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Abstract

Let G be a finite simple graph and let ind-match(G) and ord-match(G) denote the induced
matching number and the ordered matching number of G, respectively. We characterize all bipartite
graphs G with ind-match(G) = ord-match(G). We establish the Castelnuovo-Mumford regularity
of powers of edge ideals and depth of powers of cover ideals for such graphs. We also give formulas
for the count of connected non-isomorphic spanning subgraphs of Km,n for which ind-match(G) =
ord-match(G) = 2, with an explicit expression for the count when m ∈ {2, 3, 4} and m ≤ n.

Keywords: Induced matching, ordered matching, Castelnuovo-Mumford regularity, depth, edge ideal, cover
ideal

1 Introduction

Let G be a finite simple graph on the vertex set V (G) = {x1, . . . , xd} and edge set E(G). We identify
the vertices to variables and consider the polynomial ring S = K[x1, . . . , xd], where K is a field. The
edge ideal of G is defined as I(G) = 〈{xixj : xixj ∈ E(G)}〉 ⊂ S. Ever since the introduction of
the edge ideal by Villarreal in [23], researchers have been trying to understand the interplay between
the combinatorial properties of graphs and the algebraic properties of the associated edge ideals. One
particular invariant, the Castelnuovo-Mumford regularity, has received much of the attention, compared
to other invariants and properties. Several upper and lower bounds for the regularity of edge ideals were
obtained by several researchers, see [1] and references therein. Whenever there is an upper and a lower
bound for an invariant, it is natural to ask what are some necessary conditions and sufficient conditions
for these two bounds to coincide, and structurally understand those objects for which these two bounds
are equal. In this article, we address this question for the upper bound of ordered matching number and
the lower bound of induced matching number.

Computing or bounding the Castelnuovo-Mumford regularity of the associated edge ideal and its
powers, in terms of combinatorial data associated with G, has been a very active area of research for the
past couple of decades. Bounds using several matching numbers have been obtained for the regularity.
For graph G, let ind-match(G), ord-match(G),min-match(G) and match(G) denote induced matching
number, ordered matching number, minimum matching number and matching number, respectively (see
Section 2 for the definitions).
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It is known that

ind-match(G) ≤ reg(S/I(G)) ≤ {ord-match(G),min-match(G)} ≤ match(G),

where the first inequality was proved by Katzman, [15], the second inequality can be found in [24]
(for min-match(G)) and [5] (for ord-match(G)) and the third inequality follows from the definition. A
graph G is said to be a Cameron-Walker graph if ind-match(G) = match(G). This is a class of graphs
which is well studied from both combinatorial and algebraic perspectives, [4, 11, 13]. In [12], Hibi et al.
studied graphs with ind-match(G) = min-match(G). They gave a structural characterization of graphs
satisfying ind-match(G) = min-match(G). In this article, we study graphs satisfying ind-match(G) =
ord-match(G).

Besides the combinatorial reasons for understanding graphs G with ind-match(G) = ord-match(G),
there is also an algebraic motivation to understand graphs with this property. It was proved by Cutkosky,
Herzog and Trung, [6], and independently by Kodiyalam, [16], that for a homogeneous ideal I in a
polynomial ring, reg(Is) is a linear polynomial for s � 0. In the case of edge ideals, there have been
extensive research in understanding this function and the polynomial in terms of combinatorial data
associated with G, (see for example [1] and the references within). It was shown in [2, Theorem 4.5] and
[20, Theorem 3.9] that for every integer s ≥ 1,

2s+ ind-match(G)− 2 ≤ reg(S/I(G)s) ≤ 2s+ ord-match(G)− 2.

If ind-match(G) = ord-match(G), then this gives an explicit expression for the regularity of powers of
the edge ideal.

Classifying all graphs G with ind-match(G) = ord-match(G) would be an extremely hard problem in
general, and in this paper we concentrate on classifying bipartite graphs satisfying this property. Another
important reason for restricting our attention to the bipartite case is the behavior of the depth function
of the cover ideal, see the end of Section 2.

For smaller values of induced and ordered matching, it is easier to handle the corresponding bipartite
graphs. First we give graph theoretic characterization for graphs G with ind-match(G) = ord-match(G) =
1 (Theorem 3.4). We then move on to understand the structure of graphs in terms of the connectivity
between the bipartitions. This gives us a classification of all bipartite graphs G with ind-match(G) =
ord-match(G), (Theorem 3.8). To illustrate that this class of graphs is very different from the class of
graphs G with ind-match(G) = min-match(G), we construct a class of graphs, Gr,m, 2 ≤ r ≤ m, with
reg(S/I(Gr,m)) = ind-match(G) = ord-match(G) = r and min-match(G) = m.

Our characterization of bipartite graphs with equal induced and ordered matching numbers allows
us to count the number of graphs G satisfying ind-match(G) = ord-match(G) ≤ 2, see Theorem 3.4 and
Theorem 5.4. The work for ind-match(G) = ord-match(G) = 2 leads us to some interesting connections
between the presence of edges and certain number of integer sequences.

The paper is organized as follows. We collect some graph theory essentials in Section 2. Characterizing
the equality of induced and ordered matching numbers is done in Section 3. In Section 4, we introduce
some preliminaries to count the bipartite graphs with ind-match(G) = 2 = ord-match(G), namely
we set up the notation for certain integer sequences and their counting. We count all graphs with
ind-match(G) = 2 = ord-match(G) in Section 5. We provide the closed forms for certain elementary
summations to count these graphs in Section 6 as an appendix.

2 Preliminaries

In this section, we provide the definitions and basic facts which will be used in the next sections.
Let S = K[x1, . . . , xn] be the polynomial ring over a field K and let M be a finitely generated graded

S-module. Suppose that the minimal graded free resolution of M is given by

0→ · · · →
⊕
j

S(−j)β1,j(M) →
⊕
j

S(−j)β0,j(M) →M → 0.
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The Castelnuovo-Mumford regularity (or simply, regularity) of M , denoted by reg(M), is defined as

reg(M) = max{j − i | βi,j(M) 6= 0}.

Also, the projective dimension of M is defined to be

pd(M) = max{i | βi,j(M) 6= 0 for some j}.

For a vertex xi ∈ V (G), the neighbor set of xi is defined to be the set NG(xi) =
{
xj | xixj ∈ E(G)

}
.

Moreover, the closed neighborhood of xi is NG[xi] = NG(xi) ∪ {xi}. The cardinality of NG(xi) is the
degree of xi and is denoted by degG(xi). A vertex of degree one is called a leaf of G. The graph G is a
forest if it does not have any cycle. The distance between xi and xj in G is defined to be the length of
the shortest path between xi and xj in G. For a subset W ⊂ V (G), G\W denotes the induced subgraph
of G on the vertex set V (G) \W . A subset A of V (G) is said to be an independent subset of G if there
are no edges among the vertices of A. The graph G is called unmixed (or well-covered) if all maximal
independent sets of G have the same cardinality.

A matching in a graph is a subgraph consisting of pairwise disjoint edges. The cardinality of the
largest matching in G is the matching number of G and is denoted by match(G). A matching in G is said
to be a maximal matching if it is not properly contained in any matching of G. The minimum matching
number of G, denoted by min-match(G), is the minimum cardinality of a maximal matching in G. A
matching is said to be an induced matching if none the edges in the matching are joined by an edge in
G. The largest size of an induced matching in G is called the induced matching number of G, denoted
by ind-match(G). A graph G is called a Cameron-Walker graph if ind-match(G) = match(G).

A set A = {xi1xi2 ∈ E(G) | 1 ≤ i ≤ r} is said to be an ordered matching, [5], if

1. A is a matching in G,
2. {xi1 | 1 ≤ i ≤ r} is an independent set,
3. if xi1, xj2 ∈ E(G), then i ≤ j.

The ordered matching number of G, denoted by ord-match(G), is defined to be

ord-match(G) := max{|A| : A is an ordered matching of G}.

As already written in the introduction,

ind-match(G) ≤ reg(S/I(G)) ≤ {ord-match(G),min-match(G)} ≤ match(G),

There are several examples with inequality min-match(G) ≤ ord-match(G) and other examples with
inequality ord-match(G) ≤ min-match(G).

A graph G is said to be Cohen-Macaulay (resp. sequentially Cohen-Macaulay) if S/I(G) is Cohen-
Macaulay (resp. sequentially Cohen-Macaulay).

A bipartite graph G is a graph with V (G) = X t Y and E(G) ⊂ X × Y . If |X| = m and |Y | = n and
E(G) = X × Y , then we say that G is a complete bipartite graph, and we denote G by Km,n. If G is a
bipartite graph, then Gbc, called the bipartite complement, is the bipartite graph with V (Gbc) = V (G) =
X t Y and xy ∈ E(Gbc) if and only if xy /∈ E(G). A subgraph H of a graph G is said to be a spanning
subgraph if V (H) = V (G). If G = Km,n, then the set of connected spanning subgraphs of G is precisely
the set of all connected bipartite graphs on X t Y , where |X| = m and |Y | = n.

For the rest of the article, G always denotes a bipartite graph, without isolated vertices, on the finite
vertex set V (G) = X t Y .

It was proved by Brodmann [3] that for any homogeneous ideal I in a graded ring R, depth(R/Ik) is a
constant for k � 0. One consequence of ind-match and ord-match being equal is the constancy from the
start of the depth function of powers of the cover ideal J(G) =

⋂
xixj∈E(G)(xi, xj) of G, as we prove next.

Theorem 2.1. Assume that G is a bipartite graph with ind-match(G) = ord-match(G) and suppose
d = |V (G)|. Let J(G) denote the cover ideal of G. Then for every integer k ≥ 1, we have

depth(S/J(G)k) = d− ind-match(G)− 1.
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Proof. Since reg(I(G)) = ind-match(G) + 1 by inequalities in the Introduction, it follows from Terai’s
theorem [10, Proposition 8.1.10] that the projective dimension of S/J(G) is equal to ind-match(G) + 1.
Thus, Auslander-Buchsbaum formula implies that depth(S/J(G)) = d− ind-match(G)−1. On the other
hand, it follows from [8, Corollary 2.6] and [14, Theorem 3.2] that

d− ind-match(G)− 1 = depth(S/J(G)) ≥ depth(S/J(G)2) ≥ depth(S/J(G)3) ≥ · · · .

Moreover, we know from [14, Theorem 3.4] (see also [19, Theorem 3.1]) that depth(S/J(G)k) = d −
ord-match(G) − 1 for any k � 0. Since ord-match(G) = ind-match(G), the assertion follows from the
above inequalities.

3 Equality of induced and ordered matching numbers

In this section, we characterize all bipartite graphs G with ord-match(G) = ind-match(G). Before proving
our general characterization (Theorem 3.8), we restrict ourselves to a special family of bipartite graphs
for which the characterization has simpler formulation comparing with the general case. More precisely,
we consider the class of sequentially Cohen-Macaulay bipartite graphs G. In [7, 21, 22], the authors
studied the sequential Cohen-Macaulayness of S/I(G) in terms of the combinatorial properties of G.
Here, we study it in terms of the matching numbers. In the following theorem, we show that for a
bipartite sequentially Cohen-Macaulay graph G, the equality ord-match(G) = match(G) holds. As a
consequence of this equality, we are able to characterize sequentially Cohen-Macaulay bipartite graphs
G with ord-match(G) = ind-match(G).
Theorem 3.1. Let G be a bipartite graph. If G is sequentially Cohen-Macaulay, then ord-match(G) =
match(G). In particular, for a sequentially Cohen-Macaulay bipartite graph G, we have ind-match(G) =
ord-match(G) if and only if G is a Cameron-Walker graph.

Proof. We prove the equality ord-match(G) = match(G) by induction on |V (G)|. If |V (G)| = 2, then
ord-match(G) = match(G) = 1. Assume by induction that if H is a sequentially Cohen-Macaulay
bipartite graph with |V (H)| < |V (G)|, then ord-match(H) = match(H). By [22, Corollary 3.11], there
is a leaf x ∈ V (G) such that G \NG[x] is sequentially Cohen-Macaulay. Using [18, Lemma 2.1] and the
induction hypothesis we have

ord-match(G) ≥ ord-match(G \NG[x]) + 1 = match(G \NG[x]) + 1 = match(G)

where the last equality follows from the fact that x is a leaf of G. Thus, ord-match(G) = match(G). The
second assertion follows by observing that G is Cameron-Walker if and only if ind-match(G) = match(G).

The converse of the above Theorem does not hold. In fact, the following example shows that for
each integer k ≥ 3, there is a non-sequentially Cohen-Macaulay bipartite graph G with match(G) =
ord-match(G) = k.
Example 3.2. For any integer k ≥ 3, let Gk be the graph obtained from a 4-cycle graph by attach-
ing a path of length 2k − 3 to exactly one of its vertices. Using induction on k, We show that Gk
is not sequentially Cohen-Macaulay and ord-match(Gk) = match(Gk) = k. It is easy to see that
ord-match(G3) = match(G3) = 3. Moreover, let x be the unique leaf of G3 and let y be the unique neigh-
bor of x. Then G3 \NG3 [y] is the 4-cycle graph that is not sequentially Cohen-Macaulay. Hence, by [22,
Corollary 3.11], the graph G3 is not sequentially Cohen-Macaulay. Now, suppose that k ≥ 4. Let z be the
be the unique leaf of Gk. Then Gk\NGk

[z] is isomorphic to Gk−1 that is not sequentially Cohen-Macaulay
by induction hypothesis. Moreover, since z is a leaf of Gk, we have match(Gk) = match(Gk1) + 1 = k.
On the other hand, using [18, Lemma 2.1] and the induction hypothesis, we have

ord-match(Gk) ≥ ord-match(Gk−1) + 1 = k.

Thus, ord-match(Gk) = k.
In Example 3.2, we showed that for each integer k ≥ 3, there is a non-sequentially Cohen-Macaulay

bipartite graph G with match(G) = ord-match(G) = k. The following proposition shows that we cannot
expect such an example when k ≤ 2.
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Proposition 3.3. Let G be a bipartite graph with match(G) = ord-match(G) ≤ 2. Then G is a
sequentially Cohen-Macaulay graph.

Proof. By contradiction, suppose G is not sequentially Cohen-Macaulay. It is known that any forest is
sequentially Cohen-Macaulay (see for instance, [22, Theorem 1.3]). As a consequence, G is not a forest and
therefore, has a cycle C. Since match(G) ≤ 2, the length of C is equal to four. Suppose V (C) = {w, x, y, z}
and E(C) = {wx, xy, yz, wz}. Since match(C) = 2 and ord-match(C) = 1, we conclude that G 6= C.
This implies that there is an edge say wv connected to C, where v is a vertex in V (G) \ V (C). As G
is a bipartite graph, v is not adjacent to the vertices x and z. If there is a vertex u ∈ V (G) \ V (C)
such that ux ∈ E(G) or uz ∈ E(G), then the matching number of G would be at least three, which
is a contradiction. Thus, degG(x) = degG(z) = 2. If G has a vertex t ∈ V (G) \ V (C) whose distance
from w or y is at least two, then again, the matching number of G would be at least three, which is a
contradiction. Hence, V (G) = NG[w]∪NG[y]. Since G is a bipartite graph two distinct vertices belonging
to NG(w) ∪ NG(y) can not be adjacent. Hence, V (G) = {w, y} t (V (G) \ {w, y}) is the bipartition for
the vertex set of G. Consequently, G is a subgraph of K2,m, for some integer m ≥ 3. If G = K2,m, then
ord-match(G) = 1, which is a contradiction. Thus, G 6= K2,m. So, G has a leaf, say s. Then the unique
neighbor of s is either w or y. Without loss of generality, we may assume that ws ∈ E(G). Then the graphs
G\NG[w] and G\NG[s] are forests (as they do not contain the vertex w and so, the cycle C). Therefore,
using [22, Theorem 1.3], the graphs G \NG[w] and G \NG[s] are sequentially Cohen-Macaulay. Hence,
[22, Corollary 3.11] implies that G is a sequentially Cohen-Macaulay graph, which is a contradiction.

In the following result, we give a characterization of bipartite graphs with ord-match(G) =
ind-match(G) = 1. A classification of bipartite graphs with ord-match and ind-match being equal to an
arbitrary positive integer strictly bigger than 1 is in Theorem 3.8.
Theorem 3.4. Let G be a bipartite graph. Then ord-match(G) = ind-match(G) = 1 if and only if G is
a complete bipartite graph.

Proof. If G = Km,n for some m,n ≥ 1, then clearly ind-match(G) = 1 = ord-match(G). Conversely
suppose G is not a complete bipartite graph. Write V (G) = {x1, . . . , xm} t {y1, . . . , yn}. Since G is not
complete bipartite, there exist i, j such that xiyj /∈ E(G). By permuting the vertices, we may assume
that xjyj ∈ E(G). Choose an r such that xiyr ∈ E(G). Then {xjyj , xi, yr} is an ordered matching in G.
Hence ord-match(G) > 1.

Definition 3.5. For every subset I of X, let CI be the set of all vertices in Y that have an edge to all
the vertices in I and to none in X \ I. Set cI = |CI |.

Sometimes we shorten the notation and write in the subscripts not the set but its elements, without
commas. For example, we abbreviate c{i,j} to cij . If I, J are distinct subsets of X, then CI and CJ are
disjoint. In fact, each y ∈ Y belongs to exactly one of CI . Since G does not have isolated vertices, we
have C∅ = ∅.

In order to characterize bipartite graphs G with ind-match(G) = ord-match(G), we need the following
two propositions.

Proposition 3.6. Let G be a bipartite graph and let r be a positive integer. Then the induced matching
number of G is at least r if and only if there exist subsets J1, J2, . . . , Jr of X such that none of the Ji is
contained in the union of the others and such that cJ1cJ2 · · · cJr > 0.

Proof. Suppose that ind-match(G) is at least r. Then there exist a1, . . . , ar ∈ X and b1, . . . , br ∈ Y such
that a1b1, a2b2, . . . , arbr is an induced matching. For each i ∈ [r], let Ki be the subset of Y consisting of
all vertices with an edge to ai and with no edge to any of the other aj with j 6= i. So bi ∈ Ki and Ki is
not empty. Let Ji be the set of all vertices in X with an edge to all elements of Ki. Then ai ∈ Ji and
aj 6∈ Ji for all j 6= i. The conclusion follows for these J1, . . . , Jr.

Conversely, suppose that there exist subsets J1, J2, . . . , Jr of X such that none is contained in the
union of the others and such that cJ1cJ2 · · · cJr > 0. For each i ∈ r, let ai ∈ Ji that is not in the union of
the other Jj . Since cJi > 0, there exists bi ∈ CJi . Then by the definition of these sets, a1b1, a2b2, . . . , arbr
is an induced matching, so that ind-match(G) is at least r.

Proposition 3.7. Let G be a bipartite graph and let r be a positive integer. Then the following are
equivalent:
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1. ord-match(G) ≥ r.
2. There exist subsets J1, J2, . . . , Jr of X such that cJ1cJ2 · · · cJr > 0 and for all i ∈ [r − 1], Ji is not

contained in J1 ∪ · · · ∪ Ji−1.

Moreover, ord-match(G) ≤ r if and only if for all possible sets J1, . . . , Jr with the properties as in (2),
their union equals X.

Proof. (1) ⇒ (2): Suppose that ord-match(G) is at least r. Then there exist a1, . . . , ar ∈ X and
b1, . . . , br ∈ Y such that a1b1, a2b2, . . . , arbr is an ordered matching. For each i ∈ [r], let Ki be the subset
of Y consisting of all the vertices with an edge to ai and with no edge to any of the aj with j > i. So
bi ∈ Ki and Ki is not empty. Let Ji be the set of all the vertices in X with an edge to all the elements
of Ki. Then ai ∈ Ji and aj 6∈ Ji for all j > i. Thus (2) follows for these J1, . . . , Jr.

(2) ⇒ (1): This is trivial for r = 1, so we may assume that r > 1. Let J1, J2, . . . , Jr be subsets of X
such that for all i ∈ [r − 1], Ji is not contained in J1 ∪ · · · ∪ Ji−1 and such that cJ1cJ2 · · · cJr > 0. For
each i ∈ r, let ai ∈ Ji \ J1 ∪ · · · ∪ Ji−1. Since cJi > 0, there exists bi ∈ CJi . By definition of these sets,
a1b1, a2b2, . . . , arbr is an ordered matching.

If there exists a ∈ X \ J1 ∪ · · · ∪ Jr, then since a is not an isolated vertex, there is a vertex b ∈ Y
which is adjacent to a. By definition of the sets CI , there is no edge between a and b1, . . . , br. Thus
a1b1, a2b2, . . . , arbr, ab is an ordered matching. Thus ord-match(G) is strictly bigger than r.

If ord-match(G) is at least r+1, then by the equivalence of (1) and (2) the union of J1, . . . , Jr cannot
be X. This proves the last part.

Using Propositions 3.6 and 3.7, we can classify all bipartite graphs for which ord-match and ind-match
are equal.

Theorem 3.8. (Classification) Let G be a bipartite graph and let r > 1 be a positive integer. Let
J1, . . . , Jz be all the subsets I of X for which cI is positive. Then G has ind-match and ord-match equal
to r if and only if the following conditions are satisfied:

1. z ≥ r.
2. There exist distinct j1, . . . , jr ∈ [z] such that none of the Jji is contained in the union of the remaining

Jjk .
3. For all j1, . . . , jr ∈ [z], if for each i ∈ [r−1], Jji is not contained in Jj1∪· · ·∪Jji−1

, then Jj1∪· · ·∪Jjr =
X.

Proof. First suppose that ind-match(G) and ord-match(G) equal r. Then by Theorem 3.6, (1) and (2)
hold. Theorem 3.7 implies (3).

Now suppose that the three conditions are satisfied. Then by Theorem 3.6, induced matching num-
ber of G is at least r and ord-match(G) is at most r. But ord-match(G) is greater than or equal to
ind-match(G). So, ind-match(G) and ord-match(G) are both equal to r.

We can say more in case ord-match(G) and ind-match(G) are both equal to 2:

Theorem 3.9. (Classification for r = 2) Let G be a bipartite graph. Let J1, . . . , Jz be all the subsets I of
X for which cI is positive. Then G has ind-match and ord-match equal to 2 if and only if the following
conditions are satisfied:

1. z ≥ 2.
2. There exist distinct i, j ∈ [z] such that neither Ji nor Jj is contained in the other.
3. For any two distinct i, j ∈ [z], Ji ∪ Jj = X.

Furthermore, if some Ji and Jj are disjoint, then z equals 2 or 3; the later exactly when the graph is
connected and in this case cX > 0.

Proof. Equivalence follows from Theorem 3.8. Note that part (3) here is equivalent to part (3) in
Theorem 3.8 because Ji and Jj are distinct sets.

Let k ∈ [z] \ {i, j}. Then by condition (3), Jk contains the complement of Ji and Jj , so that if Ji
and Jj are disjoint, then Jk contains X. This means that Jk has to equal X. Thus either z = 3 and G is
connected, or else z = 2 and G is not connected.
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As a consequence of the above theorem, we obtain an explicit graph theoretic characterization of
bipartite graphs G with ind-match(G) = ord-match(G) = 2.

Corollary 3.10. Let G be a bipartite graph. Then ind-match(G) = ord-match(G) = 2 if and only if the
bipartite complement Gbc of G is the disjoint union of complete bipartite graphs H1, . . . ,Hs with s ≥ 2
such that at least two of the Hi are not isolated vertices.

Proof. Let J1, . . . , Jz be all the subsets I of X for which cI is positive. Then for any pair of distinct
integers i, j ∈ [z], we have Ji ∪ Jj = X if and only if for any choice of vertices y ∈ CJi and y′ ∈ CJj , the
equality NGbc(y) ∩NGbc(y′) = ∅ holds. Thus, Condition (3) of Theorem 3.9 (and in fact, by Proposition
3.7, the inequality ord-match(G) ≤ 2) is equivalent to say that Gbc is the disjoint union of complete
bipartite graphs. Moreover, note that ind-match(G) ≥ 2 if and only if ind-match(Gbc) ≥ 2. Since Gbc

is the disjoint union of complete bipartite graphs, we deduce at least two of these components are not
isolated vertices.

Let G be a bipartite graph. It is known that if G is either unmixed or sequentially Cohen-Macaulay,
then reg(S/I(G)) = ind-match(G). In the following theorem, for every pair of integers r,m with 2 ≤
r ≤ m, we construct a bipartite graph Gr,m which is neither sequentially Cohen-Macaulay nor unmixed,
moreover, reg(S/I(Gr,m)) = ind-match(Gr,m) = ord-match(Gr,m) = r and min-match(Gr,m) = m.
Hence, the class of graphs we study in this paper is not contained in two general classes of bipartite
graphs for which the regularity of edge ideals is known. Furthermore, Theorem 3.11 shows that the family
of graphs G with ind-match(G) = ord-match(G) is far from the class of graphs considered in [12].

Theorem 3.11. Let 2 ≤ r ≤ m be positive integers. Then there is a connected bipartite graph Gr,m such
that

1. reg(S/I(Gr,m)) = ind-match(Gr,m) = ord-match(Gr,m) = r and min-match(Gr,m) = m.
2. Gr,m does not have any leaf (and hence Gr,m is not a sequentially Cohen-Macaulay graph).
3. Gr,m is not an unmixed graph.

Proof. Set X = {x1, . . . , xm+1} and Y = {y1, . . . , ym+1}. Let Gr,m be the bipartite graph with vertex
set V (Gr,m) = X t Y and edge set

E(Gr,m) =
⋃

1≤j≤r−1

{x1yj , xj+1yj} ∪
⋃

r≤j≤m

{x1yj , xiyj | r + 1 ≤ i ≤ m+ 1} ∪ {xiym+1 | 1 ≤ i ≤ m+ 1}.

For the convenience of the reader, we illustrate the graph Gr,m with a sample picture below:

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

Fig. 1 G2,4

It follows directly from the definition that

NGr,m
(yj) =

 {x1, xj+1}, 1 ≤ j ≤ r − 1;
{xr+1, . . . , xm+1} ∪ {x1}, r ≤ j ≤ m;
X, j = m+ 1.

Clearly, Gr,m is a connected bipartite graph that does not have any leaf. Therefore using [22, Corol-
lary 2.10], it is not a sequentially Cohen-Macaulay graph. Moreover, it is easy to check that the set
{x2, . . . , xr, yr, . . . , ym} is a maximal independent set of Gr,m with cardinality m < |X|. Thus, Gr,m is
not an unmixed graph. Hence, we only need to verify condition (i).
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Set
J1 = NGr,m

(y1), J2 = NGr,m
(y2), · · · , Jr = NGr,m

(yr), Jr+1 = X.

Note that for a subset J ⊆ X, we have cJ > 0 if and only if J ∈ {J1, . . . , Jr+1}. Then it follows from
Theorem 3.8 that

reg(S/I(Gr,m)) = ind-match(Gr,m) = ord-match(Gr,m) = r.

Now, we compute min-match(Gr,m). It is obvious that

{y2x3, y3x4, . . . , ym−1xm, ymx1, ym+1x2}

is a maximal matching in Gr,m of size m. Hence, min-match(Gr,m) ≤ m. Suppose M is a maximal
matching in Gr,m with |M | ≤ m − 1. Thus, there are two distinct vertices yi, yj ∈ Y \ V (M). Without
loss of generality, we may assume that i < j. We consider the following cases.

Case 1. Suppose i, j ≤ r − 1, then at least one of the vertices xi+1 and xj+1 does not belong to
V (M), as otherwise the edges ym+1xi+1 and ym+1xj+1 belong to M , which contradicts the definition of
a matching. For example, suppose xi+1 /∈ V (M). Then M ∪ {yixi+1} is a matching in Gr,m. Thus, M is
not a maximal matching.

Case 2. Suppose 1 ≤ i ≤ r − 1 and r ≤ j ≤ m. Since M is a maximal matching in Gr,m, we deduce
that NGr,m

(yi) ∪NGr,m
(yj) ⊆ V (M). This implies that

{x1, xi+1, xr+1, . . . , xm+1} ⊆ V (M).

Since xi+1 ∈ V (M) and yi /∈ V (M), the edge ym+1xi+1 must belong to M . Then since xr+1, . . . , xm+1 ∈
V (M), we conclude that yr, . . . , ym ∈ V (M). Moreover, according to Case 1, we may assume that
{y1, . . . , yr−1} \ {yi} ⊆ V (M). Therefore, Y \ {yi} ⊆ V (M). So, |M | ≥ m, which is a contradiction.

Case 3. Suppose r ≤ i, j ≤ m. Since M is a maximal matching, we must have NGr,m(yi)∪NGr,m(yj) ⊆
V (M). In particular, {xr+1, . . . , xm+1} ⊆ V (M). So, in Gr,m, there are at least m− r+ 1 vertices other
that yi and yj , which are adjacent to at least one of the vertices xr+1, . . . , xm+1. But this is not the case
according to the construction of Gr,m.

Case 4. Suppose j = m + 1. Since M is a maximal matching, NGr,m(yj) ⊆ V (M). Therefore,
X ⊆ V (M). This implies that |M | ≥ m+ 1, which is a contradiction.

4 Set-up of k-sequences and J-sets

The notation in this section sets the stage for the counting of graphs in the next section.

Definition 4.1. A k-sequence is a strictly decreasing sequence of integers {k0, k1, . . . , kz} with z ≥ 2,
kz = 0, and for all l = 2, 3, . . . , z, kl+1 ≥ 2kl − kl−1.

Observe that if a k-sequence has at least four terms, then the truncation of the sequence by removing
the first term is also a k-sequence. A truncated k-sequence is a truncation of infinitely many k-sequences.

Examples 4.2. When k0 = 2, the only possible k-sequence is {2, 1, 0}.
The only possible k-sequences with k0 = 3 are {3, 2, 1, 0} and {3, 1, 0}.
When k0 = 4, there are four k-sequences: {4, 3, 2, 1, 0}; {4, 2, 1, 0}; {4, 2, 0} and {4, 1, 0}.
When k0 = 5, there are six k-sequences: {5, 4, 3, 2, 1, 0}; {5, 3, 2, 1, 0}; {5, 3, 1, 0}; {5, 2, 1, 0}; {5, 2, 0}

and {5, 1, 0}.

Definition 4.3. For any non-negative integer n and any k-sequence {k0, k1, . . . , kz} with z ≥ 3, set

D(n; {k0, . . . , kz}) =



n−1∑
i=1

n−i∑
j=1

C(n− i, j; k1, . . . , kz), if k2 > 2k1 − k0;

n−1∑
i=1

min{n−i,i}∑
j=1

C(n− i, j; k1, . . . , kz), if k2 = 2k1 − k0,
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where C is defined recursively as follows:

C(n, i; k1, . . . , kz) =



n− i+ 1, if z = 3 and k3 > 2k2 − k1;

min{n− i, i}+ 1, if z = 3 and k3 = 2k2 − k1;
n−i∑
j=0

C(n− i, j; k1, . . . , kz), if z > 3 and k3 > 2k2 − k1;

min{n−i,i}∑
j=0

C(n− i, j; k1, . . . , kz), if z > 3 and k3 = 2k2 − k1.

Here is a full expansion of D:

D(n; {k0, . . . , kz}) =

n−1∑
i1=1

u2∑
i2=1

u3∑
i3=0

u4∑
i4=0

. . .

uz∑
iz=0

1,

where the upper bounds ul equal either n− i1− · · ·− il−1 or min{n− i1− · · ·− il−1, il−1}, depending on
whether strict inequality or equality hold in kl+1 ≥ 2kl − kl−1. The sum does not depend on the specific
values in the k-sequence, but only on whether kl+1 is strictly greater than or equal to 2kl − kl−1. Note
that the counters i1 and i2 start with 1, but all other counters il start with 0.

Definition 4.4. Let K be a finite set of k-sequences, each k-sequence in K having at least four terms
(so z ≥ 3 for each sequence in K). Let W be the ordered set from largest to smallest of all non-negative
integers that appear in all sequences in K. So 0 ∈ W . For any positive integer l ≤ |W | and any k ∈ K,
let o(l, k) be the subscript index of the lth element of W in k. For any integer n ≥ 2 we define DK(n) to
be 0 if the first three terms in the sequences in K are not the same, and otherwise DK(n) is the sum of
the common summands in the D-sums (from Theorem 4.3) coming from the W -terms for all sequences
in K. Explicitly,

DK(n) =

n−1∑
i1=1

v2∑
i2=1

v3∑
i3=0

v4∑
i4=0

. . .

v|W |∑
i|W |=0

1,

where for l = 2, . . . , |W |, vl is the minimum of all the upper bounds in D(n; k) in the o(l, k)th summation
as k varies over all sequences in K. These upper bounds depend also on the summation indices not
appearing in W , and those hidden indices are all set to their common hidden value 0.

For example, DK(n) = 0 for the set K consisting of two k-sequences {6, 3, 2, 1, 0} and {6, 3, 1, 0}
because their third terms are not the same.

For a more interesting example, let K consist of k = {6, 4, 2, 1, 0} and l = {6, 4, 2, 0}. Then W =
{6, 4, 2, 0}, o(6, k) = o(6, l) = 0, o(4, k) = o(4, l) = 1, o(2, k) = o(2, l) = 2, o(0, k) = 4, o(0, l) = 3. We
write out explicitly

D(n; {6, 4, 2, 1, 0}) =

n−1∑
i1=1

min{n−i1,i1}∑
i2=1

n−i1−i2∑
i3=0

min{n−i1−i2−i3,i3}∑
i4=0

1

and

D(n; {6, 4, 2, 0}) =

n−1∑
i1=1

min{n−i1,i1}∑
i2=1

min{n−i1−i2,i2}∑
i3=0

1 =

n−1∑
i1=1

min{n−i1,i1}∑
i2=1

0∑
i3=0

min{n−i1−i2,i2}∑
i4=0

1,

where in the last line we inserted the trivial summation
∑0

i3=0 to correspond to the entry 1 in k that
does not exist in l, and we correspondingly renamed the old i3 as new i4. From these common rewritings
of the two summations we read off

DK(n) =

n−1∑
i1=1

min{n−i1,i1}∑
i2=1

0∑
i3=0

min{n−i1−i2−i3,i3}∑
i4=0

1 =

n−1∑
i1=1

min{n−i1,i1}∑
i2=1

1.
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Incidentally, this sum simplifies to 1
2dn/2e(dn/2e − 1) + 1

2bn/2c(bn/2c+ 1).
The non-trivial part of the last simplification involves exactly two non-trivial summations, and that

is due to the two sequences having exactly two J-sets in common; J-sets are introduced next.
We will use J-sets in the counting of connected bipartite graphs with ind-match and ord-match

both equal to 2.

Definition 4.5. Let z ≥ 2 and let J1, J2, . . . , Jz be distinct non-empty proper subsets of X with |J1| ≤
|J2| ≤ · · · ≤ |Jz| < |X| = m such that Ji ∪ Jj = X for all distinct i, j ∈ [z]. (Unlike in Theorem 3.8 and
Theorem 3.9, here the sets are proper.) All proper subsets I of X for which cI > 0 for a given connected
bipartite graph on X t Y appear on this list (see Theorem 3.5), but this list of subsets may contain also
some special subsets I for which cI = 0. By possibly reindexing, we assume that cJ1cJ2 > 0, that J1
has the smallest cardinality among the Ji and that J2 has the smallest possible cardinality among the
remaining Ji.

When J1 and J2 are disjoint, then by Theorem 3.9, z = 2 and cX is positive, and otherwise cX is
only potentially positive.

For l = 0, . . . , z we set Kl = J1 ∩ · · · ∩ Jl and kl = |Kl|. So k0 = m. Without loss of generality
J1 = {1, 2, . . . , k1}. Since J2 contains exactly k2 elements of J1 and all elements of X \ J1, without
loss of generality J2 = {1, 2, . . . , k2} ∪ {k1 + 1, k1 + 2, . . . ,m}. Since J2 does not contain J1, necessarily
k2 < k1. If z ≥ 3, then J3 must contain {k2 + 1, k2 + 2, . . . ,m} and also exactly k3 of the elements of
J1∩J2 = {1, 2, . . . , k2}. So without loss of generality J3 = {1, 2, . . . , k3}∪{k2+1, k2+2, . . . ,m}. Since J3 is
a proper subset, necessarily k3 < k2. Similarly, for all l ∈ [z], Jl = {1, 2, . . . , kl}∪{kl−1+1, kl−1+2, . . . ,m}
and kl < kl−1. With this it is clear now that k0 = m > k1 > k2 > · · · > kl. If kz > 0, we can add to the
sets also the one set {kz + 1, kz + 2, . . . ,m}, and then by increasing z by 1, we may assume that kz = 0.
With this we give our final requirement for the J-sets: we require J1 ∩ · · · ∩ Jz = ∅.

Note that |Jl| = m − kl−1 + kl. So the condition |J1| ≤ |J2| ≤ · · · ≤ |Jz| < |X| = m is equivalent
to the condition kl+1 ≥ 2kl − kl−1 for all l = 1, 2, . . . , z − 1. Thus k0, . . . , kz = 0 is a k-sequence (see
Theorem 4.1). In addition, for any l, |Jl| < |Jl+1| is equivalent to kl+1 < 2kl − kl−1.

Thus the possible unlabeled subsets J1, . . . , Jz of X with J1 ∩ · · · ∩ Jz = ∅ determine the k-sequence
{k0, . . . , kz = 0}, and vice versa, a k-sequence defines up to relabeling the J-sets (with J1∩ · · · ∩Jz = ∅).

The sets J1 and J2 in the definition contribute edges to G that will make ind-match and ord-match
equal to 2, and the remaining J3, . . . , Jz may only potentially contribute an edge.

Examples 4.6. The k-sequence {2, 1, 0} corresponds to the sets J1 = {1}, J2 = {2}.
The k-sequence {3, 2, 1, 0} corresponds to the sets J1 = {1, 2}, J2 = {1, 3}, J3 = {2, 3}. The k-

sequence {3, 1, 0} corresponds to the sets J1 = {1}, J2 = {2, 3}.
The k-sequence {4, 3, 2, 1, 0} corresponds to the sets J1 = {1, 2, 3}, J2 = {1, 2, 4}, J3 = {1, 3, 4},

J4 = {2, 3, 4}; the k-sequence {4, 2, 1, 0} corresponds to the sets J1 = {1, 2}, J2 = {1, 3, 4}, J3 = {2, 3, 4};
the k-sequence {4, 2, 0} corresponds to the sets J1 = {1, 2}, J2 = {3, 4}; and the k-sequence {4, 1, 0}
corresponds to the sets J1 = {1}, J2 = {2, 3, 4}.

The k-sequence {6, 4, 2, 1, 0}, corresponds to the sets J1 = {1, 2, 3, 4}, J2 = {1, 2, 5, 6}, J3 =
{1, 3, 4, 5, 6} and J4 = {2, 3, 4, 5, 6}, and the k-sequence {6, 4, 2, 0}, corresponds to J1 = {1, 2, 3, 4},
J2 = {1, 2, 5, 6}, J3 = {3, 4, 5, 6}. So these two k-sequences have exactly two J-sets in common, which
explains why DK computed earlier has only two summations, all other indices varying trivially.

5 Bipartite graphs with induced and ordered matching 2

The aim of this section is to count the number of connected bipartite graphs G whose ord-match and
ind-match are equal to 2. For the rest of the section, let G be denote a connected bipartite graph.
Suppose X tY is the bipartition for the vertex set of G. Set m := |X| and n := |Y |. So G is a connected
spanning subgraph of Km,n. Without loss of generality we assume that m ≤ n. Moreover, suppose that
ind-match(G) = ord-match(G) = 2. As the main result of this section, in Theorem 5.4, we provide an
inclusion-exclusion type formula for the number of such graphs. As a consequence, in Corollary 5.5, we
obtain a closed formula for the number of these graphs when m ≤ 4.

We first count a special type of connected bipartite graphs whose ind-match and ord-match are equal
to 2.
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Proposition 5.1. Assume that I is a proper subset of X and that n = |Y | ≥ 3. The number of connected
spanning subgraphs of Km,n with ind-match(G) = ord-match(G) = 2 for which cIcX\I > 0 equals

(
n−1
2

)
if |I| 6= n/2 and

⌊
n
2

⌋ (⌈
n
2

⌉
− 1
)

otherwise.

Proof. By Theorem 3.9, I, X \ I and X are the only subsets K of X for which cK is positive.
When |I| 6= |X \ I|, then the number of such graphs equals

n−2∑
cI=1

n−cI−1∑
cX\I=1

1 =

n−2∑
i=1

n−i−1∑
j=1

1 =

n−2∑
i=1

(n− i− 1) =

(
n− 1

2

)
,

and if |I| = |X \ I|, then to not count unlabeled graphs twice, the number of such graphs equals

n−2∑
cI=1

min{cI ,n−cI−1}∑
cX\I=1

1 =

n−2∑
i=1

min{i,n−i−1}∑
j=1

1,

which by Theorem 6.1 equals
⌊
n
2

⌋ (⌈
n
2

⌉
− 1
)
.

The next proposition shows that the number of connected bipartite graphs G with ind-match(G) =
ord-match(G) = 2 is closely related to the notion of k-sequences defined in Section 4.

Proposition 5.2. Let z ≥ 3 and k0 = m, k1, . . . , kz = 0 a k-sequence with corresponding sets
J1, . . . , Jz ( X = {1, . . . ,m} as in Theorem 4.5. Then D(n; {m, k1, . . . , kz}) equals the number of con-
nected bipartite graphs with edges from vertices in X to vertices in the set with n elements for which
ord-match and ind-match are both equal to 2, and for which cJ1cJ2 > 0 and cI = 0 for all proper subsets
I of X different from J1, . . . , Jz.

Proof. The count is of unlabelled sets of vertices. With the set-up as in Theorem 4.5, we are counting
the number of (z + 1)-tuples (cJ1 , . . . , cJz , cX) for which cJ1 , cJ2 > 0, (

∑z
l=1 cJl) + cX = |Y | = n, and

cI = 0 for all proper subsets I of X other than J1, . . . , Jz. In order to not count identical unlabeled
graphs twice, we need a further restriction: whenever Jl, Jl+1, . . . , Jl+k have the same number of elements,
then we may assume that cJl ≥ cJl+1 ≥ · · · ≥ clk . If Jl and Jl+1 have a different number of elements,
then there is no restriction on the comparison of sizes of cJl and cJl+1

. Thus the count equals precisely
D(n; {m, k1, . . . , kz}) from Theorem 4.3.

In order to count all connected bipartite graphs with ord-match and ind-match both being equal to 2,
we thus need a list of all k-sequences (or equivalently, of corresponding J-sets for one of the two sets
of vertices), count the graphs for each of the k-sequences, and then use inclusion-exclusion to remove
multiple counts of some of the graphs. This will be done in the next theorem.

We set some notation needed for the next theorem.

Notation 5.3. For m ≤ n, define

N(m,n) =

⌊
m− 1

2

⌋(
n− 1

2

)
+ (δm,even)

⌊n
2

⌋(⌈n
2

⌉
− 1
)

+
∑
K

(−1)|K|−1DK(n),

where K varies over all non-empty subsets of the set of all k-sequences starting with k0 = m and with at
least 4 terms, where DK is from Theorem 4.4, and δm,even is 1 if m is even and 0 otherwise.

Theorem 5.4. If m < n, then N(m,n) equals the number of connected non-isomorphic spanning
subgraphs of Km,n with both ord-match and ind-match being equal to 2.

When m = n, then N(m,n) counts the graphs as before with vertices unlabeled but treating the two
sets of vertices as labeled.

Proof. Every graph under discussion corresponds to a unique collection of proper subsets J1, J2, . . . , Jz
with non-decreasing cardinalities and their corresponding k-sequence m = k0, k1, . . . , kz = 0.
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When z = 2, then J1 and J2 are disjoint, in which case Theorem 5.1 applies. Since |J1| ≤ |J2|,
necessarily |J1| ≤ m/2. The

⌊
m−1
2

⌋
cases in which |J1| < |J2| each give

(
n−1
2

)
graphs, and when m is

even, the case |J1| = |J2| gives E graphs.
The cases without disjoint J-subsets are covered in Theorem 5.2.

In the following corollary, we obtain a closed formula for the number of connected bipartite graphs
with ind-match(G) = ord-match(G) = 2 when min{|X|, |Y |} ≤ 4.

Corollary 5.5. For 2 ≤ m ≤ 4, the number N(m,n) of connected non-isomorphic spanning subgraphs
of Km,n with ind-match and ord-match both equal to 2 is:

E, if m = 2 and necessarily n ≥ 3;

3, if m = n = 3;(
n−1
2

)
+ T, if m = 3 < n;

14, if m = n = 4;(
n−1
2

)
+ E + U + V, if m = 4 < n,

where

E =
⌊n

2

⌋(⌈n
2

⌉
− 1
)
,

T = − 25

144
− n

12
+

7n2

24
+
n3

36
+

(−1)n

16
+

3 +
√

3i

54

(
−1−

√
3i

2

)n
+

3−
√

3i

54

(
−1 +

√
3i

2

)n
,

U =
−1

16
+

5

12
n+

5

8
n2 +

1

12
n3 +

1

16
(−1)n,

V =
−641− 486n+ 996n2 + 132n3 + 6n4

3456
+

(11 + 2n)(−1)n

128
+

(1− i)in + (1 + i)(−i)n

32

+
1 +
√

3i

54

(
−1−

√
3i

2

)n
+

1−
√

3i

54

(
−1 +

√
3i

2

)n
.

Proof. The justification for m = 2 is that there is only one k-sequence with z = 2, and Theorem 5.1
applies.

The cases m = n = 3 and m = n = 4 are special because the two vertex sets can be switched, and
the general formula does not accommodate such switching. These cases can be verified manually and we
do not show the work here.

For m = 3 < n, the k-sequence 3, 1, 0 is where then J1 and J2 are disjoint and Theorem 5.1 applies;
and for the k-sequence 3, 2, 1, 0, the number of graphs equals the sum

n−1∑
i=1

min{n−i,i}∑
j=1

min{n−i−j,j}∑
k=0

1,

which by Theorem 6.2 equals T .
For m = 4 < n, the k-sequence 4, 1, 0 contributes

(
n−1
2

)
graphs and the k-sequence 4, 2, 0 contributes

E graphs by Theorem 5.1. The contribution of the k-sequence 4, 2, 1, 0 is

n−1∑
i=1

n−i∑
j=1

min{n−i−j,j}∑
k=0

1,

which by Theorem 6.3 equals U . Finally, the k-sequence 4, 3, 2, 1, 0 contributes

n−1∑
i=1

min{n−i,i}∑
j=1

min{n−i−j,j}∑
k=0

min{n−i−j−k,k}∑
l=0

1,

which by Theorem 6.4 equals V .
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6 Appendix: Some explicit summations

The closed forms of the sums in this appendix are used in the previous section.

Proposition 6.1. For any integer n ≥ 3,

n−2∑
i=1

min{i,n−i−1}∑
j=1

1 =
⌊n

2

⌋(⌈n
2

⌉
− 1
)
.

Proof. Inequality i ≤ n− i− 1 holds if and only if i ≤ bn−12 c, so the count simplifies to:

n−2∑
i=1

min{i,n−i−1}∑
j=1

1 =

bn−1
2 c∑
i=1

i∑
j=1

1 +

n−2∑
i=bn−1

2 c+1

n−i−1∑
j=1

1

=

bn−1
2 c∑
i=1

i+ (n− 1)

(
n− 2−

⌊
n− 1

2

⌋)
−

n−2∑
i=bn−1

2 c+1

i

=

⌊
n− 1

2

⌋(⌊
n− 1

2

⌋
+ 1

)
+ (n− 1)

(
n

2
−
⌊
n− 1

2

⌋
− 1

)
=

{
k2 − k, if n = 2k;
k2, if n = 2k + 1,

=
⌊n

2

⌋2
+
⌊n

2

⌋(⌈n
2

⌉
−
⌊n

2

⌋
− 1
)

=
⌊n

2

⌋(⌈n
2

⌉
− 1
)
.

Proposition 6.2. For any non-negative integer n,

n−1∑
i=1

min{n−i,i}∑
j=1

min{n−i−j,j}∑
k=0

1

= − 25

144
− n

12
+

7n2

24
+
n3

36
+

(−1)n

16
+

3 +
√

3i

54

(
−1−

√
3i

2

)n
+

3−
√

3i

54

(
−1 +

√
3i

2

)n
.

Proof. The summation on the left is the number an of quadruples of non-negative integers i, j, k, l that
add to n with further restrictions that i ≥ j ≥ 1 and j ≥ k. Set u = i− j, v = j − k. So we are looking
for the number bn of non-negative integer solutions u, v, k, l such that u + 2v + 3k + l = n minus the
number cn of integer solutions i ≥ 0, j = 0 = k, l with i+ l = n.

Let A be the set of non-negative integer solutions of 3x1 + 2x2 + x3 + x4 = n. For each i = 1, 2, 3, 4,
let Ai be the set of non-negative integer solutions of 3x1 + 2x2 + x3 + x4 = n with xi ≥ 1. Then

A = A1 ∪A2 ∪A3 ∪A3.

Using inclusion-exclusion formula

|A| =
4∑
i=1

|Ai| −
∑
i<j

|Ai ∩Aj |+
∑
i<j<k

|Ai ∩Aj ∩Ak| − |A1 ∩A2 ∩A3 ∩A4|.

To compute the cardinality of A1, set y1 = x1−1. Since for any solution in A1, we have x1 ≥ 1, hence, for
any such a solution, y1 ≥ 0. Moreover, it follows from 3x1+2x2+x3+x4 = n that 3y1+2x2+x3+x4 = n−3.
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Using induction hypothesis the number of solution of this equation is bn−3. Therefore, |A1| = bn−3.
Similarly, one an compute the cardinality of other Ai and their intersections. Hence,

bn = 2bn−1 − bn−3 − bn−4 + 2bn−6 − bn−7.

A similar argument shows that
cn = 2cn−1 − cn−2.

This yields that

cn = 2cn−1 − cn−2
= 2cn−1 − 2cn−3 + cn−4

= 2cn−1 − cn−3 − cn−3 + cn−4

= 2cn−1 − cn−3 − 2cn−4 + cn−5 + cn−4

= 2cn−1 − cn−3 − cn−4 + cn−5

= 2cn−1 − cn−3 − cn−4 + 2cn−6 − cn−7.

Therefore, cn satisfies the same recursive formula as bn. Hence, their subtraction an = bn − cn also
satisfies the same formula an = 2an−1 − an−3 − an−4 + 2an−6 − an−7.

The roots of the corresponding characteristic polynomial x7 − 2x6 + x4 + x3 − 2x + 1 are
1, 1, 1, 1,−1,−1/2 +

√
3i/2 and −1/2 −

√
3i/2. Thus by standard theory of linear recursive sequences

with constant coefficients (see for example Theorem 6.21 and Remark 6.23 in [17]), the closed form for
an equals

an = c0 + c1n+ c2n
2 + c3n

3 + c4(−1)n + c5

(
(−1 +

√
3 i)/2

)n
+ c6

(
(−1−

√
3 i)/2

)n
for some coefficients c0 through c6. With that we can set up a system of linear equations with manually
computed a0 = 0, a1 = 0, a2 = 1, a3 = 3, a4 = 6, a5 = 10, a6 = 16, and with the help of Macaulay2 [9]
we computed the corresponding closed form for an to be

− 25

144
− n

12
+

7n2

24
+
n3

36
+

(−1)n

16
+

3 +
√

3i

54

(
−1−

√
3i

2

)n
+

3−
√

3i

54

(
−1 +

√
3i

2

)n
.

Proposition 6.3. For any non-negative integer n,

n−1∑
i=1

n−i∑
j=1

min{n−i−j,j}∑
k=0

1 =
−1

16
+

5

12
n+

5

8
n2 +

1

12
n3 +

1

16
(−1)n.

Proof. With methods as in the proof of Theorem 6.2, we get the recursive formula an = 3an−1−2an−2−
2an−3 + 3an−4 − an−5. The corresponding polynomial is x5 − 3x4 + 2x3 + 2x2 − 3x+ 1, whose roots are
1, 1, 1, 1,−1. The initial conditions can easily be computed to be a1 = 0, a2 = 1, a3 = 4, a4 = 9, a5 = 17,
from which with linear algebra (or via https://oeis.org/A005744) we get the expression

an =
−1

16
+

5

12
n+

5

8
n2 +

1

12
n3 +

1

16
(−1)n.

Proposition 6.4. For any non-negative integer n,

n−1∑
i=1

min{n−i,i}∑
j=1

min{n−i−j,j}∑
k=0

min{n−i−j−k,k}∑
l=0

=
−641− 486n+ 996n2 + 132n3 + 6n4

3456

+
(11 + 2n)(−1)n

128
+

(1− i)in + (1 + i)(−i)n

32

− 1

27

(
−1−

√
3i

2

)n+1

− 1

27

(
−1 +

√
3i

2

)n+1

.

14



Proof. With the methods as in the proof of Theorem 6.2 we get the recursive formula

an = 2an−1 − an−3 − 2an−5 + 2an−6 + an−8 − 2an−10 + an−11.

The roots of the corresponding polynomial x11 − 2x10 + x8 + 2x6 − 2x5 − x3 + 2x − 1 are
1, 1, 1, 1, 1,−1,−1, i,−i, (−1 +

√
3 i)/2, (−1 −

√
3 i)/2. The manually computed initial conditions are

a1 = 0, a2 = 1, a3 = 3, a4 = 7, a5 = 12, a6 = 20, a7 = 30, a8 = 44, a9 = 61, a10 = 83, a11 = 109. Thus
with linear algebra we get the closed form

an =
−641− 486n+ 996n2 + 132n3 + 6n4

3456
+

(11 + 2n)(−1)n

128
+

(1− i)in + (1 + i)(−i)n

32

+
1 +
√

3i

54

(
−1−

√
3i

2

)n
+

1−
√

3i

54

(
−1 +

√
3i

2

)n
.
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