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Here is the gist of the Eisenbud–Sturmfels paper Binomial ideals, Duke Math. J. 84

(1996), 1–45. The main results are that the associated primes, the primary components,

and the radical of a binomial ideal in a polynomial ring are binomial if the base ring is

algebraically closed.

Throughout, R = k[X1, . . . , Xn], where k is a field and X1, . . . , Xn are variables over k.

A monomial is an element of the form Xa for some a ∈ N
n
0 , and a term is an element of k

times a monomial. The words “monomial” and “term” are often confused. In particular, a

binomial is defined as the difference of two terms, so it should better be called a “biterm”,

but this name is unlikely to stick. An ideal is binomial if it is generated by binomials.

Here are some easy facts:

(1) Every monomial is a binomial, hence every monomial ideal is a binomial ideal.

(2) The sum of two binomial ideals is a binomial ideal.

(3) The intersection of binomial ideals need not be binomial: (t−1)∩ (t−2), even over

a field of characteristic 0.

(4) Primary components of a binomial ideal need not be binomial: in R[t], the binomial

ideal (t3 − 1) has exactly two primary components: (t− 1) and (t2 + t+ 1).

(5) The radical of a binomial ideal need not be binomial: Let k = Z/2Z(t), R =

k[X, Y ], I = (X2 + t, Y 2 + t + 1). Note that I is binomial (as t + 1 is in k), and√
I = (X2+ t, X+Y +1), and this cannot be rewritten as a binomial ideal as there

is only one generator of degree 1 and it is not binomial.

Thus, we do need to make a further assumption, namely, from now on, all fields k

are algebraically closed, and then the counterexamples to primary components and radicals

do not occur. The ring is always R = k[X1, . . . , Xn], and t is always a variable over R.

Comment: Can one repeat this for trinomial ideals (with obvious meanings)? The

answer is that not really, because all ideals are trinomial – after adding variables and a

change of variable. Namely, let f = a1 + a2 + · · · + am be a polynomial with m terms.

Introduce new variables t3, . . . , tm. Then k[x1, . . . , xn]/(f) = k[x1, . . . , xn, t3, . . . , tm]/(a1+

a2 − t3,−t3 + a3 − t4,−t4 + a4 − t5, . . . ,−tm−2 + am−2 − tm−1,−tm−1 + am−1 − tm).

1 Commutative algebra facts

In this section I list some commutative algebra facts that I will refer to later in

the paper, together with some easy propositions about binomial ideals.

(1) A Gröbner basis of a binomial ideal is binomial.

(2) In fact, an ideal is binomial if and only if it has a binomial Gröbner basis.
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(3) For any ideals I , J in R,

I ∩ J = (tI + (t− 1)J)R[t] ∩R,

where t is a variable over R. More generally, for ideals I0, . . . , Is, let t1, . . . , ts be

variables over R, and then

I0 ∩ · · · ∩ Is =

(

(1−
∑

i

ti)I0 + t1t1 + · · · tsIs
)

R[t1, . . . , ts] ∩ R.

(4) If we take a monomial ordering on R[t] such that the leading term of f is not in R

for all f ∈ R[t] \R, then for any Gröbner basis G of an ideal K in R[t],

(G ∩R) = K ∩ R.

(Recall that G is a finite set, so G ∩ R is just a set intersection.)

(5) If K is a binomial ideal in R[t], then K ∩R is a binomial in R.

(6) For any ideal I and any element m, (I : m)m = I ∩ (m). In particular, I : m and

I ∩ (m) is binomial. (Recall: false if m is not monomial.)

(7) For any Noetherian ring R, ideal I and x ∈ R, the following is a short exact

sequence:

0 −→ R

I : x
−→ R

I
−→ R

I + (x)
−→ 0,

where the first map is multiplication by x.

(8) If 0 → M1 → M2 → M3 → 0 is a short exact sequence of finitely generated modules

over a Noetherian ring R, then Ass(M2) ⊆ Ass(M1) ∪Ass(M3).

(9) If R is a Noetherian ring, then for any ideals I and J in R, the ascending chain

I : J ⊆ I : J2 ⊆ I : J3 ⊆ · · · eventually stabilizes. The stabilized ideal is notated

I : J∞ (without attaching any value to “J∞”).

(10) For any ideal I and any non-nilpotent element x, Ix ∩ R = I : (x)∞.

(11) If I : x∞ = I : xl, then I = (I : xl) ∩ (I + (xl)).

(12) With l as above, Ass(R/(I : xl)) ⊆ Ass(R/I) ⊆ Ass(R/(I : xl))∪Ass(R/(I+(xl))),

and Ass(R/(I : xl)) ∩Ass(R/(I + (xl))) = ∅.
(13) Let x1, . . . , xn ∈ R. Then for any ideal I in R,

√
I =

√

I + (x1) ∩ · · · ∩
√

I + (xn) ∩
√

I : (x1 · · ·xn)∞

=
√

I + (x1) ∩ · · · ∩
√

I + (xn) ∩
√

I : x1 · · ·xn.

Proposition 1.1 If I is a binomial ideal and J is a monomial ideal, then I ∩J is binomial.

Proof. Note that (It + J(t − 1))R[t] is a binomial ideal in R[t]. Let G be its Gröbner

basis under an ordering as in commutative algebra fact (4). Then by commutative algebra

fact (1), G is binomial, hence the set intersection G ∩ R is binomial, so that (G ∩ R) is a

binomial ideal. Thus by commutative algebra fact (3), I ∩ J is binomial.
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Proposition 1.2 If I is a binomial ideal and m is a monomial, then I : m is binomial.

Proof. By the previous proposition, I ∩ (m) is binomial. By commutative algebra fact (6),

(I : m)m is binomial, whence the division of each generator by its factor m still produces

the binomial ideal I : m.

Proposition 1.3 Let I be a binomial ideal, and let J1, . . . , Jl be monomial ideals. Then

there exists a monomial ideal J such that (I + J1) ∩ · · · ∩ (I + Jl) = I + J .

Proof. We can take a k-basis B of R/I to consist of monomials. By Gröbner bases of

binomial ideals, (I + Jk)/I is a subspace whose basis is a subset of B. Thus ∩((I + Jk)/I)

is a subspace whose basis is a subset of B, which proves the proposition.

2 Binomial ideals in S = k[X1, . . . , Xn, X
−1
1 , . . . , X−1

n ] = k[X1, . . . , Xn]X1···Xn

Any binomial Xa − cXb can be written up to unit in S as Xa−b − c.

Let I be a proper binomial ideal in S. Write I = (Xe − c : some e ∈ Z
n, ce ∈ k∗).

(All ce are non-zero since I is assumed to be proper.)

If e, e′ occur in the definition of I , set e′′ = e− e′, e′′′ = e+ e′. Then

Xe − ce = Xe′+e′′ − ce ≡ ce′X
e′′ − ce mod I,

Xe − ce = Xe′′′−e′ − ce ≡ c−1
e′ Xe′′′ − ce mod I,

so that e′′ is allowed with ce′′ = cec
−1
e′ , and e′′′ is allowed with ce′′′ = cece′ . In par-

ticular, the set of all allowed e forms a Z-submodule of Z
n. Say that it is generated

by m vectors. Records these vectors into an n × m matrix A. We just performed

some column reductions: neither these nor the rest of the standard column reductions

over Z change the ideal I . But we can also perform column reductions! Namely, S =

k[X1X
m
2 , X2, . . . , Xn, (X1X

m
2 )−1, (X2)

−1, . . . , (Xn)
−1], and we can rewrite any monomial

Xa as (X1X
m
2 )a1Xa2−ma1

2 Xa3

3 · · ·Xan

n , which corresponds to the second row of the matrix

becoming the old second row minus m times the old first row (and other rows remain

unchanged). So this, and even all other, row reductions are allowed; whereas they do not

change the ideal nor the constant coefficient in the binomial generating set, they do modify

the variables. In any case, we can perform the standard row and column reductions on the

occurring exponents e to get the n× n matrix into a standard form.

Example 2.1 Let I = (x3y − y3z, xy − z2) in k[x, y, z]. This yields the 3 × 2 matrix of

occurring exponents:

A =





3 1
−2 1
−1 −2



 .
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We first perform some elementary column reductions (that possibly change the ce to prod-

ucts of such, but our ce are all 1, so there is no change):

A →





1 3
1 −2
−2 −1



→





1 0
1 −5
−2 5



 .

We next perform the row reductions, and for these we will keep track of the names of

variables (in the obvious way):

x
y
z





1 0
1 −5
−2 5



→
xy
y
z





1 0
0 −5
−2 5



→
xyz−2

y
z





1 0
0 −5
0 5



→
xyz−2

y
zy−1





1 0
0 0
0 5



→
xyz−2

zy−1

y





1 0
0 5
0 0



 .

Thus, up to a monomial change of variables, once we bring the matrix of exponents

into standard form, every proper binomial ideal in S is of the form (Xm1

1 −c1, . . . , X
md

d −cd)

for some d ≤ n, some mi ∈ N, and some ci ∈ K∗.

Now the following are obvious: in characteristic 0,

I =
⋂

u
mi

i
=ci

(X1 − u1, . . . , Xd − ud),

where all the primary components are distinct, binomial, and prime. Thus here all associ-

ated primes, all primary components, and the radical are all binomial ideals, and moreover

all the associated primes have the same height and are thus all minimal over I .

In positive prime characteristic p, write each mi as pvini for some positive vi and

non-negative ni that is not a multiple of p. Then

I =
⋂

u
mi

i
=ci

((X1 − u1)
pv1

, . . . , (Xd − ud)
pv

d

).

The listed generators of each component are primary. These primary components are

binomial, as (Xi − ui)
pvi = X

pvi

i − u
pvi

i . The radicals of these components are all the

associated primes of I , and they are clearly the binomial ideals (X1−u1, . . . , Xd−ud). All

of these prime ideals have the same height, thus they are all minimal over I . Furthermore,

√
I =

⋂

u
mi

i
=ci

(X1 − u1, . . . , Xd − ud) = (Xn1

1 − un1

1 , . . . , Xnd

d − und

d ),

for any ui with umi

i = ci. The last equality is in fact well-defined as if (u′

i)
mi = ci, then

0 = ci − ci = umi

i − (u′

i)
mi = (uni

i − (u′

i)
ni)p

vi

, so that uni

i = (u′

i)
ni . In particular,

√
I is

binomial.

We summarize this section in the following theorem:
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Theorem 2.2 A proper binomial ideal in S has binomial associated primes, binomial

primary components, and binomial radical. All associated primes are minimal. In char-

acteristic 0, all components are prime ideals, so all binomial ideals in S are radical. In

characteristic p, every binomial in the associated primes has a Frobenius power the corre-

sponding primary component.

Example 2.3 (Continuation of Example 2.1.) In particular, if we analyze the ideal from

Example 2.1, the already established row reduction shows that I = (xyz−2−1, (zy−1)5−1).

In characteristic 5, this is a primary ideal with radical I = (xyz−2 − 1, zy−1 − 1) =

(xy − z2, z − y) = (x − z, z − y). In other characteristics, we get five associated primes

(xy − z2, z − αy) = (x − α2y, z − αy) as α varies over the roots of 1. All of these prime

ideals are also the primary components of I .

Proposition 2.4 Let I be an ideal in R such that IS is binomial. Then IS ∩R is binomial.

Proof. Let Q be a binomial ideal in R such that QS = IS. Then IS ∩ R = QS ∩ R = Q :

(X1 · · ·Xn)
∞ is binomial by commutative algebra fact (10).

3 Associated primes of binomial ideals are binomial

Theorem 3.1 Let I be a binomial ideal. Then all associated primes of I are binomial

ideals. (Recall that k is algebraically closed.)

Proof. By factorization in polynomial rings in one variable, the theorem holds if n ≤ 1. So

we may assume that n ≥ 2. The theorem is clearly true if I is a maximal ideal. Now let I

be arbitrary.

Let j ∈ {1, . . . , n}. Note that I + (xj) = Ij + (xj) for some binomial ideal Ij in

k[X1, . . . , Xn−1]. By induction on n, all prime ideals in Ass(k[X1, . . . , Xn−1]/Ij) are bi-

nomial. But Ass(R/(I + (xj))) = {P + (xj) : P ∈ Ass(k[X1, . . . , Xn−1]/Ij)}, so that all

prime ideals in Ass(R/(I + (xj))) are binomial. By Proposition 1.2, I : xj is binomial. If

xj is a zerodivisor modulo I , then I : xj is strictly larger than I , so that by Noetherian

induction, Ass(R/(I : xj)) contains only binomial ideals. By commutative algebra facts

(7) and (8), Ass(R/I) ⊆ Ass(R/(I +(xj)))∪Ass(R/(I : xj)), whence all associated primes

of I are binomial as long as some variable is a zerodivisor modulo I .

Now assume that all variables are non-zerodivisors modulo I . Let P ∈ Ass(R/I).

Since x1 · · ·xn is a non-zerodivisor modulo I , it follows that Px1···xn
∈ Ass((R/I)x1···xn

)

= Ass(S/IS). By Theorem 2.2, Px1···xn
= PS is binomial. By Proposition 2.4, P is

binomial.

Example 3.2 We first demonstrate this on a monomial ideal. Let I = (y3z, z2, x). Note

that I : y3 = I : y∞ = (z, x) is a prime ideal, and that I + (y3) = (y3, z2, x) is primary.

Thus by commutative algebra fact (11),

I = (z, x) ∩ (y3, z2, x)
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is a primary decomposition, and it is an irredundant primary decomposition. Thus clearly

Ass(R/I) = {(x, z), (x, y, z)}. To get at the same thing via the methods in the proof of the

theorem in this section, Observe that I : z = (y3, z, x) is primary with the only associated

prime (x, y, z), and that I + (z) = (z, x) is prime.

Comment: we were lucky that the method from the theorem produced exactly the set

of associated primes and not a possibly larger list. In general, there is no such luck, and it

is illustrated in the next example:

Example 3.3 (Continuation of Example 2.1, Example 2.3.) Let I = (x3y−y3z, xy−z2) in

k[x, y, z]. We have already determined all associated prime ideals of I that do not contain

any variables. So it suffices to find the associated primes of I + (xm), I + (ym) and of

I + (zm), for some large m. But any prime ideal that contains I and x also contains

z, so at least we have that (x, z) is minimal over I and thus associated to I . Similarly,

(y, z) is minimal over I and thus associated to I . Also, any prime ideal that contains I

and z contains in addition either x or y, so that at least we have determined Min(R/I).

Any embedded prime ideal would have to contain of the the already determined primes.

Since I is homogeneous, all associated primes are homogeneous, and in particular, the only

embedded prime could be (x, y, z). It turns out that this prime ideal is not associated

even if it came up in our construction, but we won’t get to this until we have a primary

decomposition.

4 Primary decomposition of binomial ideals

The main goal of this section is to prove that every binomial ideal has a binomial

primary decomposition, if the underlying field is algebraically closed. See Theorem 4.4.

We first need a lemma and more terms.

Definition 4.1 An ideal I in a polynomial ring k[X1, . . . , Xn] is cellular if for all i =

1, . . . , n, Xi is either a non-zerodivisor or nilpotent modulo I .

All primary monomial and binomial ideals are primary, as will be clear from construc-

tions below.

Definition 4.2 For any binomial g = Xa − cXb and for any non-negative integer d, define

g[d] = Xda − cdXdb.

The following is a crucial lemma:

Lemma 4.3 Let I be a binomial ideal, let g = Xa − cXb be a non-monomial binomial

in R such that Xa and Xb are non-zerodivisors modulo I . Then there exists a monomial

ideal I0 such that for all large d, I : g[d!] = I : (g[d!])2 = I + I0.
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Proof. For all integers d and e, g[d] is a factor of g[de], so that I : g[d] ⊆ I : g[de]. Thus

there exists d such that for all e ≥ d, I : g[d!] = I : g[e!].

Let f ∈ I : g[d!]. Write f = f1 + f2 + · · · + fs for some terms (coefficient times

monomial) f1 > f2 > · · · > fs. Without loss of generality Xa > Xb. We have that

f1X
a + f2X

a + · · ·+ fsX
a + f1X

b + f2X
b + · · ·+ fsX

b ∈ I.

In the Gröbner basis sense, each fiX
a, fiX

b reduces to some unique term (coefficient times

monomial) modulo I . Since Xa and is a non-zerodivisor modulo I , fiX
a and fjX

a cannot

reduce to a scalar multiple of the same monomial, and similarly fiX
b and fjX

b cannot

reduce to a scalar multiple of the same monomial. Thus for each j = 1, . . . , s there exists

π(j) ∈ {1, . . . , s} such that fjx
d!a − cd!fπ(j)x

d!b ∈ I . The function π : {1, . . . , s} →
{1, . . . , s} is injective. By easy induction, for all i, fj(x

d!a)i − cd!ifπi(j)(x
d!b)i ∈ I . By

elementary group theory, πs!(j) = j, so that for all j, fjg
[d!][s!] ∈ I . Then fjg

[((d!)(s!))!] ∈ I ,

and by the choice of d, fjg
[d!] ∈ I . Thus I : g[d!] contains monomials f1, . . . , fs. Thus set

I0 to be the monomial ideal generated by all the monomials appearing in the generators of

I : g[d!].

Let f ∈ I : (g[d!])2. We wish to prove that f ∈ I : g[d!]. By possibly enlarging I0 we may

assume that I0 contains all monomials in I : g[d!] = I+I0. This in particular means that any

Gröbner basis G of I : g[d!] consists of monomials in I0 and binomial non-monomials in I .

Write f = f1+f2+· · ·+fs for some terms f1 > f2 > · · · > fs. As in the previous paragraph,

for each j, either fjx
d!a ∈ I0 or else fjx

d!a − cd!fπ(j)x
d!b ∈ I . If fjx

d!a ∈ I0 ⊆ I : g[d],

then by the non-zerodivisor assumption, fj ∈ I : g[d], which contradicts the assumption.

So necessarily we get the injective function π : {1, . . . , s} → {1, . . . , s}. As in the previous

paragraph we then get that each fj ∈ I : g[d].

Without loss of generality assume that no fi is in I : g[d!]. Note that fg[d!] ∈ I : g[d!].

Consider the case that fjx
d!a ∈ I0 and get a contradiction. Now repeat the π argument as

in a previous part to make the conclusion.

Theorem 4.4 If k is algebraically closed, then any binomial ideal has a binomial primary

decomposition.

Proof. Let I be a binomial ideal. For each variable Xj by commutative algebra fact (11)

there exists l such that I = (I : X l
j) ∩ (I + (Xj)

l), so it suffices to find the primary

decompositions of the two ideals I : X l
j and I + (Xj)

l. These two ideals are binomial, the

former by Proposition 1.2. By repeating this for another Xi on the two ideals, and then

repeat for Xk on the four new ideals, et cetera, with even some j repeated, we may assume

that each of the intersectands is cellular. It suffices to prove that each cellular binomial

ideal has a binomial primary decomposition.

So let I be cellular and binomial. By possibly reindexing, we may assume that

X1, . . . , Xd are non-zerodivisors modulo I , and Xd+1, . . . , Xn are nilpotent modulo I . Let

P ∈ Ass(R/I). By Theorem 3.1, P is a binomial prime ideal. Since I is contained in P ,
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P must contain Xd+1, . . . , Xn, and since the other variables are non-zerodivisors modulo

I , these are the only variables in P . Thus P = P0 + (Xd+1, . . . , Xn), where P0 is a bi-

nomial prime ideal whose generators are binomials in k[X1, . . . , Xd], and X1, . . . , Xd are

non-zerodivisors modulo I .

So far we have I “cellular with respect to variables”. (For example, we could have

I = (X3(X
2
1 − X2

2 ), X
2
3) and P = (X1 − X2, X3).) Now we will make it more “cellular

with respect to binomials in the subring”. Namely, let g be a non-zero binomial in P0.

(In the parenthetical example, we could have g = X1 −X2.) By Lemma 4.3, there exists

d ∈ N such that I : g[d] = I : (g[d])2 = I + (monomial ideal). This in particular implies

that P is not associated to I : g[d], and by commutative algebra fact (11), P is associated

to I + (g[d]). Furthermore, the P -primary component of I is the P -primary component

of the binomial ideal I + (g[d]). We replace the old I by the binomial ideal I + (g[d]).

We repeat this to each g a binomial generator of P0, so that we may assume that P is

minimal over I . (In the parenthetical example above, we would now have with d = 6

that I = (X6
1 −X6

2 , X3(X
2
1 −X2

2 ), X
2
3 ).) Now Xd+1, . . . , Xn are still nilpotent modulo I .

The P -primary component of I is the same as the P -primary component of binomial ideal

I : (X1 · · ·Xd)
∞, so by replacing I with I : (X1 · · ·Xd)

∞ we may assume that I is still

cellular.

If Ass(R/I) = {P}, then I is P -primary, and we are done. So we may assume that

there exists an associated prime ideal Q of I different from P . Since P is minimal over I

and different from Q, necessarily there exists an irreducible binomial g = Xa−cXb ∈ Q\P .

Necessarily g 6∈ (Xd+1, . . . , Xn)R. Thus Lemma 4.3 applies, so there exists d ∈ N such that

I : g[d] = I : (g[d])2 = I+ (monomial ideal). Note that Q is not associated to this ideal but

Q is associated to I , so that the binomial ideal I : g[d] is strictly larger than I . If g[d] 6∈ P ,

then the P -primary component of I equals the P -primary component of I : g[d], and so by

Noetherian induction (if we have proved it for all larger ideals, we can then prove it for one

of the smaller ideals) we have that the P -primary component of I is binomial. So without

loss of generality we may assume that g[d] ∈ P . Then g[d] contains a factor in P of the

form g0 = Xa − c′Xb for some c′ ∈ k. If the characteristic of R is p, gp
m

0 is a binomial for

all m, we choose the largest m such that pm divides d, and set h = g[d]/g0, b = gp
m

0 . In

characteristic 0, we set h = g[d]/g0 and b = g0. In either case, b is a binomial, b ∈ I : h and

h 6∈ P . Thus the P -primary component of I is the same as the P -primary component of

I : h, and in particular, since I ⊆ I + (b) ⊆ I : h, it follows that the P -primary component

of I is the same as the P -primary component of the binomial ideal I + (b). If b ∈ Q, then

g0 = Xa − c′Xb and g = Xa − cXb are both in Q. Necessarily c 6= c′, so that Xa, Xb ∈ Q,

and since g 6∈ (Xd+1, . . . , Xn)R, it follows that Q contains one of the variables X1, . . . , Xd.

But these variables are non-zerodivisor modulo I , so that Q cannot be associated to I ,

which proves that b 6∈ Q. But then I is strictly contained in I + (b), and by Noetherian

induction, the P -primary component is binomial.
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5 The radical of a binomial ideal is binomial

Theorem 5.1 If the underlying field is algebraically closed, then the radical of any binomial

ideal in a polynomial ring is binomial.

Proof. This is clear if n = 0. So assume that n > 0. By commutative algebra fact (13),

√
I =

√

I + (X1) ∩ · · · ∩
√

I + (Xn) ∩
√

I : (X1 · · ·Xn)∞.

Let I0 =
√

I : (X1 · · ·Xn)∞. We have established in Theorem 2.2 that
√
I0S =

√
IS is

binomial in S. By Proposition 2.4,
√
I0 is binomial.

Note that I + (X1) = I ∩ k[X2, . . . , Xn] + (X1) + (monomial ideal). By commutative

algebra fact (5), I1 = I∩k[X2, . . . , Xn] is binomial, and so by induction on n, the radical of

I1 is binomial. This radical is contained in
√
I, and by possibly adding the binomial genera-

tors of
√
I1 to I , we may assume that

√
I1 ⊆ I , and subsequently that

√
I1 = I1. A minimal

prime ideal P over I1 + (X1) + (monomial ideal) is of the form I1 + (X1, Xj1 , . . . , Xjs) for

some j1, . . . , js. Then by Proposition 1.3,
√

I1 + (X1) + (monomial ideal) equals I1 + J1
for some monomial ideal J1. But this is precisely the radical of I + (X1). Similarly,
√

I + (Xj) = I + Jj for some monomial ideals J1, . . . , Jl. By Proposition 1.3,
√
I =

(I + J)∩ I0 for some monomial ideal J . But I ⊆ I0, so that
√
I = I + J ∩ I0, and this is a

binomial ideal by Proposition 1.1.
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