has continuous limit values at the boundary ∂D, and on the
boundary ∂D it never vanishes, except possibly at the point k = ic. At this point
there are two options:

(a) If W (ic, 0) 6= 0, then W (ic, t) 6= 0 for any t. In this case we say, that at the
point ic there is no resonance. It is a general situation.
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(b) If W (ic, 0) = 0 (i.e. W (ic, t) = 0 for any t), then we deal with the resonance
at point ic. Note (cf. [7]), that in this case

W (k, t) = C
√
k − ic (1 + o(1)), C = C(t) 6= 0.

For the operator H(t) the point ic is the only point where the resonance can
happen, that is why we associate with the solution q(x, t) the notion of the
resonant or nonresonant cases.

Obviously, the transmission coefficient T (k, t) has a meromorphic extension
to the domain D with simple poles at the points iκ1,. . . ,iκN . We set

χ(k, t) := − lim
ε→+0

√
(k + ε)2 + c2

k
|T (k + ε, t)|2, k ∈ [0, ic].

This function is purely imaginary, moreover,

χ(k, t) = i |χ(k, t)|, k ∈ [0, ic].

It is continuous on the set [0, ic) with χ(0, t) = 0 and in the nonresonant case

χ(k, t) = C(t)
√
k − ic(1 + o(1)), k → ic, C(t) 6= 0. (7)

In the resonant case the function χ(k, t) has a singularity

χ(k, t) =
C(t)√
k − ic

(1 + o(1)), k → ic, C(t) 6= 0. (8)

Next, it is evident that the Jost solutions φ(iκj , x, t) are the eigenfunctions of the
operator H(t). Denote the inverse squares of the norms as

γj(t) =

(∫
R
φ2(iκj , x, t)dx

)−1

.

The functions R(k, t), k ∈ R, and χ(k, t), k ∈ [0, ic], and also the quantities
−κ2

j , γj(t), j = 1, . . . , N are the left scattering data of the operator H(t). Their

evolution due to the KdV flow is the following ([11]): γj(t) = γje
−8κ3

j t+12c2κjt,

χ(λ, t) = χ(k)e−8itk3−12itkc2 , R(λ, t) = R(k)e−8itk2−12itkc2 ,

where we denoted χ(k) = χ(k, 0), R(k) = R(k, 0), and γj = γj(0). By means of
the Inverse Scattering Transform the solution q(x, t) of the problem (1)–(3) can
be uniquely recovered from the left initial scattering data (see [7])

{R(k), k ∈ R; χ(k), k ∈ [0, ic]; −κ2
j , γj > 0, j = 1, . . . , N}.
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The properties of the scattering data listed above allow us to formulate the vector
RH problem associated with the left scattering data. Namely, in D we introduce
a meromorphic vector function (variables x and t are treated as parameters)

m̃(k) = (m̃1(k), m̃2(k)) =
(
T (k, t)φ1(k, x, t)e−ikx, φ(k, x, t)eikx

)
. (9)

This function has the following expansion as k →∞ (cf. [1])

m̃(k) =
(
1 1

)
+

1

2ik

(∫ x

−∞
(q(y, t)− c2)dy

)(
1 −1

)
+O

(
1

k2

)
, (10)

and therefore m̃ is bounded at infinity. The only singularities of this vector
function in D are the poles of its first component m̃1(k) at points iκj . Out of these
poles the function m̃ is continuous up to the boundary ∂D except, probably, at the
point ic in the resonant case. Let us extend m̃ to the domain D∗ = {k : −k ∈ D}

by the symmetry condition m̃(−k) = m̃(k)σ1, where σ1 =

(
0 1
1 0

)
is the first

Pauli matrix. After this extension the function m̃(k) has poles in points −iκj (its
second component ) and jumps along the real axis and along the segment [ic,−ic].
Introduce cross-shaped contour Σ := R∪ [ic,−ic] with a natural orientation from
minus to plus infinity on R, and from up to down on [ic,−ic]. Denote by m̃+(k)
(resp. m̃−(k)) the limiting nontangential values of m̃(k) from the right (resp. left)
in the contour direction.

To simplify notations throughout of this paper along with the first Pauli

matrix σ1 we use also the third Pauli matrix σ3 =

(
1 0
0 −1

)
and three more

matrices:

I =

(
1 0
0 1

)
, J :=

(
0 0
1 0

)
, J† :=

(
0 1
0 0

)
= σ1Jσ1.

Let now Tj (resp., T∗j ) be circles centred at iκj (resp., −iκj) with radii 0 < δ <
1
4 minNj=1 |κj − κj−1|, κ0 = 0. Choose δ > 0 so small that the discs |k − iκj | < δ
lie inside the upper half-plane and do not intersect any of the other contours,
moreover κ1−δ > κ+ c, where κ is the same as in estimate (3). The small circles
Tj around iκj are oriented counterclockwise, and the circles T∗j around −iκj are
oriented clockwise.

Introduce also the phase function Φ(k) = Φ(k, x, t):

Φ(k) = −4ik3 − 6ic2k − 12iξk, ξ =
x

12t
.

This function is odd in C. Its stationary points are ±a, where a :=
√
− c2

2 − ξ.
The signature table for Re Φ(k) when ξ < − c2

2 is shown in Figure 1.
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Fig. 1: The signature table of Re(Φ(k))

Redefine now m̃(k) inside Tj ,T∗j , j = 1, ..., N according to

m(k) =


m̃(k)Aj(k), |k − iκj | < δ,

m̃(k)σ1A
−1
j (−k)σ1, |k + iκj | < δ,

m̃(k), else,

(11)

where

Aj(k) =

(
1 0

− iγje
2tΦ(iκj)

k−iκj
1

)
= I− iγje

2tΦ(iκj)

k − iκj
J.

Thus m(k) becomes holomorphic but with additional jumps along the circles
Tj ,T∗j , j = 1, ..., N . Moreover, it preserves the asymptotics (10) of m̃(k) as
k →∞.

Theorem 2. Let {R(k), k ∈ R; χ(k), k ∈ [0, ic]; (κj , γj), 1 ≤ j ≤ N} be
the left scattering data of the operator H(0). Then the vector function m(k) =
m(k, x, t) defined by (9), (11) is the unique solution of the following vector Riemann–
Hilbert problem:

Find a vector function m(k) which is holomorphic away from the contour
Σ =

⋃N
j=1(Tj ∪ T∗j ) ∪R ∪ [−ic, ic], has continuous limiting values from both sides

of the contour, except possibly of points ±ic, and satisfies:
A. The jump condition m+(k) = m−(k)v(k), where

v(k) =



(
1− |R(k)|2 −R(k)e−2tΦ(k)

R(k)e2tΦ(k) 1

)
, k ∈ R,

(
1 0

χ(k)e2tΦ(k) 1

)
= I + χ(k)e2tΦ(k)J, k ∈ [ic, 0],

Aj(k), k ∈ Tj , k = 1, ..., N,

σ1v
−1(−k)σ1, k ∈ ∪Nj=1T∗j ∪ [0,−ic];
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B. The symmetry condition

m(−k) = m(k)σ1; (12)

C. The normalization condition limκ→∞m(iκ) =
(
1 1

)
;

D. In vicinities of points ±ic:
(a) if χ(k) satisfies (7), then m(k) is continuous in the points ±ic;
(b) under condition (8),

m(k) =

(
C1√
k − ic

, C2

)
(1 + o(1)), k → ic, C1 6= 0,

with a similar condition at −ic due to (12).

P r o o f. This theorem follows from the union of the uniqueness result from
[2] and a slight modification of the proof of Theorem 2.5 from [1] for the resonant
case.

3 Reduction to the model problem

In this section we describe some conjugation/deformation steps as ξ < −c2/2 for
the RH problem A-D which lead to an equivalent RH problem with the jump
matrix close to the unitary matrix I for large time except of the small vicinities
of points ±a. A short description of these steps was proposed in Section 8 of [1].
We extend the respective analysis taking into account the resonant case.

According to the signature table of the phase function (see Figure 1), the
matrix v(k) is already exponentially close for large t to I on the segments [−ic, 0)∪
(0, ic] and on the circles ∪Nj=1(Tj ∪ T∗j ), but it is oscillatory with respect to t on
the real axis. Besides one can have singularities of v(k) at points ±ic. As a first
step we apply the standard upper–lower and lower–upper factorization ([9], [6])
to the matrix v(k) as k ∈ R. To this end we construct an analytic in the domain
C \ ((−∞,−a) ∪ (a,∞)) function d(k) satisfying the jump condition

d+(k) = d−(k)(1− |R(k)|2) for k ∈ R \ [−a, a],

and such that d(−k) = d−1(k) and d(k) → 1 as k → ∞. By the Sokhotski–
Plemelj formula this function is explicitly given by

d(k) = exp

(
1

2πi

∫
R\[−a,a]

log(1− |R(s)|2)

s− k
ds

)
. (13)
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Since the domain of integration is even and the function log(1 − |R(s)|2) is also
even, then d(−k) = d−1(k). For k →∞ we have

d(k) = 1− 1

2πik

∫
R\[−a,a]

log(1− |R(s)|2)ds+O

(
1

k2

)
. (14)

Put m(1)(k) = m(k)d(k)−σ3 . Evidently m(1)(−k) = m(1)(k)σ1. One can check

that (see e.g. [9]) m(1)(k) satisfies the jump condition m
(1)
+ (k) = m

(1)
− (k)v(1)(k)

with

v(1)(k) =

(
1− |R(k)|2 −R(k)d2(k)e−2tΦ(k)

R(k)d−2(k)e2tΦ(k) 1

)
, k ∈ [−a, a],

v(1)(k) =

(
(1− |R(k)|2)d−1

+ (k)d−(k) −R(k)d+(k)d−(k)e−2tΦ(k)

R(k)d−1
+ (k)d−1

− (k) d−1
− (k)d+(k)

)
, k ∈ R\[−a, a],

v(1)(k) = d(k)σ3v(k)d(k)−σ3 , k ∈ ∪Nj=1(TUj ∪ TLj ) ∪ [ic,−ic].

Recall that R(k) = R(−k) for k ∈ R. Under condition (3) one can continue
function R(k) in a vicinity of of the contour Σ. Introduce the domains Ω∗l , Ωl,
Ω∗r , Ωr, Ω∗, and Ω together with their boundaries C∗l , Cl, C∗r , Cr, C∗, and C, which
are contained in the strip {k : | Im k| < c+ ε} as depicted in Figure 2. Introduce
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Fig. 2: Contour deformation in the domain x < −6c2t

the following matrices

B(k) :=I +R(k)d−2(k)e2tΦ(k)J, k ∈ Ω,

B∗(k) :=I−R(k)d2(k)e−2tΦ(k)J†, k ∈ Ω∗,

A(k) :=I +
R(k)d2(k)

1− |R(k)|2
e−2tΦ(k)J†, k ∈ Ωr ∪ Ωl,

A∗(k) :=I− R(k)d−2(k)

1− |R(k)|2
e2tΦ(k)J, k ∈ Ω∗r ∪ Ω∗l .

(15)
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Then

v(1)(k) =

{
B∗−(k)B+(k), k ∈ [−a, a],
A∗−(k)A+(k), k ∈ R \ [−a, a].

Redefine m(1)(k) according to

m(2)(k) = m(1)(k)


B(k), k ∈ Ω,
B∗(k), k ∈ Ω∗,
A(k), k ∈ Ωl ∪ Ωr,
A∗(k), k ∈ Ω∗l ∪ Ω∗r ,
I, else.

Lemma 1. The following formulas are valid

B−(k) v(1)(k) (B+(k))−1 = I, k ∈ [ic, 0];

(B∗−(k))−1 v(1)(k)B∗+(k) = I, k ∈ [0,−ic].

P r o o f. We observe that for k ∈ [ic, 0]:

B−(k) v(1)(k)B+(k)−1 =

(
1 0

d(k)−2(R−(k)−R+(k) + χ(k))e2tΦ(k) 1

)
.

As is known, under condition (3) the complex conjugated Jost solution φ(k, x, t)
can be continued analytically into a strip. Denote this continuation as φ̆(k). It
does not have a jump along the interval [ic, 0]. Then the continuation of R(k) can
be represented via wronskians in a usual way ([7]). Let φ1(k) := limε→+0 φ1(k +
ε, x, t), then

R−(k) = −〈φ1, φ̆〉
〈φ1, φ〉

, R+(k) = −〈φ1, φ̆〉
〈φ1, φ〉

, χ(k) = − 〈φ, φ̆〉
〈φ1, φ̆〉

〈φ1, φ1〉
〈φ1, φ〉

,

where 〈f, g〉 is the usual Wronskian of two solutions of (6). Applying the Plücker
identity (cf. [14]):

〈f1, f2〉 · 〈f3, f4〉+ 〈f1, f3〉 · 〈f4, f2〉+ 〈f1, f4〉 · 〈f2, f3〉 ≡ 0

to the functions f1 = φ1, f2 = φ, f3 = φ1, f4 = φ̆ we get

R−(k)−R+(k) + χ(k) ≡ 0, (16)

which proves the first identity of the Lemma. The proof of the second one is
analogous.
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Remark 0.2. Equality (16) shows that independently of the resonant or
nonresonant cases the jump of the vector function m(2)(k) along the interval
[ic,−ic] simply disappears, and therefore the final asymptotics will not depend on
the resonance.

By use of Lemma 1 we conclude that the vector function m(2)(k) satisfies the

jump m
(2)
+ (k) = m

(2)
− (k)v(2)(k) with

v(2)(k) =


B(k), k ∈ C,
B∗(k), k ∈ C∗,
A(k), k ∈ Cl ∪ Cr,
A∗(k), k ∈ C∗l ∪ C∗r ,
v(1)(k), k ∈ ∪Nj=1(Tj ∪ T∗j ).

(17)

Thus matrix v(2)(k) has the structure

v(2)(k) = I +

{
F1(k), k ∈ ∪Nj=1(Tj ∪ T∗j ),
F2(k), k ∈ Cl ∪ C ∪ Cr ∪ C∗l ∪ C∗ ∪ C∗r ,

with the matrices F1,2(k) admitting the estimates

||F1(k)|| ≤ Ce−Ct, ||F2(k)|| ≤ C(a)e−tµ(|k2−a2|), (18)

where ‖ · ‖ is any norm of the matrix 2× 2, C > 0, C(a) > 0 and µ(s), s ∈ R+,
is a strictly increasing continuous function with µ(0) = 0 and µ(s) = O(s3/4) as
s → ∞. Note that the vector function m(2)(k) has no jump along the contour
Σ and therefore, the effect of resonance is not noticeable for ξ < −c2/2. Due to
(18) we can conclude that m(2)(k) ∼

(
1 1

)
as k →∞. As it will be shown in the

next section an error term has the structure (1 − 1)O(k−1)O(t−1/2). Remind
that for large imaginary k with |k| > κ1 + 1 we have m̃(k) = m(2)(k)d(k)σ3 with
d(k) defined by (13). By use of (14) one can expect that for k →∞

m̃1(k) = m1(k) ∼ d(k) = 1−

∫
R\[−a,a] log(1− |R(s)|2)ds

2πik
+
g(x, t)

k
+O

(
1

k2

)
,

where g(x, t) = o(1), gx(x, t) = o(1) as t → ∞ uniformly with respect to x.
Function g(x, t) appears from the effect of parametrix in small vicinities of points
±a. A formula for this function will be obtained in the Section 4. Next, by (10)

q(x, t) =
∂

∂x
lim
k→∞

2ik (m̃1(k)− 1). (19)

Since ∂
∂xa(ξ) = O(t−1) then from (3) it follows that that after differentiation the

integral from the r. h.s will be of order O(t−1). Respectively,

q(x, t) = c2 + o(1), as t→∞,
so the leading term is equal to c2 as expected. In the next section we show that
the effect of the parametrix points implies in fact the term of order O

(
t−1/2

)
.
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4 The parametrix problem

We use the same approach as in [6] and [13], but for the vector RH problem as
in [9]. Following these approaches we start with investigation in more details of
the behavior of the jump matrix v(2)(k) near the point −a. Represent (13) as

log d(k) =
1

2πi

∫
R\[−a,a]

log
1− |R(s)|2

1− |R(−a)|2
ds

s− k

+
log(1− |R(−a)|2)

2πi

∫
R\[−a,a]

ds

s− k
.

Since
∫
R\[−a,a]

ds
s−k = log k+a

a−k , then

d(k) =

(
k + a

a− k

)iν

· eη(k),

where

ν := ν(a) = − 1

2π
log(1− |R(−a)|2),

η(k) := η(k, a) =
1

2πi

∫
R\[−a,a]

log
1− |R(s)|2

1− |R(−a)|2
ds

s− k
. (20)
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Dρ(−a)

C∗(ρ)

C(ρ)Cl(ρ)

C∗l (ρ)

−a

Fig. 3: The contour near the point −a

Let Dρ(−a) be a circle of the radius 0 < ρ < inf{1
4 ,

a
4} centred at the point

−a. Without loss generality one can assume that inside the domain Dρ(−a)
the contours C(ρ) := C ∩ Dρ(−a), C∗(ρ) := C∗ ∩ Dρ(−a), Cl(ρ) := Cl ∩ Dρ(−a),
C∗l (ρ) := C∗l ∩Dρ(−a) are the parts of rays {−a+ sei(2n+1)π/4, s ∈ R+} and they
have orientations as depicted on Fig. 3. Denote by

Γρ(−a) := C(ρ) ∪ C∗(ρ) ∪ Cl(ρ) ∪ C∗l (ρ).
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Lemma 2. The following inequalities hold for all k ∈ Γρ(−a) and a > ε,
where ε is a constant from Theorem 1 :∣∣∣e−2η(k) − e−2η(−a)

∣∣∣ ≤ C|k + a|(1 + | log |k + a||), (21)∣∣∣1− e−2iν log k−a
2a

∣∣∣ ≤ Ca−1|k + a|, (22)

where the constant C = C(ε) does not depend on ξ and k.

P r o o f. We give the proof for k ∈ C(ρ). The other cases are similar. First
we show that

|η(k)− η(−a)| ≤ C|k + a|(1 + | log |k + a||), a ∈ I, k ∈ C(ρ). (23)

Divide the domain of integration in (20) into three parts [−∞,−2a], [−2a,−a],
[a,∞], and denote by I1(k), I2(k), I3(k) the respective integrals. For k ∈ C(ρ)
the following estimates are straightforward:

|I1(k)− I1(−a)| ≤ C|k + a|, |I3(k)− I3(−a)| ≤ C|k + a|. (24)

Integrating 2πiI2(ξ, k) by parts:∫ a

−2a
log

1− |R(s)|2

1− |R(−a)|2
ds

s− k
=

− log
1− |R(−2a)|2

1− |R(−a)|2
log(−2a− k)−

∫ a

−2a
log(s− k)d log(1− |R(s)|2),

we get

|I2(k)− I2(−a)| = 1

2π

∣∣∣∣log
k + 2a

a
log

1− |R(−2a)|2

1− |R(−a)|2

+

∫ −a
−2a

log
s− k
s+ a

d log(1− |R(s)|2)

∣∣∣∣ .
Since |R(s)| ≤ C(ε) < 1 as |s| > ε then

|I2(k)− I2(−a)| ≤ C(ε)

(∣∣∣∣∫ −a
−2a

∣∣∣∣log
s− k
s+ a

∣∣∣∣ ds∣∣∣∣+ |k + a|
)
.

The change of variables v = −|k + a|/(s+ a) gives∣∣∣∣∫ −a
−2a

log

∣∣∣∣s− ks+ a

∣∣∣∣ ds∣∣∣∣ = |k + a|

∣∣∣∣∣
∫ ∞
|k+a|
a

log(1 + veiπ
4 )
dv

v2

∣∣∣∣∣ ,
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where we took into account that k ∈ C(ρ). Combining this estimate with estimate

| log |1 + ve
iπ
4 || ≤ C

{
v, 0 ≤ v ≤ 2,

log v, 2 ≤ v ≤ ∞,

and with (24) we get (23). Next, by Lemma 23.2 in [3]:

sup
ξ<(−c2/2−ε)

sup
k∈C\R

|η(k)| <∞.

Using this, (23) and inequality |ew − 1| ≤ |w|max(1, eRew), w ∈ C, we get (21)
and also ∣∣∣1− e−2ν log k+a

2a

∣∣∣ ≤ ∣∣∣∣2ν log
k + a

2a

∣∣∣∣ e|Re(2iν log k+a
2a

)|

≤ C
∣∣∣∣log

(
1 +

k − a
2a

)∣∣∣∣ ≤ Ca−1|k + a|.

This proves (22).

Introduce a local parameter z =
√

48a(k+a). Then z ∈ Dρ1 , where Dρ1 is the
circle of the radius ρ1 =

√
48a ρ centred at 0. The contour Γρ(−a) in terms of the

variable z will have notation Γρ1 , and for the constituents of this contour we will
keep notations C and so on. Taking into account (5) put ϕ(z) := −8ia3 + i

4z
2,

r1(z) :=R̃(z)e−2η̃(z)e2iν log(2a
√

48a−z),

r2(z) :=
R̃(z)

1− |R̃(z)|2
e2η̃(z)e−2iν log(2a

√
48a−z),

r3(z) :=
R̃(z)

1− |R̃(z)|2
e−2η̃(z)e2iν log(2a

√
48a−z),

r4(z) :=R̃(z)e2η̃(z)e−2iν log(2a
√

48a−z).

where R̃(z) := R(k(z)), η̃(z) := η(k(z)). The phase function is represented as

Φ̃(z) := Φ(k(z)) = ϕ(z)− iz3

12a
√

48a
.

From (15) and (25) it follows that the jump matrix v(2)(k) as a function of the
variable z ∈ Γρ1 has the form

ṽ(2)(z) = I +


r1(z)z−2iνe2tΦ̃(z)J, z ∈ C,
−r2(z)z2iνe−2tΦ̃(z)J†, z ∈ Cl,
−r3(z)z−2iνe2tΦ̃(z)J, z ∈ C∗l ,
r4(z)z2iνe−2tΦ̃(z)J†, z ∈ C∗.

(25)
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Put now
f := f(a) = R(−a)e−2η(−a)e2iν(a) log(2a

√
48a). (26)

Since ν ∈ R and η(−a) ∈ iR, then |f | = |R(−a)|. From Lemma 2 it follows that
for z ∈ Dρ1 the functions {rj(z)}41 satisfy inequalities:

|r1(z)− f | ≤ C(ε)|z|α, z ∈ C,∣∣∣∣r2(z)− f

1− |f |2

∣∣∣∣ ≤ C(ε)|z|α, z ∈ Cl,∣∣∣∣r3(z)− f

1− |f |2

∣∣∣∣ ≤ C(ε)|z|α, z ∈ C∗l ,∣∣r4(z)− f
∣∣ ≤ C(ε)|z|α, z ∈ C∗,

(27)

where α < 1 can be choose arbitrary close to 1. Now we are ready to formulate an
auxiliary RH problem in the domain Dρ1 , which is called the parametrix problem.
We are looking for a holomorphic in Dρ1 \Γρ1 matrix function Mpar(z) satisfying
the jump condition

Mpar
+ (z) = Mpar

− (z)vpar(z), z ∈ Γρ1 , with (28)

vpar(z) := I +


fz−2iνe2tϕ(z)J, z ∈ C,
fz2iνe−2tϕ(z)J†, z ∈ C∗,
− f

1−|f |2 z
2iνe−2tϕ(z)J†, z ∈ Cl,

− f
1−|f |2 z

−2iνe2tϕ(z)J, z ∈ C∗l .

(29)

and the boundary condition Mpar(z) ∼ I,as z ∈ ∂Dρ1 .
This problem is solved in [9] and [13]. We recall briefly the main steps in the

construction of its solution. Denote ζ =
√
t z. We study the parametrix problem

solution for large t. Consider first another auxiliary matrix RH-problem in the
domain C\Y , where Y = Y1 ∪ Y2 ∪ Y3 ∪ Y4 and Yi = {sei(2n+1)π/4, s ∈ R+} are
the contours as depicted in Fig. 4. Let MY (ζ) solve the following problem:

MY (ζ)→ I, ζ →∞, (30)

MY
+ (ζ) = MY

− (ζ)vY (ζ), ζ ∈ Y, (31)

where the jump matrix vY (ζ) is defined by

vY (ζ) := I +



fζ−2iνe
iζ2

2 J, ζ ∈ Y1,

− f
1−|f |2 ζ

2iνe
−iζ2

2 J†, ζ ∈ Y2,

− f
1−|f |2 ζ

−2iνe
iζ2

2 J, ζ ∈ Y3,

fζ2iνe−
iζ2

2 J†, ζ ∈ Y4.

(32)
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Fig. 4: The sets Ωj and the rays Yi, j = 1, ..., 4.

Following ([13]) define a sectionally analytic function M̃Y (ζ) by

M̃Y (ζ) :=

 ψ11(ζ)
( d
dζ
− iζ

2
)ψ22(ζ)

β
( d
dζ

+ iζ
2

)ψ11(ζ)

β ψ22(ζ)

 , ζ ∈ C\R,

where β = β(a) is given by

β :=
√
ν(a)ei(π

4
−arg f(a)+arg Γ(iν(a))), (33)

and the functions ψ11, ψ22 are defined by

ψ11(ζ) =

{
e−

3πν
4 Diν(e−

3iπ
4 ζ), Im ζ > 0,

e
πν
4 Diν(e

iπ
4 ζ), Im ζ < 0,

ψ22(ζ) =

{
e
πν
4 D−iν(e−

iπ
4 ζ), Im ζ > 0,

e−
3πν

4 D−iν(e
3iπ
4 ζ), Im ζ < 0.

Here Ds(z) denotes the parabolic cylinder function. Then ([13]) the solution
MY (ζ) of matrix the RH-problem (30)-(32) is the following

MY (ζ) = M̃Y (ζ)Dj(ζ), ζ ∈ Ωj , j = 0, ..., 4,

where D0(ζ) = ζ−iνσ3e
iζ2

4
σ3 and

D1(ζ) = (I− fJ)D0(ζ), D2(ζ) = (I +
f

1− |f |2
J†)D0(ζ),

D3(ζ) = (I +
f

1− |f |2
J)D0(ζ), D4(ζ) = (I− fJ†)D0(ζ).
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The matrix MY (ζ) is analytic for ζ ∈ C\Y and satisfies the jump condition
MY

+ (ζ) = MY
− (ζ)vY (ζ), where vY (ζ) defined by (32). Also MY (ζ) satisfies the

asymptotic formula

MY (ζ) = I +
i

ζ

(
0 −β
β 0

)
+O

(
1

ζ2

)
, ζ →∞, (34)

where β = β(a) is defined by (33). Put D(t) := e8ia3tσ3t−iνσ3/2 and introduce the
matrix Mpar(z) by formula

Mpar(z) := D(t)MY (
√
tz)D(t).

It is straightforward to check that Mpar(z) satisfies (28)-(29). Due to (34) it is
close as t→∞ to the identity matrix on ∂Dρ1 .

Put now M−a(k) = Mpar(
√

48a(k + a)). This function is holomorphic in
Dρ(−a) \ (C ∪ C∗ ∪ Cl ∪ C∗l ) has the jump with the matrix vpar(

√
48a(k + a)). it

is easy to see that the matrix Ma(k) := σ1M−a(k)σ1 solves the corresponding
parametrix problem in the domain Dρ(a) \ (C ∪ C∗ ∪ Cr ∪ C∗r ). Moreover, due to
(34):

M−a(k) = I+
i√

48at(k + a)

(
0 −βe16ia3tt−iν

βe−16ia3ttiν 0

)
+O

(
1

t

)
, k ∈ ∂Dρ(−a),

(35)

Ma(k) = I− i√
48at(k − a)

(
0 βe−16ia3ttiν

−βe16ia3tt−iν 0

)
+O

(
1

t

)
, k ∈ ∂Dρ(a).

The completion of the asymptotical analysis repeats now almost literally the same
considerations as in [13], Theorem 2.1. Namely, denote

Γ̃ := Cl ∪ C∗l ∪ C ∪ C∗ ∪ Cr ∪ C∗r ∪ ∂Dρ(−a) ∪ ∂Dρ(a).

For the vector m(2)(k) corresponding to the jump matrix (25) put

m̂(k) =

{
m(2)(k)(M∓a(k))−1, |k ± a| < ρ,

m(2)(k), otherwise.

Then the vector function m̂(k) is holomorphic in C \ Γ̃, satisfies the standard
symmetry and the normalization conditions, that is m̂(k) → (1 1) as k → ∞
and m̂(−k) = m̂(k)σ1. Moreover, it has a jump on Γ̃ with the jump matrix

v̂(k) =


(M∓a(k))− v

(2)(k)(M∓a(k))−1
+ , k ∈ Γρ(∓a),

(M∓a(k))−1, |k ± a| = ρ,

v(2)(k), otherwise.
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Now from Theorem 2.1 of [13], estimates (27), (35) and a trivial equality

1

2πi

∫
|k±a|=ρ

dk

k ± a
= 1,

( the integration is counterclockwise) it follows that

lim
k→i∞

2ik
(
m̂(k)−

(
1 1

))
= − 1

π

(
1 1

)(∫
|k+a|=ρ

(M−a(k)− I) dk

+

∫
|k−a|=ρ

(Ma(k)− I) dk

)
+O(t−

1+α
2 )

=
2√

48at
(1, −1)

(
βe16ia3t−iν log t + βe−16ia3t+iν log t

)
+O(t−

1+α
2 )

=

√
ν(a)√
3at

cos

(
16a3t− ν(a) log t− i log

β(a)√
ν(a)

)
+O(t−

1+α
2 ),

(36)

where the term O(t−
1+α

2 ) can be differentiated with respect to x, and the deriva-

tive has the same order O(t−
1+α

2 ) as t → ∞ uniformly with respect to ξ in the

domain ξ < − c2

2 − ε (cf. [13], Theorem 2.1). Next, by (5) we have ∂a
∂x = − 1

24at .
Combining this with (19), (26),(33) and (36) we get

q(x, t) = c2 +

√
4ν(a)a

3t
sin
(

16ta3 − ν(a) log t+
π

4
− arg f(a) + arg Γ(iν)

)
with

arg f(a) = ν(a) log(192a3) + argR(−a) +
1

π

∫
R\[−a,a]

log

(
1− |R(s)|2

1− |R(a)|2

)
ds

s+ a
.

The result of Theorem 1 is now immediate from argR(−a) = − argR(a) and the
oddness of the last integral with respect to a.
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