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Abstract. We study the structure of ideals generated by some classes of
2× 2 permanents of hypermatrices. This generalizes [9] on 2× 2 perma-
nental ideals of generic matrices. We compare the obtained structure to
that of the corresponding determinantal ideals in [11]: while the notion
of t-switchability introduced in [11] plays a role for both permanental
and determinantal ideals, the permanents require further restrictions,
which in general increases the number of minimal primes. In the last
two sections we examine a few related classes of permanental ideals.

1 Introduction

Determinants are ubiquitous in mathematics; if in the Laplace expansion of a determi-

nant we replace all minus signs with plus signs, the result is the permanent of the matrix.

The starting motivation for this work is the paper [11] on classes of 2 × 2 determinantal

ideals of certain hypermatrices that arise in models of conditional independence; here we

study the analogous 2× 2 permanental ideals.

The computation of determinants can be done in polynomial time because of Gaussian

elimination, whereas the computation of permanents is #-P-complete ([12]). In another

comparison, the ideal generated by r× r determinants of a generic m×n matrix is a prime

ideal with many nice properties ([2]), but the ideal generated by 2 × 2 permanents has(
m
2

)(
n
2

)
+m+ n minimal components and one embedded component if m,n ≥ 3 ([9]), and

the structure of ideals generated by r × r permanents for r ≥ 3 is even more complicated

and not completely understood ([8]). This paper shows yet another aspect of the greater

complexity of permanents over determinants.

Conditional independence ideals in algebraic statistics are ideals generated by some

2 × 2 determinants of generic hypermatrices. Their structures have been studied recently

by Fink [4], Herzog–Hibi–Hreinsdottir–Kahle–Rauh [6], Ohtani [10], Swanson–Taylor [11],

and Ah–Rauh [1]. In this paper we study the structure of analogous 2 × 2 permanental

ideals of generic hypermatrices that depend on a parameter t and the size of the hyper-

matrix. The main result is Theorem 7.2 which gives a combinatorial description of all the

prime ideals minimal over these permanental ideals. Not surprisingly, just as in [9], the

number of minimal prime ideals is in general larger over these permanental ideals than over

the corresponding determinantal ideals. We give an explicit set of generators of the mini-

mal primes and give their Gröbner bases (Theorem 6.5). Section 5 shows many concrete

examples. A consequence is that this paper puts the structure of the 2 × 2 permanental

ideals (of generic matrices), as described in [9], into more general and new perspective (see

Example 5.1).

In Sections 9 and 10 we present the structure of related permanental ideals, those

generated by certain “diagonal” permanents, and by certan diagonal and slice permanents.
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Many of the methods in this paper are similar to those in [11], but for permanental

ideals one has to keep track of the signs, which adds not only notational difficulty but also

changes many results. In particular, it increases the number of minimal primes significantly,

as was already shown in the case of generic matrices (as opposed to hypermatrices) in [9].

This is an extension of the first author’s senior thesis at Reed College, 2011, under the

second author’s supervision.

2 Set-up

We fix positive integers n and r1, . . . , rn. Let R be the polynomial ring in r1 · · · rn
variables over a field k. The variables will be written with lower case x with n-place

subscripts, with the ith place in the subscript ranging from 1 through ri. We arrange these

variables into a generic r1 × · · · × rn hypermatrix that will be fixed throughout.

Throughout the paper [r] denotes the set {1, 2, . . . , r}. Thus, for example, the ring we

use is R = k[xa : a ∈ [r1]× · · · × [rn]]. Throughout N = [r1]× · · · × [rn].

Let L ⊆ [n]. For a, b ∈ N define the switch function s(L, a, b) that switches the

L-entries of a into b: s(L, a, b) is an element of N whose ith component is

s(L, a, b)i =

{
bi, if i ∈ L;
ai, otherwise.

If L = {j}, we simply write s(L, a, b) = s(j, a, b). For any a and b in N we define

the distance d between them to be d(a,b) = #{i : ai 6= bi}. Note that d(a, b) =

d(s(L, a, b), s(L, b, a)).

For any subsets K ⊆ L ⊆ [n] and any t ∈ [n] we define:

fK,a,b = xaxb − xs(K,a,b)xs(K,b,a),

gK,a,b = xaxb + xs(K,a,b)xs(K,b,a),

GL,K = {gK,a,b : a, b ∈ N, {j : aj 6= bj} = L}.
The elements gK,a,b above are (generalized) permanents, and the fK,a,b are (generalized)

determinants. Whenever K = {i}, we write i instead of {i}, such as fi,a,b, gi,a,b, GL,i.

When d(a, b) = 2 and ai 6= bi, we call gi,a,b a slice permanent and fi,a,b a slice deter-

minant. For any t ∈ [n] we define:

I〈t〉 = (fi,a,b : a, b ∈ N, d(a, b) = 2, i ∈ [t], ai 6= bi),

J 〈t〉 = (gi,a,b : a, b ∈ N, d(a, b) = 2, i ∈ [t], ai 6= bi).

We examine the minimal primes over J 〈t〉, whereas [11] did so for I〈t〉. The structure of

ideals generated by classes of slice permanents turns out to be different from the structure

of the corresponding ideals generated by slice determinants [11]. A special case of this

difference was already demonstrated in [9] when n = 2. In order to have J 〈t〉 different from

I〈t〉, we assume throughout that the characteristic of the underlying field is not 2.
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3 Lemmas for induction arguments

It is proved in [11] that for a, a1, b ∈ N and i ∈ [n], xbfi,a,a1
− xa1

fi,a,b =

xs(i,b,a)fi,a1,s(i,a,b) − xs(i,a,a1)fi,s(i,a1,a),b. We prove the almost analogous result for

permanental ideals:

Lemma 3.1 For a, a1, b ∈ N and i ∈ [n],

xbfi,a,a1
− xa1

fi,a,b = xs(i,b,a)gi,a1,s(i,a,b) − xs(i,a,a1)gi,s(i,a1,a),b.

In particular, if a and a1 differ only in the jth component, and j 6= i, and bi 6= (a1)i, then

xagi,a1,b − xa1
fi,a,b = xs(i,b,a)gi,a1,s(i,a,b) ∈ (G{i,j},{i}).

Proof. Just as in [11], the calculation of the first part is straightforward:

xbfi,a,a1
−xa1

fi,a,b + xs(i,a,a1)gi,s(i,a1,a),b

= xbxaxa1
− xbxs(i,a,a1)xs(i,a1,a) − xa1

xaxb + xa1
xs(i,a,b)xs(i,b,a)

+ xs(i,a,a1)xs(i,a1,a)xb + xs(i,a,a1)xs(i,s(i,a1,a),b)xs(i,b,s(i,a1,a))

= xa1
xs(i,a,b)xs(i,b,a) + xs(i,a,a1)xs(i,a1,b)xs(i,b,a)

= xs(i,b,a)(xa1
xs(i,a,b) + xs(i,a,a1)xs(i,a1,b))

= xs(i,b,a)gi,a1,s(i,a,b).

If a and a1 differ only in the jth position with j 6= i, then fi,a,a1
= 0 for all i, s(i, a1, a) = a1,

s(i, a, a1) = a, and a1 and s(i, a, b) differ at most in the two components i and j, and the

rest follows.

The following lemma is via induction an immediate corollary of Lemma 3.1:

Lemma 3.2 Let i be a positive integer, and let a0, a1, . . . , ak, b ∈ N . Suppose that the ith

component of b differs from the ith components of a1, . . . , ak, and that for all j = 1, . . . , k,

aj−1 and aj differ exactly in component lj 6= i. Then modulo
∑k

j=1(G{i,lj},{i}),

xa1
xa2

· · ·xak
fi,a0,b ≡

{
xa0

xa1
· · ·xak−1

gi,ak,b, if k is odd;
xa0

xa1
· · ·xak−1

fi,ak,b, if k is even;

xa1
xa2

· · ·xak
gi,a0,b ≡

{
xa0

xa1
· · ·xak−1

fi,ak,b, if k is odd;
xa0

xa1
· · ·xak−1

gi,ak,b, if k is even.

In particular, if d(ak, b) = 2 and ak and b differ in positions i and l0 6= i, then∑k

j=0(G{i,lj},{i}) contains xa1
xa2

· · ·xak
fi,a0,b if k is odd, and it contains xa1

xa2
· · ·xak

gi,a0,b

if k is even. Also, if d(ak, b) = 1, then
∑k

j=0(G{i,lj},{i}) contains xa1
xa2

· · ·xak
fi,a0,b if k

is even, and it contains xa1
xa2

· · ·xak
gi,a0,b if k is odd.
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4 Switchable and signed sets

Just as in [11], we need t-switchability and connectedness:

Definition 4.1 A subset S of N is t-switchable if for all a, b ∈ S with d(a, b) = 2, and

all i ∈ [t], we have that s(i, a, b), s(i, b, a) ∈ S.

If a set S is t-switchable, define a, b ∈ S to be connected if there exist c0 =

a, c1, . . . , ck−1, ck = b in S such that for all i, d(ci, ci+1) = 1. We call c0 =

a, c1, . . . , ck−1, ck = b as above a path from a to b. We call k the length of the

path. The smallest length of a path from a to b is called the path length from a to b

and will be denoted as plS(a,b). We define plS(a,b) to be plS(a, b)− 1.

Remark 4.2 Clearly connectedness is an equivalence relation. By Lemma 3.5 in [11],

for any a, b that are connected in some t-admissible set and for any subset K ⊆ [t],

s(K, a, b), s(K, b, a) are in S and connected to a and b in S.

For a given a, b that are connected in S, it may happen that there are paths of different

lengths between them. Furthermore, there can be paths of lengths of different parity

between them, such as if S = [3]× [2] × [2]: (1, 1, 1), (2, 1, 1), (3, 1, 1) and (1, 1, 1), (3, 1, 1)

are both paths from (1, 1, 1) to (3, 1, 1).

Proposition 4.3 Let S be a t-switchable set, and let a, b ∈ S be connected with d(a, b) ≥ 2

and ai 6= bi for some i ∈ [t]. Suppose that there are paths from a to b of different parity.

Then
∑

j 6=i(G{i,j},{i}) contains monomials all of whose subscripts are elements of S.

Proof. Let c0 = a, c1, . . . , ck−1, ck = b be a path from a to b. Since d(a, b) ≥ 2, it follows

that k ≥ 2.

Let j be least such that the ith entry of cj is not ai. Necessarily j > 0. Suppose that

j ≤ k− 2. By assumption, cj−1 and cj differ precisely in the ith component. Suppose that

for all l = j−1, . . . , k−1, cl and cl+1 differ exactly in the ith component. Then we can cut

an even number of elements cj , . . . , ck−1 from the given path to still get a path from a to b

with the same parity but such that the designated j is at least k−1. Now assume otherwise:

then there exists an integer l > j such that cl−1 and cl differ in component j 6= i. We choose

l to be the smallest such integer. Then the part cj−1, cj, . . . , cl of the given path can by

Remark 4.2 be replaced by cj−1, s(i, cl, cj−1), s(i, cl, cj), s(i, cl, cj+1), . . . , s(i, cl, cl−1) = cl,

which has the same length, and the designated j is increased by 1. By repeating these

steps we may assume that the ith entries in c0, c1, . . . , ck−2 all equal ai.

In particular, 1 ≤ d(ck−2, b) ≤ 2.

First suppose that d(ck−2, b) = 1. Then ck−2, ck−1, b have distinct ith entries, and

only differ in the ith entries. Since d(a, b) ≥ 2, necessarily k > 2, and so ck−3 differs from

ck−2, ck−1, b in the jth entry for some j 6= i, and differs from ck−1, b also in the ith entry.

Then [
xck−3

xs(i,ck−3,ck−1) xs(i,ck−3,b)

xck−2
xs(i,ck−2,ck−1) = xck−1

xs(i,ck−2,b) = xb

]
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is a submatrix of the hypermatrix, and all of its 2 × 2 permanents are in (G{i,j},{i}). Let

pu,v be the permanent of columns u, v in the matrix above. Then (G{i,j},{i}) contains

xck−3
p2,3 − xs(i,ck−3,ck−1)p1,3 + xs(i,ck−3,b)p1,2 = 2xck−3

xck−1
xb,

and as the characteristic is not 2, (G{i,j},{i}) contains a monomial all of whose subscripts

are in S.

So we may assume that d(ck−2, b) = 2 for all paths from a to b. Similarly, we may

assume that if d0 = a, d1, . . . , dl−1, dl = b is a path from a to b with l of different parity from

k, then the ith components of d0, d1, . . . , dl−2 are all ai and d(dl−2, b) = 2. Say k is even

and l is odd. Then by Lemma 3.2, xc1 · · ·xck−2
gi,a,b, xd1

· · ·xdl−2
fi,a,b ∈

∑
j 6=i(G{i,j},{i}).

In particular,

lcm(xc1 · · ·xck−2
, xd1

· · ·xdl−2
)(gi,a,b, fi,a,b) ⊆

∑

j 6=i

(G{i,j},{i}).

But (gi,a,b, fi,a,b) = (xaxb, xs(i,a,b)xs(i,b,a)) as ideals, so that
∑

(G{i,j},{i}) contains the

monomials

lcm(xc1 · · ·xck−2
, xd1

· · ·xdl−2
)xaxb and lcm(xc1 · · ·xck−2

, xd1
· · ·xdl−2

)xs(i,a,b)xs(i,b,a).

For our analysis of prime ideals that are minimal over the permanental ideal J 〈t〉, we

deal with the parity question with the following further restriction on switchable sets:

Definition 4.4 A t-switchable set S is called t-signed if for every equivalence class S0

with respect to the connected property, one of the following conditions is satisfied:

(1) All elements of S0 have the same first t-coordinates;

(2) Any two elements of S0 differ at most in one component;

(3) The parity of path length between any two elements in S0 is independent of the path.

Remark 4.5 Let S be a t-signed set and let a, b, c ∈ S be connected and in an equivalence

class that satisfies property (3) in Definition 4.4. Then for any K ⊆ [t], plS(a, b) and

plS(s(K, a, b), s(K, b, a)) have the same parity because we can make the path from s(K, a, b)

to s(K, b, a) pass first from s(K, a, b) to a in #{i ∈ K : ai 6= bi} steps, then to b in plS(a, b)

steps, and then to s(K, b, a) in #{i ∈ K : ai 6= bi} steps. Similarly, plS(a, b)+plS(b, c) and

plS(a, c) have the same parity.

Lemma 4.6 Let S be a t-signed set. Let S0 be an equivalence class in S with respect to

connectedness. Then either for all i ∈ [t], {ai : a ∈ S0} contains at most two elements or

else for all a, b ∈ S0, d(a, b) ≤ 1.

Proof. Suppose for contradiction that there are a, b, a′, b′, c′ ∈ S0 such that for some

i ∈ [t], the ith components of a′, b′, c′ are all distinct and such that d(a, b) ≥ 2. Thus
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S0 fails conditions (1) and (2) in Definition 4.4, so S0 must satisfy (3). But then

s(i, a, a′), s(i, a, b′), s(i, a, c′) and s(i, a, a′), s(i, a, c′) are both paths from s(i, a, a′) to

s(i, a, c′), and they have different parities, which contradicts the condition in (3).

One might be tempted to think that for a t-signed equivalence class S0, if there exists

i ∈ [t] such that {ai : a ∈ S0} has two elements, then for all j ∈ [n], {aj : a ∈ S0} has at

most 2 elements. This need not be the case, as demonstrated in Example 5.6 (4).

The following encapsulates and generalizes the fK,a,b and gK,a,b, and will be used to

describe generators of prime ideals minimal over J 〈t〉 (details in Remark 4.8):

Definition 4.7 Let S be t-signed. For any connected a, b ∈ S, and any K ⊆ {i ∈ [t] :

ai 6= bi}, define

hS,K,a,b = xaxb − (−1)#K·plS(a,b)xs(K,a,b), xs(K,b,a).

Remark 4.8 Suppose that for some L ⊆ {i ∈ [t] : ai 6= bi}, xs(K,a,b)xs(K,b,a) =

xs(L,a,b)xs(L,b,a). We prove that then hS,K,a,b = hS,L,a,b. If plS(a, b) is even, this is cer-

tainly true. So we may assume that plS(a, b) = plS(a, b) + 1 is even. Without loss of

generality K 6= L. The assumption xs(K,a,b), xs(K,b,a) = xs(L,a,b), xs(L,b,a) is only possible

if (at+1, . . . , an) = (bt+1, . . . , bn) or if t = n. In either case, L = {i : ai 6= bi} \ K, and

{i : ai 6= bi} ⊆ [t], so that by Remark 4.2, plS(a, b) = d(a, b) = {i : ai 6= bi}. But plS(a, b)

is even, so that #L and #K must have the same parity. Thus hS,K,a,b = hS,L,a,b.

The following definitions will be applied mostly to t-signed S:

Definition 4.9 For any subset S of N , define

Var
〈t〉
S = (xa : a 6∈ S),

J̃
〈t〉
S = (hS,i,a,b : a, b are connected in S, i ∈ [t], ai 6= bi),

Q
〈t〉
S = Var

〈t〉
S + J̃

〈t〉
S .

Note that t = n and t = n − 1 give the same sets of ideals. Thus in the sequel, and

especially in Section 6, we mostly talk about t < n. For t-switchable S, the analogous

determinantal ideals Ĩ
〈t〉
S = (fi,a,b : i ∈ [t], a, b are connected in S) and P

〈t〉
S = Var

〈t〉
S + Ĩ

〈t〉
S

were proved to be prime ideals in [11]. Much of what we prove in this paper mimics the

proofs of [11], but with the added sign difficulty expressed through t-signedness.

Lemma 4.10 {hS,K,a,b : a, b are connected in S,K ⊆ {i ∈ [t] : ai 6= bi}} ⊆ J̃
〈t〉
S .

Proof. Let a, b ∈ S and let K ⊆ {i ∈ [t] : ai 6= bi}. Write K = {k1, . . . , kl}. By

Remark 4.2, s({k1, . . . , ki−1}, a, b) and s({k1, . . . , ki−1}, b, a)) are connected, and by Re-

mark 4.5, plS(a, b) = plS(s({k1, . . . , ki−1}, a, b), s({k1, . . . , ki−1}, b, a)), so that

hS,K,a,b =
l∑

i=1

(−1)(i−1)·plS(a,b)hS,ki,s({k1,...,ki−1},a,b),s({k1,...,ki−1},b,a).
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Proposition 4.11 Let S be a t-switchable set (not necessarily t-signed). Then

J 〈t〉 ⊆ Q
〈t〉
S .

Proof. Let a, b ∈ N with d(a, b) = 2 and ai 6= bi for some i ∈ [t]. We need to

prove that hS,i,a,b ∈ Q
〈t〉
S . If a, b ∈ S, then by t-switchability of S, a and b are con-

nected, so that hS,i,a,b ∈ J̃
〈t〉
S ⊆ Q

〈t〉
S . Similarly, if s(i, a, b), s(i, b, a) ∈ S, then hS,i,a,b =

±hS,i,s(i,a,b),s(i,b,a) ∈ Q
〈t〉
S , So we may assume that a 6∈ S and that either s(i, a, b) or s(i, b, a)

is not in S. But then hS,i,a,b ∈ Var
〈t〉
S ⊆ Q

〈t〉
S .

Definition 4.12 Let S be t-signed. We say that S is maximal t-signed if for all t-signed

subsets T of N containing S, Q
〈t〉
S ⊆ Q

〈t〉
T . (So Var

〈t〉
S contains Var

〈t〉
T , that is why S is called

maximal.)

5 Some examples of switchable and signed sets

To bring the abstract notion of t-switchable sets down to earth, we now examine

some concrete examples. In Section 7 we characterize more generally all minimal prime

ideals over J 〈t〉 (they are Q
〈t〉
S for maximal t-signed S), but in examples below we simply

state what the associated prime ideals are. We used Macaulay2 [5] together with Kahle’s

binomial package [7].

When the set S has a long name, we write Q〈t〉(S) instead of Q
〈t〉
S .

First we provide perspective in light of t-signed sets on the primary decomposition of

2 × 2 permanental ideals of generic matrices as first determined without t-signed notion

in [9]. The main result of [9] was to give the description of the minimal primes over the

ideal generated by 2 × 2 permanents of a generic r1 × r2 matrix in terms of three types

primes; but by the work in this paper, the three types of primes are all simply the prime

ideals corresponding to 1-signed sets:

Example 5.1 Let N = [r1]× [r2], with r1, r2 ≥ 2, which represents an ordinary matrix.

For t = 1, 2, the t-signed subsets of N are identical, and they are: all 2 × 2, 1 × r and

r × 1 submatrices of N . If r1 = r2 = 2, then the only maximal t-signed set is N . If

r1 = 2 < r2, then the only maximal t-signed sets are 2 × 2 and 1 × r2 submatrices of N ,

and if r1, r2 > 2, then the t-signed subsets of N are 2 × 2, 1 × r2 and r1 × 1 submatrices

of N . By Theorem 7.2, these maximal t-signed sets correspond precisely to the prime ideals

minimal over J 〈t〉, and this was first established in [9] without the vocabulary of signed

sets. There it was also established that when r1, r2 > 2, there is exactly one embedded

prime, corresponding to the (non-maximal) t-signed set ∅.

Example 5.2 Let N = [2]× [2] × [2]. Here we will think of N as a cube. The 1-signed

subsets of N , together with their corresponding ideals, are as follows:

(1) N (the whole cube); Q
〈1〉
N = J̃

〈t〉
N is generated by four slice permanental and two

diagonal determinantal generators.
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(2) S is a face of the cube with nonconstant first component; Q〈1〉(face) is generated by

the permanent of this face and the variables on the opposite face.

(3) S cannot be a face of the cube perpendicular to the x-axis as that is not even 1-

switchable;

(4) S is an edge of the cube; Q〈1〉(edge) is generated by the variables not on this edge.

(5) two parallel edges of the cube with non-constant first component that are not on the

same face, this is an example of a 1-switchable set with two equivalence classes with

respect to connectedness; Q〈1〉(two edges) is generated by the variables not on these

edges.

(6) a point; Q〈1〉(point) is generated by the other 7 variables.

(7) two points of distance three or two points of distance two with the same first compo-

nent; Q〈1〉(two points) is generated by the variables not on these points.

Note that Q
〈1〉
N is contained in Q〈1〉(face), Q〈1〉(point), and Q〈1〉(two points), and that

Q〈1〉(two edges) is contained in Q〈1〉(edge). From this we read that the maximal 1-signed

sets are: N , and two edges parallel to the x-axis that are not on the same face. Note

that there are two options for S being formed by the parallel edges. There are thus three

maximal signed sets. Macaulay2 [5] says that these Q〈t〉(S) are all the minimal primes

(and even all the components).

Example 5.3 Let N = [2]× [2]× [2] as in the previous example. The 2-signed subsets of

N (which are the same as 3-signed sets), together with their corresponding ideals, are as

follows:

(1) N (the whole cube); Q
〈2〉
N = J̃

〈2〉
N is (redundantly) generated by one slice permanent

for each of the six faces, and three diagonal determinants for each of the opposite

vertices.

(2) S is a face of the cube; Q〈2〉(face) is generated by the permanent of this face and the

variables on the opposite face.

(3) an edge of the cube; Q〈2〉(edge) is generated by the variables not on this edge.

(4) a point; Q〈2〉(point) is generated by the remaining 7 variables.

(5) two points of distance three; Q〈2〉(two points) is generated by the variables not on

these points.

Note that the union of two parallel edges that are not on the same face is not 2-

signed. Here the maximal 2-signed sets are: N , and the two-opposite points. There are

thus five maximal signed sets, and, indeed, Macaulay2 says that these are all the minimal

components (and even all the associated primes).

Example 5.4 With N = [3]× [2]× [2], the maximal 1-signed sets are:

(1) For each k ∈ [3], S is the set of variables whose first coordinate is not k, so it looks

like a 2 × 2 × 2-block; Q
〈1〉
S is generated by the variables whose first coordinate is k,

and by the four slice permanents and two diagonal determinants on the block. There

are three such S.
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(2) S consists of the variables on two lines parallel to the x-axis, the lines not lying on

the same face of the cube; Q
〈1〉
S is generated by the variables not on these lines. There

are two such S.

Indeed, Macaulay2 gives 3 + 2 minimal primes, but it also gives one embedded prime

ideal consisting of all variables. While the minimal components are all prime ideals them-

selves, the embedded component in this case may be taken to be J 〈1〉 + (x3
a : a ∈ N).

Example 5.5 With N = [3]× [2]× [2] as in the previous example, the maximal 2-signed

sets are:

(1) For each i ∈ [3], S is the set of variables whose first coordinate is not i; Q
〈2〉
S is

generated by the variables whose first coordinate is i, and by the slice permanents

and diagonal determinants on the 2× 2× 2-block. There are three such S.

(2) S is a line parallel to the x-axis; Q
〈2〉
S is generated by the 9 variables not in S. There

are four such S.

(3) S is the disjoint union of a point and of two points on a line parallel to the x-axis,

with all distances between the one point and the other two points being 3; Q
〈2〉
S is

generated by the 9 variables not in S. There are 4 · 3 such S.

Indeed, Macaulay2 gives 3+4+12 = 19 minimal primes, and it also gives one embedded

prime ideal consisting of all variables. The minimal components are all prime ideals, and

the embedded component in this case as well may be taken to be J 〈2〉 + (x3
a : a ∈ N).

Example 5.6 With N = [2] × [2] × [3], by symmetry the maximal 2-signed sets and

primary decomposition are as in Example 5.5. (In contrast, we do not have symmetry for

1-signed sets.) The maximal 1-signed sets are as follows:

(1) S consists of all variables that do not have a certain third coordinate (so it is a

2 × 2 × 2 subhypermatrix); Q
〈1〉
S is generated by the variables not in S and by the

diagonal determinants and the slice permanents of the block. There are 3 such S, one

for each of the three third coordinates.

(2) S consists of variables on a face perpendicular to the x-axis; Q
〈1〉
S is generated by the

variables not in S. There are two such S.

(3) S is a disjoint union of a line segment and of a 2 × 2 submatrix on distinct faces

perpendicular to the y-axis; Q
〈1〉
S is generated by one permanent of the 2× 2-matrix

and by all variables not in S. There are 2 · 3 such S.

(4) S is the complement of the union of two lines parallel to the x-axis, the two lines

having distinct second and third coordinates. This S is a non-disjoint union of three

2×2 submatrices, with one of the submatrices sharing edges with the other two. With

this visualization, Q
〈1〉
S is generated by all variables not in S, by one permanent for

each of the submatrices, by one diagonal determinant on the elements of S for each of

the two pairs of adjacent 2× 2 submatrices, and by one extra diagonal permanent of

the two disjoint edges of the two 2× 2 submatrices, There are 3 · 2 such S. (Note that

this last S is one equivalence class under connectedness; there are two possible first
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coordinates for each element, but the third coordinates can take on three different

values for various first two coordinates.)

Indeed, Macaulay2 gives 17 = 3+2+6+6 minimal primes, and no embedded primes.

All the minimal components are prime.

6 Primes, Gröbner bases and similar reductions

The results here mimic those of [11]. The generators of J̃ 〈t〉 are (monic) binomials

that are, up to sign of the second coefficient in the binomial, the same as the generators

of Ĩ〈t〉. By Lemma 6.2 in [11], every monomial reduces modulo Ĩ〈t〉 to a well-understood

monomial; thus by the nature of the generators of J̃ 〈t〉, every monomial reduces modulo J̃ 〈t〉

to a well-understood monomial times a less well-understood sign. The bulk of this section

is developing the machinery to keep track of this sign: Lemma 6.2 introduces an absolute

measure for keeping track of what degree-three binomials are in J̃
〈t〉
S , and Lemma 6.3 proves

that this measure behaves well under any partial switches in one of the two monomials in

the binomial. The ultimate goal of this section is determining a Gröbner basis of J̃ 〈t〉 and

of proving that J̃ 〈t〉 is a prime ideal.

Throughout this section we use the lexicographic order on the variables, with variables

sorted in the lexicographic order on their indices. By lt we denote the leading term. Also,

throughout S is a t-signed set, and for slight brevity we write plS(a, b), hS,K,a,b without “S”.

For the purposes of discussion below we introduce the following notion: we enumerate

in the lexicographic order all possible elements of [rt+1]× · · · × [rn], with largest elements

in the lexicographic order getting the largest numeral. Thus we can think of each element

a ∈ N as a (t+ 1)-tuple in [r1]× · · · × [rt]× [rt+1 · · · rn], and in this notation without loss

of generality t = n− 1 < n.

Definition 6.1 When we think of a as a (t+ 1)-tuple, we denote a as ã.

Lemma 6.2 Let S be a t-signed set, and let a, b, c, A, B, C ∈ S be mutually connected

such that ãt+1 = Ãt+1, b̃t+1 = B̃t+1, c̃t+1 = C̃t+1, and for each i = 1, . . . , t, the list ai, bi, ci
is up to order the same as the list Ai, Bi, Ci (with same multiplicities). Define

K1 = {i ∈ [t] : Ai = bi 6= ai},
K2 = {i ∈ [t] : Ai = ci 6= ai} \K1,

K3 = {i ∈ K1 : Bi 6= ai} ∪ ({i ∈ [t] : Bi 6= bi} \K1),

p = #K1 · pl(a, b) + #K2 · pl(s(K1, a, b), c) + #K3 · pl(s(K1, b, a), s(K2, c, a)).

Then xaxbxc − (−1)pxAxBxC ∈ J̃
〈t〉
S .

Proof. K1 and K2 are disjoint by construction, so that s(K2, c, a) = s(K2, c, s(K1, a, b)).
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Note that s(K2, s(K1, a, b), c) = A, that s(K3, s(K1, b, a), c) = B, and that

s(K3, s(K2, c, s(K1, a, b)), s(K1, b, a)) = C. Thus by Lemma 4.10, the following elements

are in J̃
〈t〉
S :

xaxb − (−1)#K1·pl(a,b)xs(K1,a,b)xs(K1,b,a),

xs(K1,a,b)xc − (−1)#K2·pl(s(K1,a,b),c)xAxs(K2,c,s(K1,a,b)),

xs(K1,b,a)xs(K2,c,s(K1,a,b)) − (−1)#K3·pl(s(K1,b,a),s(K2,c,s(K1,a,b)))xBxC .

It follows that

xaxbxc − (−1)#K1·pl(a,b)+#K2·pl(s(K1,a,b),c)+#K3·pl(s(K1,b,a),s(K2,c,s(K1,a,b)))xAxBxC

=
(
xaxb − (−1)#K1·pl(a,b)xs(K1,a,b)xs(K1,b,a)

)
xc

+ (−1)#K1·pl(a,b)xs(K1,b,a)

(
xs(K1,a,b)xc − (−1)#K2·pl(s(K1,a,b),c)xAxs(K2,c,s(K1,a,b))

)

+ (−1)#K1·pl(a,b)+#K2·pl(s(K1,b,a),c)

· xA

(
xs(K1,b,a)xs(K2,c,s(K1,a,b)) − (−1)#K3·pl(s(K1,b,a),s(K2,c,s(K1,a,b)))xBxC

)

is in J̃
〈t〉
S .

Note that the order of the pairs (a, A), (b, B), (c, C) in the lemma above affects the

number p. For this reason, the proof of the next result requires many subcases, but it leads

to the eventual fact that the parity of p is independent of the order of the pairs.

Lemma 6.3 With a, b, c, A, B, C as in Lemma 6.2, we fix A,B, C, and we allow a, b, c to

vary. Thus p is now a function of a, b, c. Let i ∈ [t], and assume one of the following:

(1) ai 6= bi, and a′ = s(i, a, b), b′ = s(i, b, a), c′ = c, r = pl(a, b).

(2) ai 6= ci, and a′ = s(i, a, c), b′ = b, c′ = s(i, c, a), r = pl(a, c).

(3) bi 6= ci, and a′ = a, b′ = s(i, b, c), c′ = s(i, c, b), r = pl(b, c).

Then p(a′, b′, c′)− p(a, b, c) + r is even.

Proof. By assumption and by Remark 4.2, a, b, c, a′, b′, c′, A, B, C are all in the same

connected equivalence class.

To verify the evenness, we need to recall the construction of Lemma 6.2: to get from

a, b, c to A,B, C, we first switch #K1 entries from b into a and then #K2 entries from c

into a to then have the modified a equal to A; the procedure is to choose K1 as large as

possible, and then K2 follows uniquely. In the third step using K3, we switch the necessary

entries of the new b and the new c to get the modified b equal B, and so necessarily the

modified c equals C. Let K′
1, K

′
2, K

′
3 be the corresponding sets when we start with a′, b′, c′

in place of a, b, c.

Suppose that a, b, c all differ at most in the ith component. Then all pl in the definitions

of p(a, b, c) and p(a′, b′, c′) are 0, and r = 0, so that the lemma holds in this case. So we

11



may assume that at least two of a, b, c differ not just in the ith component but also in

some other jth component. By Lemma 4.6 a, b, c, the set {ai, bi, ci} contains exactly two

elements.

Here are a few simplified expressions of p(a, b, c) modulo 2:

pl(a, b) = pl(a, b)− 1,

pl(s(K1, a, b), c) = pl(s(K1, a, b), c)− 1 ≡ pl(s(K1, a, b), a) + pl(a, c)− 1

= #K1 + pl(a, c)− 1,

pl(s(K1, b, a), s(K2, c, a)) = pl(s(K1, b, a), s(K2, c, a))− 1

≡ pl(s(K1, b, a), b) + pl(b, c) + pl(c, s(K2, c, a))− 1

≡ #K1 + pl(b, c) + #K2 − 1,

p(a, b, c) = #K1 · (pl(a, b)− 1) + #K2 · (#K1 + pl(a, c)− 1)

+ #K3 · (#K1 + pl(b, c) + #K2 − 1),

and there is a similar expressions for p(a′, b′, c′) in terms of K′
1, K

′
2, K

′
3.

We analyze the cases separately.

(1) As stated, by Lemma 4.6 we have two subcases: Ai = ai 6= bi, and ai 6= bi = Ai.

In the first subcase, i ∈ K′
1 \ K1, the only change in the construction of A,B, C is that

K′
1 = K1 ∪ {i} (but pl(a′, b′) = pl(a, b)), whence by Lemma 6.2 and the simplifications

above, modulo 2,

p(a′, b′, c′)− p(a, b, c) + r = #K′
1 · (pl(a′, b′)− 1) + #K′

2 · (#K′
1 + pl(a′, c′)− 1)

+ #K′
3 · (#K′

1 + pl(b′, c′) + #K′
2 − 1)

−#K1 · (pl(a, b)− 1)−#K2 · (#K1 + pl(a, c)− 1)

−#K3 · (#K1 + pl(b, c) + #K2 − 1) + pl(a, b)

≡ (#K1 + 1) · (pl(a, b)− 1) + #K2 · (#K1 + 1 + pl(a′, c)− 1)

+ #K3 · (#K1 + 1 + pl(b′, c) + #K2 − 1)

−#K1 · (pl(a, b)− 1)−#K2 · (#K1 + pl(a, c)− 1)

−#K3 · (#K1 + pl(b, c) + #K2 − 1) + pl(a, b)− 1

≡ (#K1 + 1) · (pl(a, b)− 1) + #K2 · (#K1 + pl(a′, a) + pl(a, c))

+ #K3 · (#K1 + pl(b′, b) + pl(b, c) + #K2)

−#K1 · (pl(a, b)− 1)−#K2 · (#K1 + pl(a, c)− 1)

−#K3 · (#K1 + pl(b, c) + #K2 − 1) + pl(a, b)− 1

≡ (#K1 + 1) · (pl(a, b)− 1)−#K1 · (pl(a, b)− 1) + pl(a, b)

≡ pl(a, b)− 1 + pl(a, b)− 1,

which is even. In the second subcase (ai 6= bi = Ai), K
′
1 = K1 \ {i} and there are no other

changes, so that the parity of p(a′, b′, c′)−p(a, b, c)+r in this case is the same as the parity

in the previous case, namely even.
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(2) We do some preliminary simplifications modulo 2, using Remark 4.2:

p(a′, b′, c′) = #K′
1 · (pl(a′, b′)− 1) + #K′

2 · (#K′
1 + pl(a′, c′)− 1)

+ #K′
3 · (#K′

1 + pl(b′, c′) + #K′
2 − 1)

≡ #K′
1 · (pl(a′, a) + pl(a, b)− 1) + #K′

2 · (#K′
1 + pl(a, c)− 1)

+ #K′
3 · (#K′

1 + pl(b, c) + pl(c, c′) + #K′
2 − 1)

≡ #K′
1 · pl(a, b) + #K′

2 · (#K′
1 + pl(a, c)− 1) + #K′

3 · (#K′
1 + pl(b, c) + #K′

2).

Suppose that i ∈ K1. Then ai 6= bi = Ai, and by Lemma 4.6, ai 6= bi = Ai = ci.

So K′
1 = K1 \ {i}. Then i 6∈ K2, K

′
2, and exactly one of K3, K

′
3 contains i, so that

#K′
3 = #K3 ± 1. Thus

p(a′, b′, c′)− p(a, b, c) + r = #K′
1 · pl(a, b) + #K′

2 · (#K′
1 + pl(a, c)− 1)

+ #K′
3 · (#K′

1 + pl(b, c) + #K′
2)

−#K1 · (pl(a, b)− 1)−#K2 · (#K1 + pl(a, c)− 1)

−#K3 · (#K1 + pl(b, c) + #K2 − 1) + pl(a, c)

≡ (#K1 + 1) · pl(a, b) + #K2 · (#K1 + 1 + pl(a, c)− 1)

+ (#K3 + 1) · (#K1 + 1 + pl(b, c) + #K2)

−#K1 · (pl(a, b)− 1)−#K2 · (#K1 + pl(a, c)− 1)

−#K3 · (#K1 + pl(b, c) + #K2 − 1) + pl(a, c)− 1

≡ pl(a, b) + #K2 +#K1 + 1 + pl(b, c) + #K2 −#K1 + pl(a, c)− 1,

which is even.

So we may suppose that i 6∈ K1, and since p(a′, b′, c′)−p(a, b, c)+ r is even if and only

if p(a, b, c)− p(a′, b′, c′) + r is even, by symmetry of the construction we may assume that

i 6∈ K′
1. Then ai = bi or ai = Ai, and ci = bi or ci = Ai. If ai = bi, then by Lemma 4.6,

ai = bi 6= ci = Ai, and necessarily Bi = Ci = ai, so that i ∈ K2, K
′
2 = K2 \ {i}, K′

3 = K3,

K′
1 = K1. In this case,

p(a′, b′, c′)− p(a, b, c) + r = #K′
1 · pl(a, b) + #K′

2 · (#K′
1 + pl(a, c)− 1)

+ #K′
3 · (#K′

1 + pl(b, c) + #K′
2)

−#K1 · (pl(a, b)− 1)−#K2 · (#K1 + pl(a, c)− 1)

−#K3 · (#K1 + pl(b, c) + #K2 − 1) + pl(a, c)

≡ #K1 · pl(a, b) + (#K2 − 1) · (#K1 + pl(a, c)− 1)

+ #K3 · (#K1 + pl(b, c) + #K2 − 1)

−#K1 · (pl(a, b)− 1)−#K2 · (#K1 + pl(a, c)− 1)

−#K3 · (#K1 + pl(b, c) + #K2 − 1) + pl(a, c)− 1

≡ −#K1 − pl(a, c) + 1−#K1 + pl(a, c)− 1,
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which is even. So we may suppose that ai 6= bi, so that ai = Ai. Since ci 6= ai, by

Lemma 4.6 then Ai = ai 6= bi = ci. It follows that K′
1 = K1, i 6∈ K2, K

′
2 = K2 ∪ {i},

K′
3 = K3, so that the p(a′, b′, c′)− p(a, b, c) + r has the same parity as the one in the case

ai = bi, which is even.

(3) We do some preliminary simplifications modulo 2, using Remark 4.2:

p(a′, b′, c′) = #K′
1 · (pl(a′, b′)− 1) + #K′

2 · (#K′
1 + pl(a′, c′)− 1)

+ #K′
3 · (#K′

1 + pl(b′, c′) + #K′
2 − 1)

≡ #K′
1 · (pl(a, b) + pl(b, b′)− 1) + #K′

2 · (#K′
1 + pl(a, c) + pl(c, c′)− 1)

+ #K′
3 · (#K′

1 + pl(b, c) + #K′
2 − 1)

≡ #K′
1 · pl(a, b) + #K′

2 · (#K′
1 + pl(a, c))

+ #K′
3 · (#K′

1 + pl(b, c) + #K′
2 − 1).

If i ∈ K1, then ai 6= bi = Ai. Since bi 6= ci, by Lemma 4.6 then ci = ai 6= bi = Ai, so

that K′
1 = K1 \ {i}, i 6∈ K2, K3, K

′
2 = K2 ∪ {i} and K′

3 = K3. Thus here

p(a′, b′, c′)− p(a, b, c) + r = #K′
1 · pl(a, b) + #K′

2 · (#K′
1 + pl(a, c))

+ #K′
3 · (#K′

1 + pl(b, c) + #K′
2 − 1)

−#K1 · (pl(a, b)− 1)−#K2 · (#K1 + pl(a, c)− 1)

−#K3 · (#K1 + pl(b, c) + #K2 − 1) + pl(b, c)

≡ (#K1 − 1) · pl(a, b) + (#K2 + 1) · (#K1 − 1 + pl(a, c))

+ #K3 · (#K1 − 1 + pl(b, c) + #K2 + 1− 1)

−#K1 · (pl(a, b)− 1)−#K2 · (#K1 + pl(a, c)− 1)

−#K3 · (#K1 + pl(b, c) + #K2 − 1) + pl(b, c)− 1

≡ −pl(a, b) + #K1 − 1 + pl(a, c))−#K1 + pl(b, c)− 1,

which is even.

So we may assume that i 6∈ K1, and since p(a′, b′, c′)− p(a, b, c)+ r is even if and only

if p(a, b, c)− p(a′, b′, c′) + r is even, by symmetry of the construction we may assume that

i 6∈ K′
1. Then either ai = bi or ai = Ai, and either ai = ci or ai = Ai. If ai = Ai, then

i 6∈ K′
2, K2, K

′
1 = K1, K

′
2 = K2, and exactly one of K3, K

′
3 has i, so that #K′

3 = #K3 ± 1.

Thus modulo 2:

p(a′, b′, c′)− p(a, b, c) + r = #K′
1 · pl(a, b) + #K′

2 · (#K′
1 + pl(a, c))

+ #K′
3 · (#K′

1 + pl(b, c) + #K′
2 − 1)

−#K1 · (pl(a, b)− 1)−#K2 · (#K1 + pl(a, c)− 1)

−#K3 · (#K1 + pl(b, c) + #K2 − 1) + pl(b, c)

≡ #K1 · pl(a, b) + #K2 · (#K1 + pl(a, c))
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+ (#K3 + 1) · (#K1 + pl(b, c) + #K2 − 1)

−#K1 · (pl(a, b)− 1)−#K2 · (#K1 + pl(a, c)− 1)

−#K3 · (#K1 + pl(b, c) + #K2 − 1) + pl(b, c)− 1

≡ #K1 + pl(b, c) + #K2 − 1 + #K1 +#K2 + pl(b, c)− 1,

which is even. So we may assume that ai 6= Ai. Then ai = bi = ci, which contradicts the

assumption that bi 6= ci.

Proposition 6.4 Let S be a t-signed set, and let a, b, c ∈ S be mutually con-

nected. Then all reductions of xaxbxc in the lexicographic order with respect to

{hS,K,a,b : a, b are connected in S,K ⊆ {i ∈ [t] : ai 6= bi}} reduce to the same term,

and the term is of the form (−1)uxAxBxC for some integer u, unique up to parity.

Proof. Set G′ = {fK,d,e : d, e ∈ S,K ⊆ {i ∈ [t] : di 6= ei}}. This set is reminiscent of

the set G in the statement of the proposition, the only difference is that each binomial in

G′ has the two coefficients 1,−1, whereas some binomials in G have coefficients 1, 1 and

others have 1,−1. By Theorem 4.5 of [11], xaxbxc and all of its reductions with respect to

G′ reduce to some minimal monomial xAxBxC with respect to G′. By the form of G′ and

G, then with respect to G, xaxbxc reduces to (−1)uxAxBxC for some integer u, and we

need to show that up to parity u is uniquely determined regardless of what the reduction

steps are. In fact, we show that u has the same parity as p(a, b, c) from Lemma 6.2. If

a = A, b = B, and c = C, then p(a, b, c) = 0 and xaxbxc is in the reduced form and it does

not reduce any further, so the conclusion holds trivially.

Now suppose that in the first step of the reduction, we reduce xaxbxc with respect

to hL,a,b for some non-empty L ⊆ {i ∈ [t] : ai 6= bi}. Then xaxbxc is reduced to

(−1)#L·pl(a,b)xs(L,a,b)xs(L,b,a)xc. This is a proper reduction, so by induction on the order

(in the lexicographic order), xs(L,a,b)xs(L,a,b)xc reduces to (−1)p(s(L,a,b),s(L,b,e),c)xAxBxC .

Hence via this reduction we have u = p(s(L, a, b), s(L, b, e), c) + #L · pl(a, b). Write

L = {l1, . . . , lk}. Then we have the following modulo 2:

u− p(a, b, c) = p(s(L, a, b), s(L, b, a), c)− p(a, b, c) + #L · pl(a, b)

≡
k∑

i=1

(
p(s({l1, . . . , li}, a, b), s({l1, . . . , li}, b, a), c)

− p(s({l1, . . . , li−1}, a, b), s({l1, . . . , li−1}, b, a), c)

+ pl(li, s({l1, . . . , li−1}, a, b), s({l1, . . . , li−1}, b, a))
)
,

which is even by Lemma 6.3. A very similar proof shows the same conclusion if we first

reduce xaxbxc with respect to hL,a,c or hL,b,c.

Theorem 6.5 Let S be a t-signed set. Then the set {hS,K,a,b : a, b are connected in S,K ⊆
{i ∈ [t] : ai 6= bi}} is a (non-minimal) Gröbner basis for J̃

〈t〉
S in the lexicographic order.
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Proof. A note: “S” in “S-polynomial” below is unrelated to the t-signed set S. Set

G = {hK,a,b : a, b connected in S,K ⊆ {i ∈ [t] : ai 6= bi}}, xaxb > xs(K,a,b)xs(K,b,a)}.
Since hK,a,b = xaxb − (−1)#K·pl(a,b)xs(K,a,b)xs(K,b,a) = ±hK,s(K,a,b),s(K,b,a), it suffices

to prove that G is a Gröbner basis. We have to prove that for any hK,a,b, hL,c,d ∈ G, the

S-polynomial S(hK,a,b, hL,c,d) reduces to 0 in the Gröbner basis sense with respect to G.

If xaxb and xcxd have no variables in common, then by standard facts about Gröbner

bases their S-polynomial reduces to 0. So we may assume that a = d. Then a, b, c, d are all

connected in S.

Suppose first that in addition b = c. Then S(hK,a,b, hL,b,a) equals

−(−1)#K·pl(a,b)xs(K,a,b)xs(K,b,a) + (−1)#L·pl(a,b)xs(L,a,b)xs(L,b,a).

If this is 0, we are done, otherwise, this equals

−(−1)#K·pl(a,b)
(
xs(K,a,b)xs(K,b,a) + (−1)(#L−#K)·pl(a,b)xs(L,a,b)xs(L,b,a)

)

= ±
(
xs(K,a,b)xs(K,b,a)

+ (−1)(#(L\K)+#(K\L))·pl(a,b)xs((L\K)∪(K\L),s(K,a,b),s(K,b,a))

· xs((L\K)∪(K\L),s(K,b,a),s(K,a,b))

)

= ±h(L\K)∪(K\L),s(K,a,b),s(K,b,a)),

which is a scalar multiple of an element in G, so it reduces to 0 with respect to G.

So we may assume that a = d and b 6= c. Then

S(hK,a,b, hL,a,c)

= −(−1)#K·pl(a,b)xs(K,a,b)xs(K,b,a)xc + (−1)#L·pl(a,c)xs(L,a,c)xs(L,c,a)xb.

Both (−1)#K·pl(a,b)xs(K,a,b)xs(K,b,a)xc and (−1)#L·pl(a,c)xs(L,a,c)xs(L,c,a)xb are reductions

of xaxbxc, so that by Proposition 6.4, S-polynomial reduces to 0 with respect to G.

Theorem 6.6 If S is a t-signed set, then the ideals J̃
〈t〉
S and Q

〈t〉
S are prime.

Proof. This proof mimics that of Theorem 6.3 in [11]. By faithfully flatness we may assume

without loss of generality that the underlying field is algebraically closed.

Let S = S1 ∪ · · · ∪ Sk be a partition of S into equivalence classes with respect to

connectedness. Each Si is t-signed. Then J̃
〈t〉
S = ∪iJ̃

〈t〉
Si

and Q
〈t〉
S =

∑
i J̃

〈t〉
Si

+ Var
〈t〉
S , and

the generators of J̃
〈t〉
S1

, . . ., J̃
〈t〉
Sk

, and Var
〈t〉
S use disjoint variables. By a well-known fact, it

suffices to prove that each J̃
〈t〉
Si

is a prime ideal. By renaming we now assume that t-signed

S = Si is one equivalence class under connectedness.

Let G = {hS,K,a,b : a, b are connected in S,K ⊆ {i ∈ [t] : ai 6= bi}}. By Theorem 6.5,

G is a Gröbner basis for J̃
〈t〉
S .
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Here we quote Lemma 6.2 from [11]: Suppose that a1, . . . , ar, b1, . . . , br ∈ S have

the property that for all i = 1, . . . , t, up to order, the multiset {a1i, a2i, . . . , ari} is

the same as the multiset {b1i, b2i, . . . , bri}, and such that, up to order, the multiset

{(a1,t+1, a1,t+2, . . . , a1,n), (a2,t+1, a2,t+2, . . . , a2,n), . . . , (ar,t+1, ar,t+2, . . . , ar,n)} is the same

as the multiset {(b1,t+1, b1,t+2, . . . , b1,n), (b2,t+1, b2,t+2, . . . , b2,n), . . . , (br,t+1, br,t+2, . . . , br,n)}.
Then in the lexicographic order, xa1

xa2
· · ·xar

− xb1xb2 · · ·xbr reduces with respect to

{fK,a,b : K ⊆ [t], a, b ∈ S} to 0.

A consequence is that under the conditions in the previous paragraph, either

xa1
· · ·xar

− xb1 · · ·xbr or xa1
· · ·xar

+ xb1 · · ·xbr reduces to 0 with respect to G.

Suppose that J̃
〈t〉
S is not a prime ideal. Since this is a binomial ideal, by Eisenbud–

Sturmfels [3] there exists a zerodivisor modulo J̃
〈t〉
S of the form α− cβ for some monomials

α and β and some possibly zero coefficient c in the base field. Then there exists f not in

J̃
〈t〉
S such that (α− cβ) · f ∈ J̃

〈t〉
S . Without loss of generality we may assume that α, β, and

each monomial in f is reduced with respect to C. Write f = c1m1 + c2m2 + · · ·+ ckmk,

where the ci are non-zero elements of the underlying field and the mi are monomials. We

may assume that m1 > mi for all i and α > β in the lexicographic order. Since (α− cβ) · f
reduces to 0 with respect to G, αm1 must reduce with respect to G up to sign to the same

monomial as some other monomial in (α− cβ) · f . If it reduces to the same monomial as

αmi for some i > 1, then by the previous paragraph, m1 and mi reduce up to sign to the

same monomial, which contradicts the assumption on the monomials in f being reduced.

Hence αm1 reduces with respect to G to the same monomial as some βmi2 , and by the

reduced assumption on α− cβ necessarily i2 > 1 and c is not zero. Similarly, αmi2 reduces

to the same monomial as βmi3 , for some i3 6= i2, and more generally for all s, αmis reduces

to the same monomial as βmis+1
for some is 6= is+1. Necessarily some is must equal some

ij for s < j. Hence αj−s+1mis · · ·mij reduces to the same monomial as βj−s+1mis · · ·mij ,

whence again by the previous paragraph, αj−s+1 reduces to the same monomial as βj−s+1,

and even α reduces to the same monomial as β, which is a contradiction. Thus J̃
〈t〉
S is a

prime ideal.

In particular, J̃
〈t〉
N is prime in caseN = [2]×[2]×[2]. We give here an easier proof in this

special case based on results of [11], but this easier proof does not generalize to arbitraryN .

Namely, J̃
〈t〉
N = (fi,a,b : d(a, b) = 3, i ∈ [t]) + (gi,a,b : d(a, b) = 2, i ∈ [t], ai 6= bi). Let ϕ :

R → R be the ring isomorphism that restricts to the identity map on the underlying field

and maps xijk to −xijk if i = j = k and to xijk otherwise. It is straightforward to see

that ϕ takes J̃
〈t〉
N onto Ĩ

〈t〉
N . But by [11], Ĩ

〈t〉
N is a prime ideal (for all sizes of N), and since

isomorphisms map prime ideals to prime ideals, the conclusion follows.

7 Prime ideals minimal over J̃
〈t〉
S

We prove in this section that the maximal t-signed sets correspond precisely to prime

ideals minimal over J 〈t〉. In [11] it was proved that the maximal t-switchable sets correspond
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precisely to prime ideals minimal over I〈t〉. The flow of the proofs resembles those in [11],

but again, here in addition parity has to be checked and controlled.

Theorem 7.1 If P is a prime ideal minimal over J 〈t〉, then P = Q
〈t〉
S for some maximal

t-signed set S.

Proof. Let S be the set of all a ∈ [r1]× · · · × [rn] such that xa 6∈ P .

Let a, b ∈ S have d(a, b) = 2 and ai 6= bi for some i ∈ [t]. Since P contains J 〈t〉

and i ∈ [t], P contains hS,i,a,b = xaxb − (−1)plS(a,b)xs(i,b,a)xs(i,a,b). Since a, b ∈ S, then

xaxb 6∈ P , so that necessarily xs(i,b,a)xs(i,a,b) 6∈ P , and hence s(i, b, a), s(i, a, b) ∈ S. This

proves that S is t-switchable.

We next prove that S is t-signed. It suffices to prove that every connected component

S0 of S is t-signed. If all elements of S0 share the same first t coordinates, or if all elements

in S0 only differ in the ith component for some i ∈ [t], then S0 is t-signed. So we may

suppose that the distance between some elements a, b of S0 is at least 2 and that for some

i ∈ [t], {ci : c ∈ S0} has more than one element. By Remark 4.2, by possibly replacing

a by s(i, a, c) for some c ∈ S0, we may assume that a and b differ in the ith component.

Now let c, e ∈ S0 be arbitrary. If there are paths from c to e whose lengths have different

parities, then there are paths from a to b via paths from c to e whose lengths have different

parities. Then by Proposition 4.3, J 〈t〉 and hence P contain monomials whose variables

have subscripts in S. But P is a prime ideal, so P contains a factor xc for some c ∈ S,

which is a contradiction. This proves that S is t-signed.

By Proposition 4.11, J 〈t〉 ⊆ Q
〈t〉
S , and by Theorem 6.6, Q

〈t〉
S is a prime ideal.

We next prove that Q
〈t〉
S ⊆ P . By the definition of S, Var

〈t〉
S ⊆ P . Let hS,i,a,b ∈ J̃

〈t〉
S ,

with i ∈ [t] and a and b connected in S such that ai 6= bi. If d(a, b) = 1, then hS,i,a,b = 0, so

it is an element of P . So we may assume that d(a, b) ≥ 2. By the definition of connectedness,

there exist elements c0 = a, c1, . . . , ck, ck+1, b ∈ S such that for all j = 1, . . . , k, cj−1 and

cj differ only in one position. Without loss of generality d(ck, b) = 2. After omitting any

repetitions in c0, s(i, c1, a), . . . , s(i, ck+1, a), all the ith components on the list equal ai. By

Remark 4.2, this list is in S. Note that 2 ≤ d(s(i, ck, a), b) ≤ 3. If d(s(i, ck, a), b) = 3,

then we take the list c0, s(i, c1, a), . . . , s(i, ck+1, a) with redundancies removed, and the last

element on the list differs from b in 2 entries, and if d(s(i, ck, a), b) = 2, then we take the

list c0, s(i, c1, a), . . . , s(i, ck, a) with redundancies removed. In either case, after renaming

we have a path a = c0, c1, . . . , ck with all ith components being ai and d(ck, b) = 2. Then

by Lemma 3.2, xc1 · · ·xckhS,i,a,b ∈ J 〈t〉 ⊆ P , and since xcj 6∈ P , it follows that hS,i,a,b ∈ P ,

as desired. Thus J̃
〈t〉
S ⊆ Q

〈t〉
S ⊆ P . Since Q

〈t〉
S is a prime ideal, by minimality of P , Q

〈t〉
S = P .

Finally, let T be t-signed and properly containining S. Then Var
〈t〉
T ( Var

〈t〉
S , and

so Q
〈t〉
T 6= Q

〈t〉
S . By Proposition 4.11, Q

〈t〉
T contains J 〈t〉, and by Theorem 6.6, Q

〈t〉
T is a

prime ideal. This combined with the fact that P = Q
〈t〉
S is minimal over J 〈t〉, implies that

Q
〈t〉
T 6⊆ Q

〈t〉
S . Therefore Q

〈t〉
S and Q

〈t〉
T are incomparable. Thus S is a maximal t-signed set.
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Theorem 7.2 The set of prime ideals minimal over J 〈t〉 equals the set of ideals of the

form Q
〈t〉
S as S varies over maximal t-signed sets.

Proof. Let S be a maximal t-signed set. Then by Proposition 4.11 and Theorem 6.6, Q
〈t〉
S

is a prime ideal that contains J 〈t〉. Suppose that P is a prime ideal that is minimal over

J 〈t〉 and is contained in Q
〈t〉
S . By Theorem 7.1, P = Q

〈t〉
T for some maximal t-signed set T .

Since Q
〈t〉
T ⊆ Q

〈t〉
S , necessarily Var

〈t〉
T ⊆ Var

〈t〉
S , so that S ⊆ T . But then maximality of S

forces Q
〈t〉
T = Q

〈t〉
S . Thus Q

〈t〉
S is a minimal prime ideal of J 〈t〉. Theorem 7.1 proves the

other direction.

8 Structure of t-signed sets and the radical of J 〈t〉

The aim of this section is to establish the structure of t-signed sets in more detail,

with the bigger goal of then determining the radical of J 〈t〉. However, our description of

this radical is only indirect.

Lemma 8.1 For i = 1, . . . , n, let Si ⊆ [ri]. Suppose that one of the following conditions

holds:

(1) |S1| = · · · = |St| = 1.

(2) There exists i such that for all j 6= i, |Sj| = 1.

(3) For all i, |Si| ≤ 2.

Then S = S1 × · · · × Sn is a t-signed set consisting of one equivalence class only.

Proof. It is clear that S forms one equivalence class. Conditions (1) and (2) above corre-

spond precisely to conditions (1) and (2) in Definition 4.4.

Now assume that condition (3) above holds. If a, b ∈ S such that d(a, b) = 2 and

i ∈ [t] with ai 6= bi, then s(i, a, b), s(i, b, a) ∈ S as well, so that S is t-switchable. Any

path from an arbitrary a to an arbitrary b in S may involve several switches in each of the

entries, and the parity of the number of switches in the kth entry is 1 if ak 6= bk and 0

otherwise. So the parity of each path, namely the parity of the sum of the switches in all

the components, is uniquely determined. Thus S is t-signed.

By Example 5.6 (4), the t-switchable sets can have a form different from the forms

given in Lemma 8.1 above.

Lemma 8.2 Let U be a subset of N that is contained in a 2 × 3 submatrix of N with

entries varying in the i and jth components only. Suppose that U is not contained in a

2 × 2 submatrix or in a 1 × 3 submatrix, and that either i or j is in [t]. Then U is not a

subset of any t-signed set.

Conversely, if U is not a subset of any t-signed S, then the smallest t-switchable

set containing U contains a 2 × 3 submatrix of N with entries varying in the i and jth

components with either i or j in [t].
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Proof. Suppose that U is a subset of a t-signed set S. Then since S is t-switchable, by

Remark 4.2, the whole 2×3 matrix is in S, and even all its entries are in the same connected

equivalence class S0. So, let a, b, c ∈ S0 be in a 1 × 3 submatrix. Then a, b, c and a, c are

both paths from a to b in S0, but then S is not t-signed, which is a contradiction. The

proof of the converse is similar.

Definition 8.3 For any finite multiset M of elements of N , define xM =
∏

a∈M xa.

(When M is a multiset, xM allows for products of powers of variables, but when M is a

set, then xM is square-free.)

Lemma 8.4 Let M be the set of all subsets of N that are not contained in any t-signed

sets. A monomial xM is in
√
J 〈t〉 if and only if M ∈ M.

Proof. By Theorem 7.2, xM ∈
√
J 〈t〉 if and only if for all maximal t-signed S, xM ∈ Q

〈t〉
S ,

which by the structure of these prime ideals holds if and only if for all S, M is not a subset

of S. This is the same as saying that M ∈ M.

Corollary 8.5 Let Mi be the set of all sets in M with i elements. Then (xM : M ∈
M) + J 〈t〉 = (xM : M ∈ M3) + J 〈t〉.

Proof. For any a, b ∈ N , by Lemma 8.1, {a1, b1} × · · · × {an, bn} is t-signed, so that

M0 = M1 = M2 = ∅. It suffices to prove that (xM : M ∈ M) ⊆ (xM : M ∈ M3) + J 〈t〉.

Let M ∈ M. By Lemma 8.2, the smallest t-switchable set containing M contains a 2 × 3

submatrix with fixed coordinates i, j such that {i, j}∩ [t] 6= ∅. It need not be the case that

this 2× 3 submatrix contains 3 elements of M that do not lie in a 1× 3 or 2× 2 submatrix.

However, let S be the smallest subset of N containing S and such that whenever a, b ∈ S

with d(a, b) = 2, then s(i, a, b) ∈ S. The assumption is that elements of S fill that 2 × 3

submatrix. But generating s(i, a, b), s(i, b, a) from a, b is on the algebraic side the same as

subtracting multiples of generators of J 〈t〉, which says that after repeatedly subtracting

from xM specific elements of J 〈t〉, we get a monomial xM ′ that has a factor xaxbxc such

that the smallest t-switchable set containing a, b, c contains that 2 × 3 submatrix. This

proves the corollary.

It is not true that (xM : M ∈ M) = (xM : M ∈ M3). For example, if n = t = 3,

then M = {(1, 1, 1), (2, 1, 1), (3, 1, 1), (1, 2, 2)} is in M. By Lemma 8.1, the proper subsets

{(1, 1, 1), (3, 1, 1), (1, 2, 2)} {(1, 1, 1), (2, 1, 1), (1, 2, 2)} {(1, 1, 1), (2, 1, 1), (3, 1, 1)} are not

in M, and {(2, 1, 1), (3, 1, 1), (1, 2, 2)} is t-signed with exactly two equivalence classes under

connectedness ({(2, 1, 1), (3, 1, 1)} and {(1, 2, 2)}), and so this last subset of M is also not

in M. Thus xM 6∈ (xM ′ : M ′ ∈ M3).

Theorem 8.6 Let T be the set of all pairs (M,M ′) of finite lists of elements of N for which

there exists an integer v(M,M ′) such that for all t-signed S, xM − (−1)v(M,M ′)xM ′ ∈ Q
〈t〉
S .

The radical of J 〈t〉 is generated by all elements xM − (−1)v(M,M ′)xM ′ for (M,M ′) ∈ T,

and by all xM for M ∈ M3.
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Proof. Let J ′ = (xM − (−1)v(M,M ′)xM ′ : (M,M ′) ∈ T) and J ′′ = (xM : M ∈ M3). Clearly

J 〈t〉 ⊆ J ′.

By Theorem 7.2, J ′ ⊆
√
J 〈t〉, and by Lemma 8.4, J ′′ ⊆

√
J 〈t〉. Thus J ′ + J ′′ ⊆

√
J 〈t〉.

For the other inclusion, first assume that the underlying field is algebraically closed.

By [3],
√
J 〈t〉 is generated by binomials and monomials. Let f = xM − cxM ′ ∈

√
J 〈t〉 for

some finite lists M,M ′ and some possibly zero scalar c.

Suppose that xM ∈
√
J 〈t〉. Then by Lemma 8.4, the set M is in M, so that by

Corollary 8.5, xM ∈ J 〈t〉 + J ′′, and either c = 0 or similarly xM ′ ∈ J 〈t〉 + J ′′, whence

f ∈ J 〈t〉 + J ′′.

Next assume that xM 6∈
√
J 〈t〉. Thus c is non-zero. By Theorem 7.2, f ∈ Q

〈t〉
S

for all t-signed S, and for at least one such S, xM 6∈ Q
〈t〉
S . By the structure of these

prime ideals, xM − (−1)pSxM ′ ∈ Q
〈t〉
S for some integer pS depending on S. But also

xM − cxM ′ ∈
√
J 〈t〉 ⊆ Q

〈t〉
S , so that c = (−1)pS . Thus by assumption for any t-signed set

T , xM − (−1)pSxM ′ ∈
√
J 〈t〉 ⊆ Q

〈t〉
T , hence f ∈ J ′.

This proves that
√
J 〈t〉 = J ′+J ′′ whenever the underlying field is algebraically closed.

For an arbitrary underlying field, let R′ be R tensored with the algebraic closure of

the field. Then by above,
√
J 〈t〉R′ = (J ′ + J ′′)R′, which has generators in R, whence by

faithful flatness of R′ over R, also
√
J 〈t〉 = J ′ + J ′′.

If N = [r1] × [r2], by [9],
√
J 〈t〉 = J 〈t〉 + (xM : M ∈ M3). However, for N =

[2]× [2]× [2]× [2],
√
J 〈t〉 properly contains J 〈t〉 + (xM : M ∈ M3).

9 Related ideals I: generated by gi,a,b when d(a, b) = 3

In this section we introduce another notion of distance

dt(a, b) = #{i ∈ [t] : ai 6= bi},

and the set {i ∈ [t] : ai 6= bi} will be denoted as Dt(a, b).

Definition 9.1 Let t ≤ n and let Ĵ 〈t〉 be the ideal generated by gi,a,b with a, b ∈ N such

that d(a, b) = dt(a, b) = 3 and i ∈ Dt(a, b).

Lemma 9.2 Ĵ 〈t〉 is generated by monomials xaxb such that d(a, b) = dt(a, b) = 3 and

i ∈ Dt(a, b). Thus Ĵ
〈t〉 is a radical ideal.

Proof. If t ≤ 2, Ĵ 〈t〉 is the zero ideal, and so is the ideal generated by the non-empty set of

specified monomials. So we may assume that t ≥ 3.

Let a, b ∈ N satisfy d(a, b) = dt(a, b) = 3. Let Dt(a, b) = {i, j, k}. Then

gi,a,b, gj,a,b, gk,a,b are among the generators of Ĵ 〈t〉, but gi,a,b − gj,a,b = xs(i,a,b)xs(i,b,a) −
xs(j,a,b)xs(j,b,a), and gk,a,b = xs(i,a,b)xs(i,b,a) + xs(j,a,b)xs(j,b,a), so that as the characteristic

of the underlying field is not 2, Ĵ 〈t〉 contains xs(i,a,b)xs(i,b,a) and xs(j,a,b)xs(j,b,a), whence it
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also contains xaxb. This proves one inclusion, and the other is trivial. So Ĵ 〈t〉 is generated

by square-free monomials, so it is a radical ideal.

The following is now immediate:

Theorem 9.3 Let Ŝ be the collection of all subsets S of N such that for any a, b ∈ N

with d(a, b) = dt(a, b) = 3, at least one of a and b is not in S. Then the prime ideals that

are minimal over Ĵ 〈t〉 are the minimal ideals in {Var〈t〉S : S ∈ Ŝ} (see Definition 4.9).

It is clear that when t = 3, the set Ŝ consists of sets S containing points no two

of which have distance 3. In order to get the minimal primes, we need Var
〈3〉
S minimal

possible, so we want S maximal possible.

Example 9.4 If N = [r1] × [r2] × [r3] and t = 3, the minimal prime ideals over Ĵ 〈3〉

correspond to the sets S, whose geometric descriptions are as followis:

(1) For i = 1, 2, 3, S consists of all elements with a fixed ith coordinate; there are r1 +

r2 + r3 such sets.

(2) S consists of four elements in a 2 × 2 × 2 subhypermatrix consisting of one of the

corners plus its adjacent neighbors; there are
(
r1
2

)(
r2
2

)(
r3
2

)
such subhypermatrices, and

each one has eight such sets.

(3) S consists of four elements in a 2 × 2 × 2 subhypermatrix all of whose pairs have

distance 2; there are
(
r1
2

)(
r2
2

)(
r3
2

)
such subhypermatrices, and each one has two such

sets.

Thus in total there are r1 + r2 + r3 + 10
(
r1
2

)(
r2
2

)(
r3
2

)
such minimal primes. Since Ĵ 〈t〉

is a radical monomial ideal, it has no embedded primes.

10 Related ideals II: generated by gi,a,b when d(a, b) = 2, 3

We still use dt(a, b) = #{i ∈ [t] : ai 6= bi} and Dt(a, b) = {i ∈ [t] : ai 6= bi}.

Definition 10.1 Let t ≤ n and let J̌ 〈t〉 be the ideal generated by gi,a,b with a, b ∈ N and

i ∈ Dt(a, b) such that either d(a, b) = dt(a, b) = 3 or d(a, b) = 2.

Theorem 10.2 Let Š be the collection of all t-signed subsets S of N (see Definition 4.1)

such that for any a, b ∈ N , if d(a, b) = dt(a, b) = 3, then at least one of a and b is not in S.

Then the prime ideals that are minimal over J̌ 〈t〉 are the minimal ideals in {Q〈t〉
S : S ∈ Š}

(see Definition 4.9).

Proof. Let Q
〈t〉
S be in Š. By Proposition 4.11, J 〈t〉 ⊆ Q

〈t〉
S , and by Lemma 9.2 and by the

dt, d-conditions on S, Ĵ 〈t〉 ⊆ Q
〈t〉
S . Thus J̌ 〈t〉 ⊆ Q

〈t〉
S . By Theorem 6.6, Q

〈t〉
S is a prime ideal.

Note that J̌ 〈t〉 = J 〈t〉 + Ĵ 〈t〉. Let P be a prime ideal minimal over J̌ 〈t〉. Let S be the

set of all a ∈ N such that xa 6∈ P . As in the proof of Theorem 7.1, S is t-switchable. Thus

by Theorem 6.6, Q
〈t〉
S is a prime ideal, and by Proposition 4.11, Q

〈t〉
S contains J 〈t〉. Since

P contains Ĵ 〈t〉, then at least one of a and b is not in S whenever d(a, b) = dt(a, b) = 3.
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Again as in the proof of Theorem 7.2, S is t-signed, and J̌ 〈t〉 ⊆ Q
〈t〉
S ⊆ P . Thus S ∈ Š, and

Q
〈t〉
S = P . If Q

〈t〉
T ⊆ Q

〈t〉
S for some T ∈ Š, then by the first paragraph and minimality of P ,

Q
〈t〉
T = Q

〈t〉
S = P is minimal in Š.

Now assume that Q
〈t〉
S is minimal in Š. By the first paragraph, J̌ 〈t〉 ⊆ Q

〈t〉
S , and Q

〈t〉
S

is a prime ideal. Let P be a prime ideal that is minimal over J̌ 〈t〉 and is contained in Q
〈t〉
S .

By the already established part, P = Q
〈t〉
T for some T ∈ Š. Since Q

〈t〉
T ⊆ Q

〈t〉
S , then by the

minimality, Q
〈t〉
T = Q

〈t〉
S .

Remark 10.3 We can give a more precise combinatorial description of the sets S in the

theorem above. Let S0 be a connected component of S. Then S0 is also in Š. Suppose that

for all a, b ∈ S0, dt(a, b) ≤ 2. We claim that S0 is contained in a subset of N in which all

except some two coordinates in [t] are fixed. If not, there exist a, b, c ∈ S0 such that a and b

differ in coordinates i and j in [t], a and c differ in coordinates k and l in [t], and {i, j, k, l}
has at least three elements. Since dt(b, c) ≤ 2, necessarily #{i, j, k, l} = 3. Say i = l, so

that b and c differ in positions j and k. But then b′ = s(i, b, a) differs from c in positions

i, j and k. By Remark 4.2, b′, c′ = s({i, j, k}, c, b′) ∈ S0, but dt(c, c
′) = d(c, c′) = 3, which

contradicts that S0 ∈ Š. Thus indeed S0 is contained in a subset of N in which all except

some two coordinates in [t] are fixed.

Example 10.4 Let t = n = 3 and let S ∈ Š be such that Q
〈t〉
S is minimal over J̌ 〈t〉. Since

t = n = 3, dt(a, b) = d(a, b) ≤ 3 for all a, b ∈ S. But since S ∈ Š, d(a, b) 6= 3. Thus for all

a, b ∈ S, d(a, b) ≤ 2. Since t = 3, by switchability, all elements of S are connected. Thus

by the remark, there exists k such that all elements of S have the same kth coordinate.

Let {1, 2, 3} = {i, j, k}.
(1) If also the jth coordinate of all elements of S is fixed, then the minimal Q

〈t〉
S can only

be achieved if S is the whole line segment with those fixed jth and kth coordinates.

There are r1 · r2 + r1 · r3 + r2 · r3 such sets.

(2) Now suppose that S is not contained in a line segment. Since S is t-signed, by

Lemma 4.6, S is contained in a 2 × 2 submatrix parallel to a coordinate plane. To

achieve a minimal Q
〈t〉
S , S then consists of all four points of that submatrix. There

are r1
(
r2
2

)(
r3
2

)
+ r2

(
r1
2

)(
r3
2

)
+ r3

(
r1
2

)(
r2
2

)
such primes.

(3) Suppose that ri = 2. Then a prime ideal Q
〈t〉
S of the type as in part (1) strictly

contains a prime ideal of part (2), so not all S in parts (1) and (2) correspond to

minimal primes.

Note that there are no further containments among these prime ideals, so that in total

there are (r1 · r2)δr3>2 + (r1 · r3)δr2>2 + (r2 · r3)δr1>2 + r1
(
r2
2

)(
r3
2

)
+ r2

(
r1
2

)(
r3
2

)
+ r3

(
r1
2

)(
r2
2

)

minimal primes, where δC is 1 if condition C is true and is 0 otherwise.
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