
SYMBOLIC POWERS OF RADICAL IDEALS

AIHUA LI
IRENA SWANSON

Abstract. Hochster proved several criteria for when for a prime ideal P in a
commutative Noetherian ring with identity, P

n = P
(n) for all n. We generalize

the criteria to radical ideals.

1. Introduction.

In [1], M. Hochster established several criteria for when for a prime ideal P in
a Noetherian ring R, the nth power P n of P equals the nth symbolic power P (n)

of P for every positive integer n. He used a so-called test sequence of ideals in
a polynomial ring over R to determine whether P n = P (n) for all n. We extend
Hochster’s criteria to radical ideals.

Here is the set-up: let R be a Noetherian domain and P an ideal of R.
Suppose that {a1, a2, . . . , am} is a generating set for P . Write the m-tuple as
p = (a1, a2, . . . , am). Let S = R[x1, x2, . . . , xm], where x1, x2, . . . , xm are indeter-
minates over R.

Definition 1.1. For an ideal P = (a1, . . . , am)R of R, define recursively ideals
of S = R[x1, . . . , xm]:

J0(p) = 0 and Jn+1(p) = ({Σm
i=1sixi

∣

∣ si ∈ S and Σm
i=1siai ∈ Jn(p)})S

for n ≥ 0. We write Jn for Jn(p) and denote J = ∪∞
n=1Jn. We call the sequence

of ideals

PS + J0, PS + J1, . . . , PS + Jn, . . .

the test sequence of the m-tuple p.

Note that for each n, Jn ⊆ Jn+1. Since R is Noetherian, J = Jn for all large n.
Hochster proved:

Theorem 1.2. [1, Theorem 1] With the above notation, the following are equiv-
alent for a prime ideal P in a Noetherian domain R:
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A. The associated graded ring of RP is a domain, and for every positive integer
n, the nth symbolic and ordinary powers of P agree.

B. The ideal PS + J is prime.

C. For some integer n, PS + Jn is a prime ideal of height m.

D. There is a height-m prime ideal Q of S such that Q ⊆ PS + J .

E. Let z be an indeterminate over R. Then z is a prime element in the subring
R[z, a1/z, . . . , am/z] of R[z, 1/z].

As a generalization, we analyze the situation in which P is a radical ideal of a
reduced Noetherian ring. We first define generalized symbolic powers of ideals.
We then give some criteria regarding the equality of P n and P (n).

2. Some basic results about test sequences

We start with some useful examples of test sequences:

Lemma 2.1. Let R be a Noetherian ring and P an ideal generated by a regular
sequence a1, a2, . . . , am. For the m-tuple p = (a1, a2, . . . , am), denote Jk = Jk(p).
Then

J1 = (xjak − xkaj

∣

∣ 1 ≤ j < k ≤ m)S = J2 = J3 = · · · = J.

Proof. The generators of J1 are of the form
∑

i sixi such that
∑

i siai = 0. As
a1, a2, . . . , am is a regular sequence, this means that the element (s1, . . . , sm) ∈ Sm

is in the S-module generated by the Koszul relations (0, . . . , aj, . . . ,−ak, . . . , 0),
with k < j and at most the kth and jth entries non-zero. Thus J1 is generated
by elements of the form xjak − xkaj. It remains to prove that J1 = J2.

Let
∑

i sixi ∈ J2 with
∑

i siai ∈ J1. Write
∑

i siai =
∑

j<k ljk(xjak − xkaj) for
some ljk ∈ S. Then

m
∑

i=1

(

si −
i−1
∑

j=1

ljixj +
m
∑

k=i+1

likxk

)

ai = 0,

so that
m
∑

i=1

sixi =

m
∑

i=1

(

si −
i−1
∑

j=1

ljixj +

m
∑

k=i+1

likxk

)

xi ∈ J1. �

In general, when the generating sequence does not form an R-sequence, the
ideal J2 may be bigger than J1. One such example is given below:

Example 2.2. Let R = k[y1, y2] be a polynomial in two variables over a field k.
Let P = (a1, a2, a3)R, where a1 = y2

1, a2 = y1y2, and a3 = y2
2. The generating

sequence (a1, a2, a3) is not a regular sequence of R. In addition, J2 6= J1.

Proof. The module of relations on a1, a2, a3 in S = R[x1, x2, x3] is generated by
(y2,−y1, 0) and (0, y2,−y1), so that J1 = (y2x1 − y1x2, y2x2 − y1x3)S ⊆ (y1, y2)S.
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The element x1x3−x2
2 is therefore not in J1. But x1x3−x2

2 ∈ J2 as x1y
2
2−x2y1y2 =

y2(x1y2 − y1x2) ∈ J1. �

Now let Sr = R[x1, . . . , xr] and consider an r-tuple pr = (a1, . . . , ar), where
a1, . . . , ar ∈ R. Similar as in Definition 1.1, we denote

Jk+1(pr) = ({Σr
i=1sixi

∣

∣ si ∈ Sr and Σr
i=1siai ∈ Jk(pr)})Sr.

Lemma 2.3. Let R be a Noetherian ring and S = R[x1, . . . , xm]. Let P =

(a1, a2, . . . , am)R be an ideal of R and pm = (a1, a2, . . . , am). If
∑k

i=r+1 gixi = 0,

where gr+1, . . . , gk ∈ S and r + 1 ≤ k ≤ m, then
∑k

i=r+1 giai ∈ J1(pm).

Proof. It is trivial when k = r + 1. For k > r + 1,
∑k

i=r+1 gixi = 0 implies

gk =
∑k−1

i=r+1 hixi for some hi ∈ S since xk is a regular element of S. Thus
∑k−1

i=r+1 (gi+hixk)xi = 0. By induction hypothesis,
∑k−1

i=r+1 (gi+hixk)ai ∈ J1(pm).
On the other hand,

k−1
∑

i=r+1

(gi + hixk)ai =
k−1
∑

i=r+1

giai +
k−1
∑

i=r+1

hi(xkai − xiak) +
k−1
∑

i=r+1

hixiak

=

k
∑

i=r+1

giai +

k−1
∑

i=r+1

hi(xkai − xiak) ∈ J1(pm).

Since each xkai − xiak is an element of J1(pm),
∑k

i=r+1 giai ∈ J1(pm). �

Lemma 2.4. Let R be a Noetherian ring and P = (a1, a2, . . . , am)R, an ideal

of R. Assume am =
∑m−1

i=1 biai, where each bi ∈ R. For the m-tuple pm =
(a1, a2, . . . , am) and the (m− 1)-tuple pm−1 = (a1, a2, . . . , am−1),

Jk(pm) =

(

Jk(pm−1) +

(

xm −
m−1
∑

i=1

bixi

))

R[x1, . . . , xm]

and

Jk(pm) ∩R[x1, . . . , xm−1] = Jk(pm−1)

for all k ≥ 1.

Proof. Let
∑m

i=1 sixi ∈ Jk(pm) such that
∑m

i=1 siai ∈ Jk−1(pm). We want to show

that
∑m

i=1 sixi is contained in the ideal generated by Jk(pm−1) and xm−∑m−1
i=1 bixi

in R[x1, . . . , xm]. We can write
∑m

i=1 sixi =
∑m−1

i=1 tixi + (xm −∑m−1
i=1 bixi)s for

some s ∈ S and ti ∈ R[x1, . . . , xm−1]. It suffices to prove that
∑m−1

i=1 tixi is in
Jk(pm−1), or more generally that Jk(pm) ∩R[x1, . . . , xm−1] ⊆ Jk(pm−1).
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Let f ∈ Jk(pm) ∩ R[x1, . . . , xm−1]. We may write f =
∑m

i=1 sixi such that
∑m

i=1 siai ∈ Jk−1(pm). For each i = 1, . . . , m − 1, we write si = ti + fixm,

where ti ∈ R[x1, . . . , xm−1] and fi ∈ S. Then
∑m

i=1 sixi =
∑m−1

i=1 tixi + xm(sm +
∑m−1

i=1 fixi) ∈ R[x1, . . . , xm−1] implies that sm +
∑m−1

i=1 fixi = 0 and
∑m

i=1 siai =
∑m−1

i=1 tiai ∈ Jk−1(pm) ∩ R[x1, . . . , xm−1]. If k = 1, this says that
∑m−1

i=1 tiai =

0 ∈ Jk−1(pm−1), and if k > 1, then by induction
∑m−1

i=1 tiai ∈ Jk−1(pm−1). Thus

for all k ≥ 1,
∑m

i=1 sixi =
∑m−1

i=1 tixi ∈ Jk(pm−1). �

As a generalization of Lemma 2.1, we have

Theorem 2.5. Let R be a Noetherian ring and P = (a1, . . . , am)R an ideal of
R which is also generated by a1, . . . , ar, where 0 < r < m. Let pm and pr be as
before. If a1, a2, . . . , ar forms a regular R-sequence, then

Jk(pm) = J1(pm)

for all k ≥ 1.

Proof. Since {a1, a2, . . . , ar} is a generating set of P , for each i = r + 1, . . . , m,
we can write ai =

∑r
j=1 bjiaj for some bji ∈ R. Let S = R[x1, . . . , xm]. Set

ci = xi −
∑r

j=1 bjixj ∈ J1(pm) for each i = r+ 1, . . . , m. By repeated application
of Lemma 2.4, for all k ≥ 1,

Jk(pm) =
(

Jk(pr) + (cr+1, . . . , cm)
)

S.

By Lemma 2.1, Jk(pr) = J1(pr) for all k ≥ 1, which finishes the proof. �

This gives some information on the test sequence of prime ideals in a regular
ring:

Theorem 2.6. Let R be a regular ring and P a prime ideal in R. Then there
exists a generating set {a1, . . . , am} of P such that with p = (a1, . . . , am), for all
integers k ≥ 1, Jk(p)RP = J1(p)RP .

More generally, whenever P is an ideal and U a multiplicatively closed sub-
set such that U−1P is generated by a regular sequence, there exists a generating
set {a1, . . . , am} of P such that with p = (a1, . . . , am), for all integers k ≥ 1,

U−1Jk(p) = U−1J1(p).

Proof: As U−1P is generated by a regular sequence, there exists a generat-
ing set such that the first r generators form a maximal regular sequence af-
ter localization at U . Let Jk(p) be the corresponding kth test ideal of U−1R

for p. Clearly U−1Jk(p) = Jk(p). By Theorem 2.5, Jk(p) = J1(p). Thus

U−1Jk(p) = U−1J1(p).
The first part follows as in a regular ring, PRP is generated by a regular

sequence. �
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3. Criteria for Radical Ideals

In this section we generalize Hochster’s criterion to radical ideals, see Theo-
rem 3.6.

Recall that S = R[x1, . . . , xm] and that Jk = Jk(p) refers to the kth test ideal
with respect to the m-tuple p = (a1, . . . , am). Clearly if U is a multiplicatively

closed subset of R, then U−1Jk(p) = Jk(U
−1(p)).

Definition 3.1. Let R be a reduced Noetherian ring, P an ideal of R and U a
multiplicatively closed subset of R. We define the nth generalized symbolic power
of P with respect to U to be

P (n) = P nU−1R ∩ R.
If P is a radical ideal with the minimal primes p1, p2, . . . , pt, then the nth gener-
alized symbolic power of P with respect to U = R \ (p1 ∪ · · · ∪ pt) is called the nth

symbolic power of P .

In the proofs we will use the extended Rees algebra of P :

R′ = R

[

z,
P

z

]

= R
[

z,
a1

z
,
a2

z
, . . . ,

am

z

]

,

where z is an indeterminate over R. Note that

R′

zR′
∼= R

P
⊕ P

P 2
⊕ P 2

P 3
⊕ · · · ,

the associated graded ring of P .
For a ring A, we denote by Z(A) the set of all zero divisors of A. The following

is well-known:

Remark 3.2. Let R be a reduced Noetherian ring, P an ideal of R, and R′ as
above. Let U be a multiplicatively closed set of R. Then

(1) Z(A) is the union of all associated prime ideals of A.
(2) For each n ≥ 0, P n = znR′ ∩ R, and P nU−1R ∩ R = znU−1R′ ∩ R.
(3) For a fixed n > 0, P n = P nU−1R∩R if and only if (P n:R u) = P n for all

u ∈ U . In particular, P = PU−1R ∩ R if U ∩ Z(R/P ) = ∅.
(4) If U ∩ Z(R′/zR′) = ∅, then zU−1R′ ∩R′ = zR′ and Rad(zU−1R′) ∩R′ =

Rad(zR′).

Our goal is to give similar criteria as those in [1] for radical ideals. First we
establish some lemmas.

Lemma 3.3. Let R be a Noetherian ring and P = (a1, a2, . . . , am)R an ideal.
Let R′, S and J be as above. Then R′/zR′ is isomorphic to S/(J + PS).

In particular, PS + J is a radical ideal if and only if zR′ is a radical ideal.
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Proof. Consider the surjective R-homomorphism φ from S to R′/zR′, shown as
composition below:

φ : S
φ′

−→ R′ −→ R′

zR′
∼= R

P
⊕ P

P 2
⊕ P 2

P 3
⊕ · · ·

xi 7→ ai

z
7→ ai + P 2

P 2
.

It suffices to prove that ker(φ) = PS + J . Note that each ai maps to 0 in
R/P , so that PS ⊆ ker(φ). Cleary φ′(J1) = 0. Suppose that φ′(Jn) = 0.
Let

∑

sixi ∈ Jn+1 be such that
∑

siai ∈ Jn. As zφ′(
∑

sixi) = φ′(
∑

siai) =
0, it follows that φ′(

∑

sixi) = 0. Thus by induction, J ⊆ ker(φ′) ⊆ ker(φ).
This proves that PS + J ⊆ ker(φ). To prove the opposite inclusion, let f ∈
ker(φ). As φ is a graded homomorphism and PS + J is a homogeneous ideal, it
suffices to assume that f is a homogeneous element of S of degree d. Write f =
∑

|ν|=d fνx
ν for some fν ∈ R. As f ∈ ker(φ), this means that

∑

|ν|=d fνa
ν ∈ P d+1.

Write
∑

|ν|=d fνa
ν =

∑m
i=1

∑

|µ|=d riµa
µai for some riµ ∈ R. By definition of test

sequences then
∑

|ν|=d fνx
ν −∑m

i=1

∑

|µ|=d riµx
µai ∈ Jd, whence

f =
∑

|ν|=d

fνx
ν −

m
∑

i=1

∑

|µ|=d

riµx
µai +

m
∑

i=1

∑

|µ|=d

riµx
µai ∈ Jd + PS ⊆ PS + J. �

Lemma 3.4. Let R be a Noetherian ring and P an ideal. Let U be an arbitrary
multiplicatively closed subset of R. Then the following are equivalent:

(1) P nU−1R∩R = P n for every positive integer n, and the associated graded
ring grU−1P (U−1R) is reduced.

(2) zR′ is a radical ideal and U ∩ Z(R′/zR′) = ∅.

Proof. Assume the first statement. We first show that U ∩ Z(R′/zR′) = ∅.
Let u ∈ U and b ∈ R′ such that ub ∈ zR′. Without loss of generality b is a
homogeneous element of R′ under the grading determined by the variable z. Thus
we may write b = b0z

−n for some integer n and some b0 ∈ P n. If n is negative,
this means that b0 ∈ R, ub0 ∈ P , so that by assumption, b0 ∈ P , whence b = zR′.
Now let n ≥ 0. Then ub0 ∈ zn+1R′ ∩ R = P n+1 by Remark 3.2 (2). This implies
that b0 ∈ P n+1U−1R ∩ R = P n+1 = zn+1R′ ∩ R′, so that b0 ∈ zn+1R′ and thus
b ∈ zR′. Hence U ∩ Z(R′/zR′) = ∅.

By the assumption that the associated graded ring of U−1P is reduced and
as grP (R) = R′/zR′, it follows that zU−1R′ is a radical ideal. Thus by Re-
mark 3.2 (4), zR′ = zU−1R′ ∩ R′ = Rad(zU−1R′) ∩ R′ = Rad(zR′), so zR′ is a
radical ideal of R′.

Next assume that the second statement holds. As zR′ is a radical ideal, grP (R)
is reduced, and so trivially grU−1P (U−1R) is reduced.
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Let b ∈ P nU−1R∩R = znU−1R′ ∩R. There exists u ∈ U such that ub ∈ znR′.
We have to prove that b ∈ P n. If not, then there exists an integer k < n such
that b ∈ P k and b 6∈ P k+1. Then b

zk ∈ R′ and u · b
zk = ub

zn · zn−k ∈ zR′. Since u

is not a zero divisor of R′/zR′, then b
zk ∈ zR′, so that b ∈ zk+1R′ ∩ R = P k+1, a

contradiction. Thus necessarily k ≥ n and b ∈ P k ⊆ P n. �

Lemma 3.5. Let P, S, J be as in the set-up, with P presented with m generators.
Then all of the minimal primes of PS+J are of height m. In particular, ht(PS+
J) = m.

Proof. Let ψ be the R[z]-homomorphism of S[z] onto R′ = R[z, P/z] which takes
xi to ai

z
for each i. Let I = ker(ψ) and I0 = (a1−x1z, a2−x2z, . . . , am−xmz)S[z],

both ideals of S[z]. Obviously, I0 ⊆ I. After inverting z, both I and I0 are
generated by the regular sequence a1 − x1z, . . . , am − xmz, so that I = ∪n≥0(I0 :
zn). This implies that z is not a zero divisor on S[z]/I. It is easy to check that
PS + J = (I + zS[z]) ∩ S.

We claim that every minimal prime of I is of height m. When going up to
the localization S[z, 1/z] of S[z] localized at z, the minimal primes of I in S[z]
correspond to the minimal primes of IS[z, 1/z] in S[z, 1/z] and the heights do
not change since z is not a zero divisor of S[z]/I. But IS[z, 1/z] = I0S[z, 1/z] =
(x1 − a1/z, x2 − a2/z, . . . , xm − am/z)S[z, 1/z], and obviously all of the minimal
primes of I0S[z, 1/z] are of height m. Thus all the minimal primes of I in S[z]
are of height m. In addition, all minimal primes of (I + zS[z])S[z] are of height
m+ 1, again because z is not a zero divisor of S[z]/I.

Let q be a minimal prime of PS + J in S. In the polynomial ring S[z] over S,
qS[z] + zS[z] is a minimal prime of (PS + J + zS[z])S[z] = (I + zS[z])S[z], and
so m+ 1 = ht(qS[z] + zS[z]) = ht(qS) + 1. Hence ht(qS) = m. �

Now we give similar criteria as those in [1] for radical ideals:

Theorem 3.6. Let R be a reduced Noetherian ring and P = (a1, . . . , am), a
radical ideal of R. Let U = R \ (p1 ∪ · · · ∪ pt) and S, z be as above. Recall that
R′ = R[z, Pz−1]. The following statements are equivalent:

A′. For every integer n > 0, P n = P (n), and the associated graded ring
grU−1P (U−1R) is reduced.

B′. The ideal PS + J is a radical ideal of S and U ∩ Z(S/(PS + J)) = ∅.
C′. For some positive integer n, PS+Jn is a radical ideal of height m which has

the same number of minimal primes as PS+J has, and U∩Z(S/(PS+
Jn)) = ∅. In this case, PS + Jn = PS + J .

D′. The ideal PS + J contains a height-m radical ideal Q which has the same
number of minimal primes as PS + J has, and U ∩ Z(S/Q) = ∅. In
this case, Q = PS + J .

E′. The ideal zR′ is a radical ideal of R′ and U ∩ Z(R′/zR′) = ∅.
7



Proof. Lemma 3.4 gives the equivalence of A′ and E′ by setting U = R \ (p1 ∪
· · · ∪ pt). By the isomorphism in Lemma 3.3, B′ and E′ are equivalent.

By Lemma 3.5, all the minimal primes of PS+J are of height m. If an ideal Q
of height m is contained in PS + J and has the same number of minimal primes
as PS + J does, then the minimal primes of PS + J are exactly the minimal
primes of Q. Thus Rad(Q) = Rad(PS + J). Furthermore, if Q is radical, then
Q = Rad(PS + J) ⊇ PS + J , so that Q = PS + J . Whence the equivalences of
B′, C′, and D′ follow trivially.

Now it is clear that the statements A′, B′, C′, D′, and E′ are all equivalent. �

Remark 3.7. Let R be an integral domain, P a prime ideal, and U = R \ P .
The statements A′ - E′ are equivalent to the statements A - E in Theorem 1.2,
respectively.

Proof. It is enough to show that the condition U ∩ Z(R′/zR′) = ∅ in E′ can be

dropped with this special setting. From the isomorphism R′

zR′

∼= R
P
⊕ P

P 2⊕P 2

P 3⊕· · · =
grPR, it is sufficient to show that U ∩Z(grPR) = ∅. Let b ∈ grP (R) be a non-zero
homogeneous element of degree n, and let ub = 0 in grP (R) for some u ∈ U . By
assumption zR′ is an integral domain, i.e., grP (R) is an integral domain. Since b is
non-zero, necessarily u must be zero, i.e., u ∈ P , which contradicts its choice. �

We give two applications of Theorem 3.6.

Corollary 3.8. Let R be a reduced Noetherian ring and P a radical ideal gener-
ated by an R-sequence. Then P n = P (n) for every positive integer n.

Proof. Assume that P = (a1, a2, . . . , am)R, where a1, a2, . . . , am is an R-sequence.
As in Theorem 3.6, we set S = R[x1, x2, . . . , xm] and U = R\(p1∪· · ·∪pt), where
p1, p2, . . . , pt are the minimal primes of P in R.

Then PS = (a1, a2, . . . , am)S is a radical ideal of S with the minimal primes
p1S, p2S, . . . , ptS in S. Furthermore, (a1, a2, . . . , am) is an S-sequence. For each i,
piS is of height m because it is minimal over an ideal generated by an S-sequence
of m elements.

By Lemma 2.1, J ⊆ PS. So PS + J = PS. Furthermore, the isomorphism
S/PS ∼= (R/P )[x1, x2, . . . , xm] implies that U ∩ Z(S/PS) = ∅. So the condition
B′ in Theorem 3.6 is satisfied. Therefore P n = P (n) for every positive integer
n. �

Proposition 3.9. Let Y = (yij) be a (2×r) matrix of indeterminates (r > 1) and
R = k[{yij}] be the polynomial ring over a field k. Let P be the ideal generated
by the 2 × 2 permanents of Y, i.e.,
P is generated by elements of form y1iy2j + y2iy1j (i 6= j). Then

(1) If r = 2 or 3, P n = P (n) for all n ∈ IN;
(2) If r > 3, there exists a positive integer n such that P n 6= P (n).

8



Proof. It is shown in [3, Theorem 4.1] that P is a radical ideal with ht(P ) =
min{r, 2r − 3} for r ≥ 3, so that clearly ht(P ) = min{r, 2r − 3} for r ≥ 2. For
case r = 2 and r = 3, the number of generators of P is equal to the height of P ,
so that the genenerating set of permanents forms a regular sequence. It follows
from Corollary 3.8 that P n = P (n) for all n.

For (2), suppose that P = (a1, a2, . . . , an(n−1)/2), where a1, a2, . . . , an(n−1)/2 are
the generating permanents and a1 = y11y22 +y21y12. In [3] it is shown that P con-
tains all products of three indeterminates chosen from three different columns but
not from the same row. For example, both y11y22y23 and y21y13y24 are elements
of P . Let

α = y13y23y24a1 = y13y23y24(y11y22 + y21y12).

Then α ∈ P . In addition, α /∈ P 2. This can be easily checked by Macaulay2.
However, α2 ∈ P 3. This is because

α2 = y23(y11y22y13)(y11y24y23)(y13y24y22)

+2y13(y13y22y21)(y23y24y12)(y11y24y23)

+y13(y13y21y24)(y23y12y21)(y24y12y23)

and by above each of the nine elements in parentheses is in P . So we can represent
α2 as α2 =

∑

i1i2i3
li1i2i3ai1ai2ai3 with li1i2i3 ∈ R. Let β = [(y13y23y24)

2x1]x1−
∑

i1i2i3
(li1i2i3ai1xi2)xi3 ∈ S. Note that [(y13y23y24)

2a1]a1 −
∑

i1i2i3
(li1i2i3ai1ai2)ai3

= α2 − α2 = 0, so [(y13y23y24)
2a1]x1 −

∑

i1i2i3
(li1i2i3ai1ai2)xi3 ∈ J1, which implies

that β = [(y13y23y24)
2x1]x1 −

∑

i1i2i3
(li1i2i3ai1xi2)xi3 ∈ J2 ⊆ J . This implies that

(y13y23y24x1)
2= β+

∑

i1i2i3
(li1i2i3ai1xi2)xi3 ∈ J+PS, i.e., y13y23y24x1 ∈

√
J + PS.

However, under the homomorphism from Lemma 3.3, y13y23y24x1 is sent to the
element (y13y23y24a1 + P 2)/P 2 in the graded ring grPR, which is nonzero. So
y13y23y24x1 is not in the kernel J + PS. Therefore, J + PS is not a radical ideal
of S. By Theorem 3.6, P n 6= P (n) for some positive integer n. �

Example 3.10. Let k be a field and R = k[x, y, z], where x, y, z are indetermi-
nates over k. Let P = (x, y) ∩ (x − 1, z) ∩ (y, 1 − zx), a radical ideal. Then
P n = P (n) for all positive integers n.

Proof. Obviously, the three prime ideals p1 = (x, y), p2 = (x − 1, z), and p3 =
(y, 1 − zx) are comaxmal and each of them is generated by an R-sequence. By

Corollary 3.8, pn
i = p

(n)
i for all positive integers n and for i = 1, 2, 3. Thus

P n = P (n) for all n.
An application of Corollary 3.8 shows also the following:

Example 3.11. Let k be a field and R = k[x, y, z, u, v]/(xv−uy), where x, y, z, u, v
are indeterminates over k, and let P = (xy−u, yz). Then P n = P (n) for all pos-
itive integers n.
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