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Abstract

We study ideals whose primary decomposition specifies the relevant structural zeros of certain
conditional independence models. The ideals we study generalize the class of ideals consid-
ered by Fink [5] in a way distinct from the generalizations of Herzog-Hibi-Hreinsdottir-Kahle-
Rauh [11] and Ay-Rauh [1]. We introduce switchable sets to give a combinatorial description
of the minimal prime ideals, and for some classes we describe the minimal components. We
discuss possible interpretations of the ideals we study, including as 2 x 2 minors of generic
hypermatrices. We also introduce a definition of diagonal monomial orders on generic hy-
permatrices to compute some Grobner bases.
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1. Introduction

Let X1,..., X, be n discrete random variables with r; states each. A model is a set of
joint probability distributions that satisfy some set of rules, and there are many options for
these rules. Let A, B, C be disjoint subsets of {1,...,n} and let X4 denote the random
variable {X;,,..., X;, | i; € A,1 < j < k}. We are interested in models specified by a set
of conditional independence statements of the form X4 1L Xp | X denoting that the state
of the random variable X 4 is independent of the state of the random variable X g given any
state of the random variable Xs. Such models arise in a wide variety of statistical contexts
and there is a large literature discussing these models. Some references that are closely
related to the work in this paper are [1, 11], which include some discussion of robustness
theory, and [3, 6, 14], which discuss the connection to graphical models.

One reason conditional independence models are interesting from the perspective of com-
mutative algebra arises from examining the intersection aziom [3, Proposition 3.1.3] which
states that if all the probabilities in a joint distribution are positive then the pair of state-
ments X4 1L Xp | Xeup and X4 AL X¢ | Xpup together imply that X4 A {Xp, Xc} | Xp.
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This axiom raises the question of what happens when there are structural zeros, that is what
happens when a distribution is not strictly positive? Such zeros certainly happen in practice
as there may be variables involved in a study for which some of the combinations of those
variables are impossible. This problem can be looked at from the algebraic side as follows.
Corresponding to the model there is a conditional independence ideal; see [3, 6, 11] for a gen-
eral description, and see Remark 2.2 below for the algebraic formulation of the conditional
independence ideals of this paper. The primary decomposition of these ideals identifies the
strucutral zeros of concern in the context of the intersection axiom, including a component
corresponding to the strictly positive distribution.

One component of the primary decomposition of conditional independence ideals is well
understood, especially when the ideal is binomial, which is the case for the ideals we study.
This component is an easy consequence of the Hammersley-Clifford Theorem [14], or Eisen-
bud and Sturmfels” work [4, Corollary 2.5], and is stated explicitly in Hogten and Shapiro’s
work [12, Theorem 2.1] and is “the graphical model” in Lauritzen [14]. One reason Lau-
ritzen [14] refers to it as “the graphical model” is that it encodes the original conditional
independence statements and any consequences of the intersection axiom, and is the only
component of concern when the distribution is strictly positive. We summarize several ways
of thinking about this ideal, particularly in our context, (via tensors, lattices, and hyperma-
trices) in Section 2 to set up a more in-depth discussion of its relationship to the ideals we
study and we use this discussion in our arguments.

Our main result, Theorem 4.13, is a complete combinatorial description of the minimal
prime ideals of the conditional independence ideal I} corresponding to the model

(X, L X; | Xp:Vi<ti<jand T={1,... n}\{ij}}, (1)

where X, ..., X,, have an arbitrary but finite number of states, and t is any positive integer
at most n. This model is the model given by the set of pairwise Markov conditions (see [14,
page 32|) on the graph with no edges on the first ¢ vertices and a complete graph on the
remaining n — t vertices. We use I® to denote the primary component of I which is the
“graphical model” discussed above.

Computing the full primary decomposition of such ideals is computationally hard, even
for small examples and with the use of the package Binomial.m2 [13] for binomial ideals.
One of the first such computations was done by Garcia, Stillman, and Sturmfels in [6]: they
computed the primary decomposition for a class of models arising from directed acyclic
graphs. Fink [5] gave a combinatorial description of the primary decomposition of the model
{X7 1L X5 | X5, X; 1L X3 | Xy}, for any number of states. The description was conjectured
by Cartwright and Engstrom [3, Page 146] at the workshop at Oberwolfach [3] run by Drton,
Sturmfels and Sullivant.

The model we study is given in (1) and in that context Fink’s [5] work covers the case
n =3 and ¢t = 1. Recent work by Ohtani [15] and by Herzog et al. [11] on binomial edge ideals
intersects our class of ideals when ¢ = 1 and X is binary. Ay and Rauh [1] generalized [11]
to allow the number of states of X; to be arbitrary and thus their ideals intersect our class
of ideals when t = 1.



Our main result, Theorem 4.13, is the description of the prime ideals minimal over I
We use a new combinatorial structure, t-switchable set, and a corresponding equivalence
relation; these are defined in Section 3. We expect that these structures might be helpful in
other contexts as well. We use a connection with Segre embeddings and the structure of ¢-
switchable sets to prove in Theorem 4.4 that I é” (see Definition 4.1) are prime ideals, thereby
generalizing the fact that I are prime ideals. By [4], a generating set of a minimal prime
ideal of a binomial ideal consists of a set of variables and a set of binomials in the remaining
variables. The content of this work is in giving an effective combinatorial description of
the sets of variables and of the binomials, and we do so by using {-switchable sets and
the associated equivalence relations: It is precisely such [ f;”, for restricted S, that are the
binomial portion of the prime ideals minimal over I, and the variable portion is (z, : a & S)
(proof is in Theorem 4.13).

Further, we prove in Theorem 5.5 that the minimal components of 1 are prime ideals,
while the work of Ay and Rauh [1] establishes that IV is radical and therefore all the primary
components are minimal and prime. We give examples in Section 7 showing that ideals I
can have embedded primes for n > 3 and ¢t > 1. Thus the ideals [ &) are not radical in
general and therefore are not the same as the ideals in Herzog et al. [11], Ohtani [15], or Ay
and Rauh [1]. Example 2.4 shows that the ideals I are not lattice basis ideals.

Finally, we introduce a notion of diagonal monomial orders for generic hypermatrices
and we use these orders to give Grobner bases for Ig I in Section 6. This generalizes the
well-known work of Caniglia, Guccione, and Gucmone [2] for generic matrices and the work
of Ha [10, Theorem 1.14] for I in the reverse lexicographic monomial order.

2. Definitions and connections with tensors and Segre embeddings

After setting up the notation, we give an algebraic definition for the conditional inde—
pendence ideal IV from the introduction. One of the prime ideals minimal over I has
many fruitful interpretations and in Discussion 2.3 we present these interpretations. In
Example 2.4 we show that I® are not lattice basis ideals.

Throughout we fix positive integers n and r4,...,r,, the index set N = [r{] X - -+ X [r,],
and the polynomial ring R over a field in variables x, as a varies over N. Let M be the
r1 X -+ X r, hypermatrix whose ath entry is xz,. In this context, this paper is about the

structure of certain determinantal ideals of this generic hypermatrix M.
Let L C [n]. For a,b € N define the switch function s(L, a, b) that switches the L-entries
of b into a: s(L,a,b) is an element of N whose ith component is

o a;, otherwise.

If L = {j}, we simply write s(L,a,b) = s(j,a,b). For any two indices a and b in N we
define the distance between them to be d(a,b) = #{i : a; # b;}. This distance is the usual
Hamming distance in coding theory. Note that d(a,b) = d(s(L,a,b),s(L,b,a)). For any
L C[n] and i € [n] we define:

fL,a,b = TaqTp — Ts(L,a,b)Ts(L,b,a)s
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fi,a,b = TgqTp — Ts(i,a,b) Ts(i,b,a)-

We call the f; ., the 2 x 2 minors of the hypermatrix M. When d(a,b) = 2 and a; # b;, we
call f; ., a slice minor of M. By a slice submatrix of M we refer to any submatrix of M
consisting of all entries M;, ;. with all but two of the indices identical. Thus a slice minor
of M is simply a 2 x 2 minor of a slice submatrix of M. This notation provides flexibility
over flattenings for discussing certain subsets of the minors of a hypermatrix such as the
slice minors. We also think of f; ., as a minor of a flattening of the hypermatrix, using the
ith component to index the rows. More generally, f1 .5 is a minor of a flattening of the
hypermatrix, where the rows are indexed by the components in L (see also Discussion 2.3).

Definition 2.1. For any t € [n], let

I = (fiap: a,b € N,d(a,b) = 2,i € [1]),

I = (fian:a,b € N,i € [t]).

Note that the generators of I (resp. I ) are those slice (resp. all) minors of M for which
one of the two components that varies is in [t]. Alternatively, the generators of I (resp. I¥))
are the slice (resp. all) minors of the generic r1 X ro X <+ X 1y X (rypq -+ -1,) hypermatriz.

Remark 2.2. By standard construction of conditional independence ideals, I® corresponds
to the conditional independence model given in (1) (see [3, Proposition 3.1.4]).

Discussion 2.3. Now we connect the ideal I ) generated by the 2 x 2 minors of M in which
one of the entries being switched is at most ¢, to other ideals in the literature to facilitate
later arguments. The following describe the same ideal:

(1) The ideal cutting out the rank-one tensors in the flattenings of V; ® - - - ® V}, of the form
Vi ® (®;4V;) as i varies over [t].

(2) The defining ideal for the Segre embedding of P(V}) x - - - X P(V}) xP(V, 1 ®---®V,,) —
PVi®: @ V).

(3) The ideal generated by all the 2 x 2 minors of the generic 71 X 79 X « -+ X1y X (1421 - Ty)
hypermatrix.

(4) The lattice ideal, where the lattice is the kernel of the matrix which computes two sets
of marginals. The first set of marginals are the 1-marginals for each i € [t] so that for
each possible ith state we marginalize over the remaining variables. The second set are
the marginals for each possible state of the remaining n — ¢ variables.

The fact that these all define the same ideal is scattered through the literature, but most
of the key ideas are in [7]. For example, the connection between (2) and (4) follows from [7]
since the model is given as distributions in the image of a monomial parameterization given
by the marginals matrix, and that monomial parameterization is exactly the Segre map.
One argument that (2) is equivalent to (3) is in Ha [10]. Finally, it is well known that a
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matrix (hypermatrix) has rank one if and only if its 2 X 2 minors vanish and that such
matrices (hypermatrices) represent rank-one tensors in the corresponding tensor product
of vector spaces which shows that (1) is equivalent to (3). The statement of (4) uses the
language of marginals and as such suggests that the underlying field is R which is the case
in [7]. However, lattice ideals and the corresponding monomial map are not field-dependent.
Similarly [10] assumes the underlying field is of characteristic zero, but the fact that (3) is a
prime ideal and corresponds to (2) does not depend on the underlying field.
The many interpretations of I® have several useful consequences:

(1) I is prime say by [10] (and we generalize this fact in Lemma 4.3);

(2) I . x> = [ where x is the product of the ring variables (by the Hammersley-Clifford
Theorem [14], [4], or [12]);

(3) therefore I is a minimal prime component of I}, and

(4) I®) is the unique smallest binomial prime ideal containing ) and no variables.

Since I® C I and I® is a lattice ideal for a saturated lattice, it is natural to ask if 7%
is a lattice basis ideal (as defined in [12]) for some basis for the same lattice. The following
example illustrates that this is not the case, and that the lattice basis ideal is properly
contained in 1.

Example 2.4. For a simple illustration of how I and I relate to lattice ideals, consider
the example of three random variables, each with two states, and t = 3. The 2 x 2 x 2
hypermatrix has 6 faces and the determinants of these faces give six minimal generators
of I, There are six non-slice minors which we add in to generate I’ (only three of these
are needed to get a minimal generating set). Finally, the lattice basis ideal is minimally
generated by four binomials, which correspond to four of the six faces (depending on which
basis one chooses) and is strictly contained in 1.

Therefore the primary decomposition of I does not follow from [12]. By [4], describing
the minimal prime ideals of I® consists of establishing sets of variables and binomials. We
use t-switchable sets S and ideals [ ét> for this purpose (defined in Section 3). In Section 6
we place these ideals in the wider theory and prove that they are prime ideals.

3. Switchable sets and connectedness

In this section we set up the combinatorial structures used in the main results. We
indicate in Remark 4.17 how these structures relate to those used by Fink [5].

Definition 3.1. Let t € [n]. A subset S of N is switchable in the first t components
(t-switchable for short) if for all a,b € S with d(a,b) =2, if i € [t], then s(i,a,b) € S.



Certainly the empty set and the full set N are t-switchable sets. Note that the notion of
(n — 1)-switchable is identical to the notion of n-switchable. Also, t-switchable is equivalent
to the following condition: For any a,b € N and any distinct ¢ € [t] and j € [n], then
a,s({i,j},a,b) € S if and only if s(7,a,b),s(j,a,b) € S.

Lemma 3.2. Let S be a t-switchable subset of N, let a € S, and let b € N. Let L C [t] be
such that for alll € L, s(l,a,b) € S. Then s(L,a,b) € S.

Proof. We prove this by induction on |L|. If |L| < 1, this is the assumption. If |L| > 2, let
i,7 be distinct elements in L. By induction, s(L/,a,b) € S for all L' C L with |L'| < |L]|.
In particular, if 7,j € L and Ly = L\ {i,7}, then ¢ = s(Lg,a,b), d = s(Ly U {i},a,b),
e=s(LyU{j},a,b) € S. Also, s(i,c,b) = d and s(j,c,b) = e are in S, and therefore, since
S is t-switchable, s(L,a,b) =s({i,j},c,b) € S. O

Definition 3.3. Let S be a subset of N. We say that a,b € S are connected in S if there
exist ag = a,ay, g, ..., a1, = b € S such that for all j = 1,...,k, aj_1 and a; differ
only in one component. We refer to ay,...,a; loosely as a path from a to b, and we refer
to ay,...,ax_1 as an intermediate subpath from a to b. Clearly any elements on the path
from a to b are mutually connected. Also, connectedness is naturally an equivalence relation
on S, and we refer to the equivalence classes as connected components of S.

The following is immediate from the definition:

Lemma 3.4. Let S be a t-switchable subset of N. Let a,b € S. If d(a,b) < 1, then a and
b are connected. If d(a,b) =2 and a; # b; for some i € [t], then a, b, s(i,a,b), s(i,b,a) are
pairwise connected in S, and both s(i,a,b) and s(i,b,a) form an intermediate subpath from
a tob. ]

Lemma 3.5. Suppose that a and b are connected in a t-switchable set S. Let ag = a, aq, as,
o ag_1,a = b be a path froma tob. Let L C [t] andi,j € {0,...,k}. Thens(L,a;,a;) € S
and 1s connected to a in S.

Proof. First suppose that L = {l}. If |[j —¢| < 2, then s(l, a;,a;) is either a; € S or it is
in S by Lemma 3.4. So we may assume that |j — i| > 3. Without loss of generality, assume
i < j. By induction on |j — i| we have that s(l,a;+1,a;) € S. Then a;, a;11,5(l, ait1, a; )
is a path in S, and therefore by induction, s(l, a;,a;) = s(l,a;,s(l,a;11,a;)) € S. Hence
by Lemma 3.2, s(L,a;,a;) € S for all L C [t]. Furthermore, if L = {l;,...,l;}, then
a;,s({li}, a;,a;),s({l1, 2}, @i, aj), ... ,s({li,la, ..., i}, a;, ;) is a path in S, so that s(L, a;, a;)
is connected to a; and hence to a. O

In the definition of connectedness, the sets of indices where the consecutive a; differ may
not all be distinct. Furthermore, if L ¢ [t], then s(L, a;, a;) need not be connected to a, as
we show by the next example.



Example 3.6. Set

S ={1,2} x {1} x {1} x {1,2}
U{L,2} x {1} x {1,2} x {2}
U{1,2} x{1,2} x {2} x {2,3}
U{1,2} x {2} x {2,3} x {2,3}.

Note that S is 1-switchable and consisting of a single connected component. The elements
(1,1,1,1) and (2,2, 3, 3) are connected in S, but there is no path between them of length 4.
Also, s(2,(1,1,1,1),(2,2,3,3)) ¢ S. (See the comment after Proposition 5.1 for another
point of view.)

4. Prime ideals minimal over I{

This section has two main goals. One is to prove (in Theorem 4.4) that I ét> (see Defini-
tion 4.1) are prime ideals. The second is to prove that for any n and any t € [n], the prime
ideals minimal over I are of the form Pét> as S varies over maximal t-switchable subsets
of N (see Definition 4.5). At the end of the section we look at I‘" more closely, especially
when n = 3. We examine the minimal components of I when t = n in Section 5.

The following definition gives the notation for the variable and pure binomial parts of
the minimal prime ideals for 7.

Definition 4.1. Let S be t-switchable. Define
flvéw = (fiap | © € [t],a,b connected in S), Vargf> =(x,:a&S), and Péft> = Vaurgf> + fét>.
Proposition 4.2. If S is t-switchable, then Péft> contains 1)

Proof. We need to prove that f; ., € P§t> for any a,b € N differing exactly in components ¢ €
[t] and j € [n] \ {¢}. First suppose that a ¢ S. Note that s(i, a,b) and s(i, b, a) differ exactly
in components 7 and j, so that S being t-switchable implies either s(i, a, b) or s(i, b, a) is not
in . Thus either x4 4p) OF Ts(;pq) 15 in PS<t>, so that fi., € PS<t>. Thus we may assume that
a € S, and similarly that b € S. But then by Lemma 3.4, a and b are connected in .S, so

that f;, € P 0

E<e>mma 4.3. Let 1 <t <n. IfS is a connected component in some t-switchable set, then
J— t

&' s a prime ideal.

Proof. Since S is a connected component in some t-switchable set, for any a,b € S and any
i <t s(i,a,b) and s(i,b,a) are in S. Therefore if we fix i < ¢, the set {z, | a € S} naturally
form a matrix M; with rows indexed by the ith components and columns indexed by the
remaining n — 1 components. Furthermore, each generator f;,; of I g> is a 2 X 2 minor
in M;, and fg> is generated by all the 2 x 2 minors of the matrices My, ..., M;. For each
1 =1,...,t, let s; be the number of rows of M;, and let s;;; be the number of tuples that



occur as the last n — t entries in elements in S. Let V; be a vector space of dimension s;
for 1 <i <t+ 1. Then the 2 x 2 minors of M; naturally cut out the rank-1 tensors in the
flattenings V; ® (®,;V;) of the tensor V; ® --- ® V; ® V1. Hence by Discussion 2.3, the

ideal I §t> is a prime ideal. O
Theorem 4.4. If S is a t-switchable set, then the ideals fét> and P§t> are prime.

Proof. Partition S = S;U---U S, mto its connected components Therefore, the S; are
pairwise disjoint. Then I =" I . By Lemma 4.3, each I is a prime ideal. Let

R be the polynomial ring in the same Varlables as R but over the algebralc closure of the
underlying field. Lemma 4.3 shows that each I 'Ris a prime ideal as well. It is well known
that in the polynomial ring over an algebralcally closed field, if the generators of two prime
ideals are polynomlals in dlSJOlIlt sets of variables, then the sum of the two prime ideals is
also prime. Thus I 'R and P 'R are prime ideals. But the generators of these two prime

ideals are in R, so smce Ris a falthfully flat extension of R, s ¢ and Ps are contractions of
the prime ideals I 'R and P 'R respectively, and hence are prime themselves. O

Having established that Pst is prime, we set up those t-switchable sets that correspond
to minimal prime ideals for 7

Definition 4.5. Let S be t-switchable. We say that S 8 rnax1mal t-switchable if for all
t-switchable subsets T' of N properly containing S, PS and PT are incomparable.

Remark 4.6. For brevity we state a few facts but omit the straightforward proofs. A
maximal t-switchable set S is not empty. For all a € N\ S, SU {a} is not t-switchable. For
every i € {1,...,n} and every u € [r;] there exists b € S such that b; = u.

Proposition 4.7. Let S be a maximal t-switchable set in which all elements of S are pairwise
connected. Then S = N.

Proof. Certainly S C N, and both S and N are t-switchable. We first prove that PJ@ C Péf)

Let fiap € PJ@, with ¢ < t. If a,b € S, then using that S is t-switchable and that all of

its elements are connected, f;q., € PS<t>. So we may assume that either a € S or b &€ S

and similarly that either s(i,a,b) & S or s(i,b,a) ¢ S. Hence f;.p € Valrg> C Pét>. Thus
PJ@ C Pét>, and by maximality of S, S = . O

Example 4.8. The 1-switchable set given in Example 3.6 is not maximal as it is a single
connected component, but is not all of V.

Lemma 4.9. For ag,a;,¢c € N and i € |n),

:I:al .f’i7(10,c - xc-fiva()?al = zs(i,ao,al)f’i7S(i,a1,a0)7C - xs(i,c,ao)fi,al,S(LaO,C)'

In particular, if ag and ay differ at most in the ith component and one extra component, then
Laq fi,a(),c - xs(i,ao,al)fi,s(i,al,ag),c - _xs(i,c,ao)fi,al,s(i,ao,c) S (fi,a,b - a, b S N7 d(a'> b) = 2)
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More generally, let ap,aq,...,ax,c € N, and assume that for all j = 1,...,k, aj—1 and a;
differ at most in components l; and i. Then

LayLag ** " Lay fiva()vc — Ts(i,a0,a1)Ts(i,a1,a2) " "L’S(i,akﬂ,ak)fivs(iﬂk,ao),c

is in Zle(fm,b ra,b € N,d(a,b) = 2,a;; # by;). In particular, if ar and c differ at most in
components i and ly, then

k
La;Lagy * 'xakfi,ao,c € Z(fi,a,b - a, be Nv d(CL, b) = 27 alj % blj>-

J=0

Proof. The first statement is straightforward rewriting:

Ly fi,ao,c_xcfi,ao,al - xs(i,ao,al)fi,s(i,al,ao),c
= —Tay Ts(i,a9,c¢)Ts(i,c,a0) + Ts(i,a0,a1)Ts(i,a1,a0)Le
— Ts(i,a0,a1)Lels(i,ar,a0) + Ts(i,a0,a1)Us(i,c¢,5(i,a1,a0)) Ls(i,5(5,a1,a0),¢)
= Ts(i,a0,a1)Ts(i,¢,5(i,a1,a0)) Us(i,5(i,a1,a0),¢) — LayLs(i,ag,c)Ls(i,c,a0)
= Ts(4,a0,a1)Ts(i,c,a0) Ts(i,a1,c) — LasLs(i,ap,c)Us(i,c,a0)

= (xs(i,ao,al)xs(i,al,C) - xalxs(i7a07c)>xs(ivcva0)

= Ts(4,c,a0) ( - .fi,al ,S(i,a0,c) ) .

If d(ap,a1) <2, then fi 490 € (fiap :a,b € N,d(a,b) =2) and a; and s(i, ag, ¢) still differ
at most in the two components 7 and [, so that f;q, sta0b) € (fiap @ @, b € N,d(a,b) = 2).

We prove the next display by induction. There is nothing to do if £ = 0, and the previous
part is the base case k = 1. Now suppose that £ > 1. Then

TayTay * * * Tay, fisao,c — Ls(i,a0,a1)Ts(i,a1,a2) xs(i,akq,ak)fivs(i,akvao),c
= Lay, (Tay Tay - Tay_y fiao.e — Ls(i,a0,a1) " 'xs(ivakf%akfl)fivs(ivakflva0)75>
+ Ts(i,a0,a1) " xs(iﬂkfzﬂkfl)(l’ak fi,s(iﬂkfl,ao),c - xs(i,flkﬂ7ak)fi75(i,ak,ao),c)'
By induction on k the two parenthesized binomials are in 37 (fiap : @,b € N,d(a,b) =

2,ay, # by;), which finishes the proof for k. The last expression follows from the fact that
d(s(i, ag, ap), c) = d(ag, c) = 2. O

Remark 4.10. Let S be a t-switchable set and xg =[], g 4. Define
]g> = (fiap | © € [t],a,b connected in S, d(a, b) = 2).

Discussion 2.3 and Lemma 4.3 imply that I g> =1 g> : x2°. (This was previously known
only for S = N.) Thus the unique smallest binomial prime ideal that contains [ g> and that
contains no monomials equals [ g>. For results that follow we need the stronger fact that 1 -

1 g> : Xxg. This follows easily from Lemma 4.9. If f; ., € I g>, then a,b € S are t-connected
and i € [t]. By the definition of connectedness, there exist elements a = ag, ay,...,a, € S
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such that for all j = 1,...,k, a;_; and q; differ only in one position, and d(ay,b) = 2. By
possibly modifying the ith components and the a;, we may assume that a, and b differ in
the ith component and aq,...,a; are distinct. By Lemma 4.9, %1' “Tqy fiap € I® and

Tgy "+ Tay §ZPS , since aJESfor1<]<k: Thereforexsf,abel for all fmbel<>

Lemma 4.11. If P is a prime ideal minimal over I}, then P = P for some maximal
t-switchable set S.

Proof. We first note that 10 N , and this is a prime ideal by Theorem 4.4.

Now let P be an arbltrary prime ideal minimal over I, Let S be the set of all @ € N
such that z, ¢ P. We know that S is not empty, for otherwise P is the ideal generated by
all the variables, which properly contains the already established minimal prime ideal 1"

Let a,b € S have d(a,b) = 2 and a; # b; for some i € [t]. Since P contains I¥ and i € [t],
P contains f; . = TaTy — Ts(ipa)Ts(isab)- Oince a,b € S, then z,x, € P, so that necessarily
Ts(iba)Ts(iap) & P, and hence s(i,b,a),s(i,a,b) € S. This proves that S is t-switchable, and
so by Proposition 4.2, I C Pét>, and by Theorem 4.4, Pét> is a prime ideal.

We next prove that P§t> C P. By the construction of S, Valrgt> C P. Let fiap € I §t>,
with ¢ € [t] and a and b connected in S. By the definition of connectedness, there exist
elements ap = a,ay,...,a; € S such that for all j =1,...,k, a;_; and a; differ only in one
component, and d(ag,b) = 2. By Lemma 3.5, we may choose such a path so that a; and

b differ in the ith component. Then by Lemma 4.9, x4, - - %4, fiap € fét> C P, and since
Tq; & P, it follows that f; ., € P, as desired. Thus [ & C Pét> C P. Since Péf) is a prime
ideal, by minimality of P, Pét> = P.
Finally, let T" be t-switchable and properly containing S. Then Var§f> C Valrg> , so that
b z P}w. By Proposition 4.2, Pj@ contains 1, by Lemma 4.3, P}w is a prime ideal, and
this combined with the fact that P = Pét> is minimal over IV implies that Pj@ Z P§t>
Therefore Pét> and Pj@ are incomparable. Thus S is a maximal ¢-switchable set. O

Lemma 4.12. Let S be a maximal t-switchable set. Then P5<t> 1s a minimal associated prime
ideal of I

Proof. By Proposition 4.2, Péft> is a prime ideal containing 1. Let P be a prime ideal
contained in PS<t> and minimal over ). By Lemma 4.11, P = P for some maximal ¢-
switchable set 1. Since P}w - PS<t>, necessarily VarT - Vars , so that S C T. But then
comparability of P5<t> and P}w and maximality of S force S =T. O

These two lemmas prove:

Theorem 4.13. The set of prime ideals minimal over IV equals the set of ideals of the
form PS as S wvaries over the mazimal t-switchable sets. ]

Corollary 4.14. Let S be a t-switchable set (mazimal or not) such that Péw s associated
to I Then Iéw 1s contained in the PS<t> -primary component of I

10



Proof. Let f; .p € fét>. So a,b € S are connected and i € [t]. By Remark 4.10, (HCES :zc) fiap €
IY. By construction, [Legal ¢ P5<t> for any m and hence f; . is in the PS<t>—primary com-
ponent of I O

We note that Corollary 4.14 holds for binomial ideals in characteristic 0 in general by
Eisenbud-Sturmfels [4, Theorem 7.1']. Our results for the specific binomial ideals I are
independent of the characteristic.

In the rest of the section we present some atypical behavior for ¢t = 1. The next lemma
helps connect maximal 1-switchable sets to the admissible bipartite graphs in [5].

Lemma 4.15. Let 0,0 € N differ at most in the first component. Then IV =z, = IV @ .

Proof. By symmetry it suffices to prove that IV : z, C IV : x,. Since z,(IV : z,) =
I N (z,) = (IM Y + (2,(Y — 1)))R[Y] N R for a variable Y, it follows that IV : z, is
generated by binomials of the form g = z,, - - -2, — 2, - - - 23,. Note that z,g being in I
is the same as saying that there exists a sequential rewriting of 0, a4, ..., a, into 0,by,...,0b,
(after possibly reindexing by,...,b.), such that at each step, only two indices change by
switching their first components. This means that for each ¢ = 1,...,r, a; and b; differ
at most in the first component. Thinking of o as being in the Oth place on the original
list 0,aq,...,a,, and a; in the ith place, we record each step in the rewriting process as a
transposition (7, j) when we switch the first components of the ith and jth indices.

Let w be the composition of all these transpositions. We proceed by induction on the
number of transpositions in w.

If the last transposition in w does not include 0, then the composition of all but the
last transposition of w takes o,aq,...,a, to o,cq,...c, for some ¢y, ..., c,, and the remaining
transposition in w takes o, cy,...c, to 0,by,...,b,. This says that x,, - -2, — 2, - 2, €
Iz, and 2., -+ Te, — Ty, -+ 23, € 1Y : 1,, and by induction on the number of transpo-
sitions in w, @, -+ Tq, — T, - Te, € IV 2y and xy, -+ xp, — B0y -2, € TN ¢ 1. Hence
Loy Ta. — Tpy * - Tp, € 1 . z,. Thus we may assume that the last transposition in w
includes 0.

With this set-up, we now perform the transpositions in w on o, aq,...,a,. If we reduce
in this way to o', by,...,b,, we have that g € I‘" : x, as desired. Considering that w takes
0,a1,...,a, t0 0,by,...,b., if o',aq,...,a, does not become o, by,...,b,, w must take it to
0,b1,. .., bk_1,8(1, bk, 0"), bgy1, ... b, for some k € {1,...,r} where by; = 01 and k is such that
in the transpositions involving o, 0, lands in the first entry of by.

Let z be the composition of precisely those first consecutive transpositions by which
the first component o; of o arrives in its final place in the kth position. Since the last
transposition in w must involve 0, and since b, has the same first component as o, by
minimality the last transposition does not involve k. Therefore z # w. Note that z~!ow
takes 0,a4,...,a, to o,cy,...,c., whereby the first component o; of 0in 0, aq, ..., a, remains
in the Oth position in o, ¢y, ..., c,. Therefore 27! o w takes o', ay,...,a, to o', c1,..., ¢, 5O
that x4, - x4, — Ty - T, € I . z,. Furthermore, z takes o,¢q,...,¢ to 0,by,--- b,
and since z has strictly fewer steps than w, x., -+ 2. —xp, -+ a3, € Oz, by induction.
Therefore x4, - - T4, — Ty, - 13, € IV : 1, which proves that IV : z, = IV : . O
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In an earlier version of our paper we included a similar (but more complicated) proof that
Iz, = IM @z, which implies that 7™ is radical. For brevity we omit our complicated
proof because recently Ay and Rauh [1] proved, in a more straightforward way, that IV is
radical for all n via the square-free nature of the leading terms of a Grobner basis.

Lemma 4.16. Let S be a maximal 1-switchable set. Then for all a € S and all b € N,
s(1,a,b) € S. In other words, any element in N that differs from an element in S in at most
the first component is also in S.

Proof. Let a € Sand b € N. Then ¢ = s(1, a, b) differs from a in at most the first component.
By Lemma 4.15, IV : 2, = IV : .. Since a € S, it follows that z, & Péf), so that for all
positive integers m, IV : 2 = 1) : 2™ is contained in P{’. Hence 1) : 220 = [ : g% C
Pét> and therefore, x. & P§t> . Hence c € S. O

Remark 4.17. (Connection with admissible graphs in Fink [5].) Let S be a maximal 1-
switchable set. Lemma 4.16 shows that the first component is unrestricted in each connected
component of S. Let S = S;U---US; be a partition of S into connected component. We
prove in the two paragraphs below that when n = 3, S; = [r1] X Sj2 X S;3 where S;; N Si; = 0)
for all i # k and both j = 2,3. Therefore, each connected component corresponds to the
complete bipartite graph S;; x S;3, which is exactly Fink’s representation in [5].

We first argue that each connected component S; has the form [rq] x S x Si3. Let
a = (ay,a9,a3), b = (by,be,b3) € S;. It suffices to prove that s(2,b,a), s(3,b,a), s(2,a,b),
and s(3,a,b) € S;. By Lemma 4.16 it suffices to consider the case where a; = by, so that
d(a,b) < 2. If d(a,b) = 1 then each switch is either a or b, and the conclusion follows. Now
assume that d(a,b) = 2. Suppose that s(2,b,a) ¢ S. Let T = S U ([r1] x {az} x {b3}). We
prove that 7' is 1-switchable. Let e, ¢’ € T satisfy d(e,e¢’) = 2 and e; # €|. By symmetry
it suffices to prove that s(1,e,e’) € T. If e € S, then s(1,e,¢’) € S C T by Lemma 4.16,
and if e € T\ 9, then s(1,e,¢') € T by the definition of 7. Thus T is 1-switchable. Using
Lemma 4.16 it is also easy to see that P}w - Péﬁ, which contradicts the maximality of S.
This proves that s(2,b,a) € S, and since it is connected to b, it is in S;. Analogous proofs
show that s(3, a,b), s(2,a,b), s(3,b,a) are in S;. This proves that each connected component
can be written in a “block form” S; = [r1]x Sj2 x Si3. (By Example 3.6, arbitrary t-switchable
sets need not have a block form.)

Now suppose that S N Sj2 # 0 for some distinct 4,j. Let as € Sia N Sjo. Then by
Lemma 4.16 there exist a = (ay,a2,a3) € S; and b = (a1,a2,b3) € S;. However, since
d(a,b) = 1, a and b are connected, which is a contradiction since they are in distinct con-
nected components. Therefore Sip N Sjo = 0. Similarly, S;3 N .S;5 = 0.

5. Prime Components for t = n

In this section we prove that the minimal components of I are all prime ideals. Ay and
Rauh [1] prove that IV is radical, so that all the components of " are minimal and prime
ideals. In Section 7 we show by example that 7 may have embedded, and thus non-prime,
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components. We consider it an interesting question to determine if the minimal components
of I are prime for all ¢ (for examples, see Section 7).

For all ¢, by Theorem 4.13, every prime ideal minimal over I is of the form P§t> =
Varéf) + 1 ét> for some maximal t-switchable set S. By Corollary 4.14, the binomial portion
of the P§t> -primary component of I¥ is I g>. Thus to prove that the minimal components
of I‘™ are prime, it suffices to prove that Varg"> is contained in the Pém -primary component.

We first prove that the connected components of n-switchable sets can be given in a block
form. By Remark 4.17, when t = 1 and n = 3, we also have a block form, but an arbitrary
t-switchable set need not have it (see Example 3.6).

Proposition 5.1. Let S be an n-switchable subset of N. Let Si,...,5; be the connected
components. Then the following hold:

(1) FEach Sz 18 Oftheform Sz = Sﬂ X oo X Szn fOT’ some Sij - [T’j], j = 1,n
(2) Ifa€ S;,be N, je€n], ands(j,a,b) € S, then s(j,a,b) € S;.

(3) Ifi,j are distinct in [l], there exist distinct py, ..., pm € [n| with m > 3 such that for all
]le,...,m, Sipkmsjpk :@

Proof. For (1) it suffices to prove that whenever a and b are connected in S, then for all
K C[n], s(K,a,b) is in S and connected to a and b. But this is precisely Lemma 3.5.

For (2),if a € S;, b € S such that s(j, a,b) € S, then d(a,s(j,a,b)) =1 so a and s(7, a,b)
are connected and therefore s(j, a,b) € S;.

Suppose that condition (3) fails. By possibly reindexing, Sy; N Sy; # 0 for ¢ > 3. By the
block decomposition from (1), there exist a € Sy, b € Sy such that a; = b; for ¢ > 3. Thus
1 <d(a,b) < 2. But then by Lemma 3.4, a and b are connected, so they are both in S; N Ss,
giving a contradiction. This proves (3). O

By Lemma 4.3, when we think of elements of N as (¢ + 1)-tuples rather than n-tuples by
reindexing [ryy1] X - - X [r,] by [rpq1 -+ -7y, since I™~Y = [ e have that the t-switchable
sets in general have a block form. However, when the last n — ¢t components are spelled out
explicitly, there is not necessarily a block form; see Example 3.6.

Set the distance between connected components S; and \S; to be the number of indices k
such that S;; NS, = 0. We denote this distance as d(S;, S;), just as for elements of N. Thus,
part (3) of the theorem above proves that d(S;,S;) > 3. We note that the decomposition
does not require all (coordinate) components of two connected components to be disjoint or
equal, but for each pair S;, S; at least three have to be disjoint.

Lemma 5.2. If S C N is a maximal n-switchable set with connected components Sy, ..., Sk,

then for any connected component S; there exists another connected component Sy, such that
d(S;,5;,) = 3.

Proof. Without loss of generality j = 1. By Proposition 5.1 (3), for all [ # 1, d(S1,5;) > 3.
Suppose for contradiction that for all I # 1, d(S7,S5;) > 4. By possibly reindexing the
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components, Sy; # [r1]. Let u € [rq] \ S11. Set S} = (S11 U {u}) x Sz X -+ x Sy, and
S'=8]USyU---USy. We argue that S’ is n-switchable. Let a,b € S’ such that d(a,b) = 2.
For all [ # 1, d(S1,S;) > 4, so that d(S},S;) > 3. By Proposition 5.1 (3), d(S;,S;) > 3 for
all distinct 4,/. Hence a and b must either both be in S} or they must both be in S; for
some ¢ > 1. By the structure of the connected components from Proposition 5.1, and by the
definition of 57, all the appropriate switches are contained in S”. Hence S’ is still switchable.
Since S C &, Vargf> - Vargm. Let fiap € I3, If a,b € S, then fiap € ’fén) Without loss of
generality, suppose a ¢ S. Then a; = w and z, € Valrgl> . Hence the first component of at
least one of s(i,a,b) or s(i,b,a) is u, so that at least one of s(7,a,b) or s(7,b,a) is not in S.
Thus at least one of Zg(;qp) OF Zs(ip,q) IS in Vargm, which implies that f; ., € Varg"> C P§7>.
Therefore Pém properly contains pm , which contradicts the maximality of S. O

Lemma 5.3. Let S be a maximal n-switchable set and a € N \ S.

(1) There exists b € S such that d(a,b) < 2.

(2) For and b € S satisfying 1., and any i such that a; # b;, there exists ¢ € S such that b
and ¢ are not connected, and ¢; = a;.

(8) For any b and ¢ and i from 2., there exists some d € S connected to b, such that
d(c,d) =3, and d; = b; # a; = ¢;.

(4) For any b, ¢, d, and i as in 3., let j be such that j # i and d; # c;. There exists a path
d=ep,er1,...,ex =bin S such that xoxe, -+ - Te, fivefide € I,

Proof. Suppose that d(a,b) > 3 for all b € S. Set T'= S U {a}. The new element a in T is
not connected in 7" with any other element of T, so that T is t-switchable, and if ¢, d € S are
connected in 7', they must be connected in S. But then Pét> properly contains Pj@ , which
contradicts the maximality of S. Hence there must exist b € S such that d(a,b) < 2. This
proves 1.

Choose b € S such that d(a,b) < 2. Let Sy, be the connected component of S containing b.
By Proposition 4.7, S, # S. By Proposition 5.1, S, = Sp; X - -+ X S, and since a € S, there
exists @ € [n] such that a; & Sy;. Thus a; # b;.

By Lemma 5.2 there exists a connected component 7" of S such that d(7,S,) = 3.
Suppose that for all such T, either a; ¢ T; or T; N Sy; # 0. Build S, from S, by replacing Sy
with S;, = Sy U {a;}, and build S by replacing S, in S with S;. We prove next that S’ is
n-switchable and that its connected components are the connected components of S except
with S) taking the place of S,. Let U be any connected component of S with U # Sp. If
d(U, Sy) > 4, then d(U, S;) > 3. If instead d(U, Sp) < 4, then by Proposition 5.1, d(U, S,) = 3.
Hence by assumption either a; ¢ U; or U;NSy,; # 0. If a; ¢ U;, then we still have d(U, S;) = 3.
If instead U; N Sy # 0, then d(U, S)) = d(U, S,) = 3. Therefore S’ is still n-switchable. We
next prove that Pém properly contains PS@ . Since S C &, Vargf) - Vargm. Let fico € .
Thus e, 0,5(7,¢€,0),8(j,0,e) € §'. If e,0 € S, then by the block structure e, o are connected
in S, and hence f;., € Pém . Otherwise either e or o is not in .S. Without loss of generality,
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say e ¢ S. Then e € S; \ S, and e; = a;. Hence either s(j,e,0) or s(j,0,e) has the ith
component equal to a;, so that by the block structure of S, either s(j, e, 0) or s(j, 0, ) is not
in S. But then f;., € Vargf) - Pém . This proves that P{” - Pém, which contradicts the
maximality of S.

Thus there exists a connected component 7' of S such that d(7,S,) = 3, a; € T;, and
T;NSy =0. Let J ={j €[n]:T;NS, # 0}. Choose ¢ € T such that ¢; = a; and
c; € T; N Sy; for all j € J. Similarly, choose d € Sy, such that d; = b; and d; = ¢; € T; N Sy,
for all j € J. Since d(T,S,) = 3 and T; NSy = 0, we have that d(c,d) = 3. This proves 2.
and 3.

Let d = eg,e1,...,, = b be a path from d to b in S. Then by n-switchability of S,
d = eg,s(i,e1,b),8(i,€2,b),...,8(i,€,-1,b),5(i, ¢, b) = b is, after omitting repetitions, a path
from d to b in S in which all ith components in the path are the same. We rename this
new path d = eg, ey, ...,y = b. By Lemma 4.9, z., -+ 2, fiad = Tey ' * Te,_, fiap mod I
Since d(a,b) = 2, fiap € [, s0 that x¢, - - - 2¢, figa € [™

The first expression of Lemma 4.9 (with ag, ay, ¢ replaced by ¢, a, d) says that z,f;cq —
xdfi,ca = Ts(i,c,a) fzs (i,a,¢),d — Ts(i,d,c) fzas i,c,d)- Since a; = Ci, this s1mphﬁes to xa.fzcd chzad
Ts(id,a) fiastie,d)- By the previous paragraph Tey Ty fiad € I so that Ty TepToficd =
—ZLe, + Ty Ts(iydya) fiastie,d) mod I Now d(s(i,d, c),c) = 2, and s(i,d, c) and c differ in
component j, so by the last expression in Lemma 4.9, 4 4,0) fj.d.c = Ts(i,d,c)fjde € 1 ) Thus
modulo 7™, Tey  TepTaficdlide = —Tey *** Tep Ts(i,d,a) fi,as(ied) fide Dut the latter is in I
which finishes the proof. O

Remark 5.4. The proof that there exists b € S such that d(a,b) < 2 only requires that S
be a maximal ¢t-switchable set (any ¢ will do).

Theorem 5.5. The minimal components of I™ are prime ideals.

Proof. Let @ be a minimal component for I . By Theorem 4.13, the corresponding associ-
ated prime P is of the form P ! for some max1mal n-switchable set S. By Corollary 4.14,

Q (. It remains to prove that Vars CQ.

Let fs be the product of those elements f; ., € I that are not in Pém, and let xg =
Hae %, and pg = fsxg. Since PS<"> is a prime ideal, it follows that pg ¢ PS<">

Let z, € Vargm. Then a ¢ S. Choose b, ¢, d, ey, ..., e, as in Lemma 5.3 with the product
ToZey *** Tep finelide € I™ . Since b, ¢, d, ey, .. .,ek € S and ¢ is not connected either to b
or to d, it follows that z., - - x¢, fip.cfidc & P " Hence Tey - Tep finels, dc divides pg, and
therefore z, € I : pg C Q : pg. Since Q is P S () prlmary and pg € Ps ] it follows that
Q@ : ps = Q, so that x, € (). This proves that VarS C @, so that Ps I ) 4+ VarS C Q,
which finishes the proof. O

Remark 5.6. We note that pg, from the previous proof, is a product of more factors than
absolutely necessary. For example, when S = N and n = 3, then I : Lo zoor =
I ]<\7 ) = van >, so the proper factor [[;2 @004 of py suffices. Furthermore, we note that the
proof of Theorem 5.5 shows which diagonal minor factors p of pg are necessary to argue
I pxg = P< These p are not necessarily unique.
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6. Grobner Bases

In this section we give a Grobner basis for I é” in many monomial orders including the re-

verse lexicographic and the lexicographic order under appropriate orderings of the variables.
This generalizes the work of [2] and [10].

Recall that Caniglia, Guccione and Guccione [2] proved that the 7 x 7 minors of a generic
m X n matrix form a Groébner basis with respect to any “diagonal order”, where diagonal
orders on a two-dimensional matrix are monomial orders such that for any r x r submatrix,
the product of the variables on the main diagonal is the leading term of the minor of that
submatrix. We start with an example which illustrates some of the subtleties that arise in
extending the notion of diagonal orders for matrices to hypermatrices. One 2 x 2 minor of
the 2 x 2 x 2 hypermatrix is @1 1 202221 — Z1,2,2%21,1. We might order monomials by comparing
the first two components in the indices and following the notion of diagonal orders from [2],
so that x1 127221 > @122%211. However, we get a different order from comparing the
last two components in the indices, as the inequality reverses. Therefore, a generalization
of a diagonal order to an n-dimensional hypermatrix must come equipped with a further
prioritization of the components.

Definition 6.1. We treat the last n—t components [rii1] X - X [rn] of N as one component,
so essentially we assume that t =n — 1. (This also covers the case t = n.) When we write
s(K,a,b) in this sense and t+1 € K, we actually mean s([t]\ K, b, a) in the usual sense. Let
{61,...,0i11} = [t+1]. A t-diagonal order on R relative to the enumeration Oy, ..., 041 is
any monomaial order < with the following property: for any a,b € N, if i is the smallest index
in [t + 1] such that as, # bs,, and if j > i such that as; > bs;, then T Ty > Ts(5;,a,0)Ts(5;,b,0) U
and only if as, > bs,.

For example, the lexicographic order in which the variables are ordered in the lexico-
graphic order on their indices [ry] X - - - X [ry] X [ - - 7] With 6; =i fori=1,...  t+1isat-
diagonal order. The degree reverse lexicographic order z, > xp if 30, _; lai—a;| < >, |bi—b;]
or if 37, ila; —a;l = >,;[bi —bj| and @ > b in the reverse lexicographic order with
0; =t —i+2 is a t-diagonal order. Obviously many other options are possible. When n = 2,
then any t-diagonal order is a diagonal order for 2 x 2 minors as given in [2].

Lemma 6.2. Let 1 <t <mn, let S be a connected component in some t-switchable set. Set
G = {fK,a,b K C [t],a,b c S}

Suppose that ay, ..., a,,b1,...,b. €S have the property that for allv=1,...,t, up to order,
the r-list ay;, as;, . . . , ay; 1S the same as the r-list by;, by, . .., b, and such that, up to order, the
r-list (@141, G142y -5 Q1n)s (Q2.4415 Q2442 - - 3205 ooy (Artg1y Qrtt, - Qry) 1S the same
as the r-list (byt+1,b1049, - b10)s (b2r1, 02442, -y 020), ooy (brts1, brtio, ooy bpn). Then
in any t-diagonal monomial order, p = Xq,Tay - - - Ta, — Tpy, T, - - - Ty, Teduces with respect to
G to 0.

Proof. We may assume that p is reduced with respect to G. If r = 1 or n = 1, necessarily
p = 0. Now suppose that r,n > 1. If the ; entries appearing in a4, ..., a, are all the same,
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the same holds for the §; entries in by, ..., b., and by induction on n the binomial p reduces
to 0 with respect to {fkca € G : ¢5, = ds, }. So we may assume that a5, = ags, = -+ =
Assy, > Gsy15, >+ > aps, for some positive s < r. If for some ¢ € {2,3,...,t +1}, 7 <s
and [ > s, the 0; entry of a; is strictly bigger than the ¢; entry of a;, then z,, - - - x,, is not
reduced with respect to G as it can be reduced with respect to fs, 4,4, € G (recall that in
the context of diagonal orders, fi11,4 stands for fi . in the usual sense). But p is assumed
reduced, which gives a contradiction. So necessarily for all = 2,... ¢+ 1, all the minimal
possible §; entries of aq, ..., a, appear with correct multiplicities as ¢§; entries of aq, ..., as.
Analogously, bis, = bas, = -+ = bss, = max{bjs, : j = 1,...,7} > bsi14,,...,bs and for
each 1 = 2,...,t+ 1, all the minimal possible ; entries of by, ..., b, appear with correct
multiplicities as d; entries of by,...,bs,. Thus ay,...,as b1, ..., bs satisfy the conditions of
the lemma, and by necessity asy1,...,a,,bsi1,...,b, satisfy the conditions of the lemma.
By induction on r, up to reindexing, by the reduced assumption, ay = by, ..., as = bs, ...,
a, = b,. Hence p = 0. O

Remark 6.3. The proof of the theorem above shows that if t > n — 1, then p reduces to 0
with respect to G = {fiap:1 € [n],a,b € S}.

Theorem 6.4. Let 1 <t <n, and let S be a t-switchable set. Then the set

G ={frap: K C[t],a,b € S are connected}

)

is a (non-minimal) Grébner basis for fg in any t-diagonal monomial order.

Proof. Write S = S; U ---U S,., where the S; are the connected components. Then G =
GhU---UG,, where G; = {fxap: K C[t],a,b € S;}.

If a, be S, and K = {]{71, cee ]{Zl}, then fK,a,b = Zi:l fki,s({kl,...,ki,l},a,b),s({kl,...,ki,l},b,a)7 SO
that G; C I C (Gy). It follows that G C I C (G).

If f € Gy, g€ Gjandi# j, then the S-polynomial of f and g trivially reduces to 0 with
respect to G because the variables appearing in f are disjoint from the variables appearing
in g. Observe that elements of G and S-polynomials of two elements from the same G; are
either 0 or are binomials of the form as in Lemma 6.2, hence they reduce with respect to GG
to 0, proving that G forms a Grobner basis of g>. O

By Remark 6.3, if t > n — 1, then the smaller set {f; ., :7 € [n],a,b € S are connected }
is a Grobuer basis of I, g>.

Ha [10] proved the theorem above in the reverse lexicographic order with the lexicographic
order on the variables. The theorem above, together with the structure theory of binomial
ideals, gives a proof that [ ét> are prime ideals, but it is more complicated than the proof we
gave using flattenings of tensors in Lemma 4.3.

7. Examples

In this section we give examples showing that the primary decomposition structure of
the conditional independence ideals I® can have embedded components. All computations
were performed using the package Binomials [13] in the program Macaulay?2 [8].
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The first two examples show that I® is not radical in general. Thus the ideals I are
different from the conditional independence ideals in Herzog et al. [11], Ohtani [15], and Ay
and Rauh [1].

Example 7.1. Let ry =15 =r3 =1, = 2 and t = 3,4. This ideal has 26 components, of
which 17 are minimal and 9 are embedded. In particular, the maximal ideal, which is P ,

. . . t . . .
is associated, and contains every Pé ), However, there are other prime ideals in between the
minimal primes and this maximal associated prime. For example,

t _
PS = (93(1,1,171),1'(1,1,1,2), T(1,1,2,1)5 L(1,1,2,2) s L(1,2,1,1)» L(1,2,1,2)» L(1,2,2,1) 5

T(2,1,1,2), T(2,1,2,1), T(2,1,2,2), T(2,2,1,1), T(2,2,12), T(2,22.1), T(2,22.2))

contains

) _
Ppl = (21,0,0,1),T(1,1,1,2) T(1,1,2,1)5 T(1,1,2,2) T(1,2,1,1), T(1,2,1,2)

T(21,2,1) T(2,1,22)s T@.21,1), £(22,1.2), L(2,2.2,1): T(2,2,2.2));

where S = {(1,2,2,2),(2,1,1,1)} and T = {(1,2,2,1),(1,2,2,2),(2,1,1,1),(2,1,1,2)}.
By Theorem 5.5, the P}w-minimal component is P}w, but the P5<t> component is much more
complicated. For example, Macaulay2 gives it 101 generators.

Keeping r; = ry = r3 = r4 = 2 and changing ¢ to 2, the ideal I has 31 minimal primes
and 11 embedded primes including the maximal ideal. For ¢ = 1 and the same rq, ..., 7y,
the ideal IV has 17 components, and by work in [1] these components are all primes and
there are no other components.

The following example shows that 7 is not even radical for n = 3. Again, if ¢t = 1 the
work in [1] (and [5] since n = 3) proves IV is radical. Therefore the counterexample uses
t = 2,3. Thomas Kahle brought the following example to our attention:

Example 7.2. The simplest example is when r; = ro = 2 and r3 = 4. The ideal 10
with ¢ = 2,3 has 29 minimal components and one embedded component associated to the
maximal ideal. We note that the minimal components are all prime by Theorem 5.5.

We consider it an interesting open question as to whether the minimal components are
prime when ¢ # 1,n. While the I are not lattice basis ideals (see Example 2.4), one might
first attack this question by considering lattice basis ideals in general, or just those with
square-free generators. However, the following example given to us by Thomas Kahle shows
that a general lattice basis ideal with square-free generators does not have to have prime
minimal components.

Example 7.3. The ideal (z428 — 2129, £406 — 79, Tols — T3Tg, Toly — TsLg) In variables
x1,T9, ..., T over a field is equidimensional and it has 6 components, all of which are minimal
and one of which is not prime.
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