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1. Introduction

We analyze the structure of all ideals constructed by taking the first partial derivatives
of a trilinear form whose coefficients satisfy a kind of weak genericity property.

Here is the set-up: let K be a field and let R be the polynomial ring over K in the three
sets of indeterminates X1, . . . , Xn, Y1, . . . , Ym, Z1, . . . , Zp. We will assume throughout that
n ≥ m ≥ p. Let

A =
∑

1≤i≤n
1≤j≤m
1≤k≤p

aijkXiYjZk

be a trilinear form in R, and let JA denote the ideal of R generated by all the partial
derivatives of A.

A question that arises from the theory of hyperdeterminants (see [GKZ, page 445]) is
the following: What can be said about the ideal JA? A reason for this question emerges,
among other things, from results which show that information on the depth of JA and,
more finely, on the primary decomposition of JA, is linked to information on the hyperde-
terminant of A, (see [BW]). The difficulty with hyperdeterminants, whose definition makes
sense only when n ≤ m + p − 1, is that there is no explicit formula for them. However,
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when n = m + p − 1, the hyperdeterminants are better understood. The first author,
together with Boffi and Bruns, analyzed in [BBG] the minimal primes of JA when the
entries in A satisfy a specific combinatorial structure; more precisely, A is taken to be a
“non-degenerate diagonal trilinear form of boundary type”, namely n = m + p − 1 and
aijk 6= 0 if and only if i = j + k − 1. In that paper the authors also ask if it is possible to
relax in any way these assumptions [BBG, Remark 1.17].

We provide an answer to this question in the present work: the structure described
in [BBG] holds in a much larger context, see Theorems 4.10 and 4.11. We determine the
minimal components and the radical of JA, and moreover, when n = m + p − 1, we give
an explicit criterion for when the hyperdeterminant of A vanishes (Proposition 3.13).

The critical idea in this paper which enables these generalizations is the new concept
of a trilinear form in general position. We develop and analyze the properties of such
trilinear forms in Section 3. Whereas the proofs in [BBG] relied on the combinatorial
structure of the aijk, our concept of the generic trilinear form enables us to relax quite
a few of the assumptions from [BBG] and still simplify the proofs and yield some extra
results. Moreover, our generalizations are in some sense “natural”, as, for example when
n = m + p − 1, the trilinear forms in general position correspond exactly to those three-
dimensional arrays for which the hyperdeterminant is non-zero (see Proposition 3.13).

The organization of the paper is as follows: in Section 2 we introduce the notation
and define trilinear forms in general position (see Definition 2.2). In Section 3 we show
that, when K is algebraically closed, the class of matrices in general position is very large
and that it includes those treated in [BBG] (see Corollary 3.12 and Proposition 3.13). We
prove, in fact, that there is a Zariski-open subset U of Knmp such that if (aijk) ∈ U , then
the corresponding A is in general position (see Proposition 3.14). The key idea of this
part of the paper is that the notion of trilinear form in general position is related to the
concept of the 1-generic matrix introduced by Eisenbud in [E2]. More precisely, we give a
wider definition of 1-genericity, (see Definition 3.1), and we use it to prove some equivalent
and simpler formulations of general position (see Theorem 3.11). In this part of the work
we exploit the interplay among the three matrices of linear forms obtained by taking
appropriate second partial derivatives of A. When the underlying field is algebraically
closed, A is in general position if and only if any one (equivalently: each one) of these
matrices is 1-generic.

In Section 4 we find the minimal primes of JA for the trilinear forms in general position.
These resuls are analogous to those in [BBG]. However, our proofs use the genericity
abstraction rather than the prescribed combinatorial structure of the coefficients of the
trilinear form. In Section 5 we go beyond [BBG] and explicitly describe the radical and
the minimal components of JA (see Theorems 5.1 and 5.2). Furthermore, in Section 6 we
give explicit primary decompositions in the case that p = 2 (see Theorem 6.5 and Theorem
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6.7), and we discuss some properties of the embedded components in general.
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also thanks Purdue University and New Mexico State University for the hospitality during
the period in which this work has been written, the Advanced Fellowships Programme from
NATO/CNR (Italy) and the Progetto MURST - Geometria Algebrica, Algebra Commu-
tativa ed Algebra Computazionale (Italy) for partial support. The second author thanks
Purdue University, Mathematical Sciences Research Institute and the National Science
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comments.

2. Notation

Throughout we use the trilinear form A described in the Introduction with n ≥ m ≥
p ≥ 1. If one of the n + m + p variables does not appear in A, we may without loss of
generality reduce the number of variables, as this makes the problem in principle simpler
to solve. Moreover, to prevent degenerate cases we also assume that even after any linear
change of variables separately among the three groups of variables, all the variables appear.
In particular, this restricts n to be at most mp, as A is a homogeneous linear polynomial
in the n variables Xi with coefficients taken from the mp-dimensional vector space of all
products YjZk.

Throughout X denotes the p by m matrix whose ijth entry is the second partial
derivative AYjZi . Similarly, Y is the p by n matrix whose ijth entry is AXjZi , and
Z is the m by n matrix whose ijth entry is AXjYi

. In contrast, X,Y and Z denote
(X1, . . . , Xn), (Y1, . . . , Ym) and (Z1, . . . , Zp), respectively. Depending on the context, these
stand for either the ideal or the row vector.

Similarly, AX stands for either the ideal or the vector (AX1 , . . . , AXn). AY and AZ

are defined similarly. Note that AX , as a vector, is equal to the product of the vector
Z = (Z1, . . . , Zp) with the matrix Y , namely AX = ZY . Also, AX = Y Z. Similarly,
AY = ZX = XZT and AZ = XY T = Y XT .

For any matrix M and any integer q ≥ 0, Iq(M) stands for the ideal generated by the
q by q minors of M .

With this notation, the ideal AX equals I1(ZY ) = I1(Y Z), AY equals I1(ZX) =
I1(XZT ) and AZ = I1(XY T ) = I1(Y XT ).
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Lemma 2.1: ZIp(X) ⊆ AY , ZIp(Y ) ⊆ AX and Y Im(Z) ⊆ AX .

Proof: Let X ′ be a p× p submatrix of X. Then ZIp(X ′) = I1(ZX ′adj X ′) ⊆ I1(ZX ′) ⊆
I1(ZX). As X ′ was arbitrary, ZIp(X) ⊆ AY follows.

The other inclusions are proved analogously.

An analysis of the proofs in [BBG] shows that in order to obtain explicitly the minimal
components of JA one needs the following key conditions:

1. n ≥ m ≥ p and n ≥ m + p− 1,
2. Ip(X) has height m− p + 1 (maximal possible),
3. Ip(Y ) has height m (maximal possible),
4. for all l = 1, . . . , p, the localization of AY at {1, Zl, Z

2
l , Z3

l , . . .} is a prime ideal
of height m,

5. T−1
Z (AX) = T−1

Z (Y ), where TZ = K[Z1, . . . , Zp] \ {0}.
The above conditions identify a class of trilinear forms. For the sake of clarity we give

a name to this class as follows:

Definition 2.2: A trilinear form A and its coefficients aijk are said to be in general
position when the five conditions above are satisfied.

Throughout we assume that A is in general position in this sense.
There are two conditions similar to the last one, which are satisfied for every trilinear

form in general position. Namely, let TX = K[X1, . . . , Xn]\{0} and TY = K[Y1, . . . , Ym]\
{0}. Certainly T−1

X (AY ) ⊆ T−1
X (Z). As Ip(X) is a non-zero ideal in K[X1, . . . , Xn],

by Lemma 2.1 then also T−1
X (Z) ⊆ T−1

X (AY ). Thus T−1
X (AY ) = T−1

X (Z). Similarly,
T−1

Y (AX) = T−1
Y (Z).

Of course, whenever Im(Z) is a nonzero ideal, condition 5 of general position follows
from Lemma 2.1.

In the next section we prove some equivalent formulations of general position. In
particular, if the underlying field is algebraically closed, we prove that the first and the
third conditions imply all the others. We also prove that there are many trilinear forms in
general position.

3. Trilinear forms in general position and 1-generic matrices

Definition 3.1: Let W1, . . . , Ws be indeterminates over a field K. The term linear form
in K[W1, . . . , Ws] means a homogeneous polynomial of degree 1. Let M be a q by r matrix
whose entries are linear forms in K[W1, . . . , Ws]. We say that M is 1-generic if for any
invertible row operation on M , the entries of each row generate an ideal of height min{r, s}.

4



Eisenbud [E2, page 547] defined 1-generic only when s ≥ q + r − 1, and in that case
his definition and ours agree. The simplest example of a matrix which is 1-generic in our
sense but not in Eisenbud’s is the 1 by r matrix [ W1 · · · Ws 0 · · · 0 ], where s < r,
and more examples are given later in this paper.

It is easy to see that 1-genericity is unaffected by invertible row or column operations,
and that when s ≥ q + r − 1, it is also unaffected by taking transposes.

Many matrices are 1-generic, but here is a large class of matrices which are not:

Lemma 3.2: Let K be an algebraically closed field, W1, . . . ,Ws indeterminates over it,
and M a q by s matrix whose entries are linear forms in the Wi. If q > 1, M is not
1-generic.

Proof: If the entries of the first row generate a proper subideal of (W1, . . . , Ws), we
are done, so we may assume instead that (M11, . . . , M1s) = (W1, . . . , Ws), where Mij is,
naturally, the ijth entry of M . Thus every entry of the second row can be written as a

linear combination of the M1i. Namely, for all i = 1, . . . , s, one has M2i =
s∑

j=1

aijM1j for

some aij ∈ K. Let α be an element of K and consider Row 2 + αRow 1. The entries of
this linear combination of the two rows can be written as

[ M21 + αM11 · · · M2s + αM1s ] = [ M11 · · · M1s ]




a11 + α a21 · · · as1

a12 a22 + α · · · as2

. . .
a1s a2s · · · ass + α


 .

Note that the determinant of the square matrix appearing above is a monic polynomial in
α of degree s ≥ 1. As K is algebraically closed, there exists an α ∈ K which is a zero of
the determinant. This means that for this choice of α, the entries of Row 2 + αRow 1 do
not generate an ideal of height s, so that M is not 1-generic.

We prove in the next two lemmas that when a matrix is 1-generic, the ideal generated
by its maximal minors is “large”.

Lemma 3.3: Assume that K is algebraically closed. If M is a 1-generic q by r matrix
in s variables W1, . . . , Ws and s ≥ q + r − 1, q ≤ r, then the height of Iq(M) is r − q + 1.

Proof: As M is 1-generic and s ≥ q + r − 1, then M is 1-generic also in Eisenbud’s sense.
Then it follows by [E1, Exercise A2.19, part b, page 605] or [E2, Proposition 1.3] that the
height of the ideal Iq(M) is r − q + 1.

Under some conditions the height of Iq(M) is the determining factor of 1-genericity:
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Lemma 3.4: Assume that K is algebraically closed and that W is a q by r matrix whose
entries are linear forms in the variables W1, . . . ,Ws. Assume that s, q ≤ r. Then W is
1-generic if and only if the height of Iq(W ) is maximal possible, namely s. Also, W is
1-generic if and only if the radical of Iq(W ) is (W1, . . . ,Ws).

Proof: If Iq(W ) has height s, then as Iq(W ) is contained in the ideal generated by the
entries of any non-trivial linear combination of the rows of W , those entries have to generate
an ideal of height at least s. As the entries are all linear forms in W1, . . . , Ws, this proves
that W is 1-generic.

Now assume that W is 1-generic. Since W is a matrix of linear forms, by [E1, Exer-
cise A2.19, part a, page 605],

√
Iq(W ) is the intersection of a collection of ideals each of

which is generated by the entries of a non-trivial linear combination of the rows of W . By
assumption on 1-genericity of W , each of these ideals has height min{s, r} = s and is gener-
ated by the linear forms in K[W1, . . . , Ws]. Thus each of these ideals equals (W1, . . . ,Ws),
and so does their intersection

√
Iq(W ). Thus both

√
Iq(W ) and Iq(W ) have height s and√

Iq(W ) equals (W1, . . . , Ws).
Finally, if

√
Iq(W ) = (W1, . . . , Ws), its height is s so that W is 1-generic.

This immediately applies to our matrices Y and Z:

Lemma 3.5: Assume that K is algebraically closed, and that n ≥ m + p− 1. Then Y is
1-generic if and only if the height of Ip(Y ) is m, and that is true if and only if the radical
of Ip(Y ) is (Y1, . . . , Ym). Also, Z is 1-generic if and only if the height of Im(Z) is p, and
that holds if and only if

√
Im(Z) = (Z1, . . . , Zp).

The field K needs to be algebraically closed. This was already pointed out in [E2,
page 548]. Here is a quick counterexample to the lemma if we omit the assumption that
K be algebraically closed: let K = Q, let Y1, Y2 be variables over F , and let Y be the 2
by 3 matrix

Y =
[

Y1 Y2 0
Y2 Y1 + Y2 0

]
.

Each of the two rows of Y generates (Y1, Y2), and for every b ∈ Q, the entries of (row 1)
+ b(row 2) generate

(Y1 + bY2, Y2 + bY1 + bY2) = (Y1 + bY2, Y2(1− b2 + b)).

As there is no rational number b for which 1− b2 + b = 0, this last ideal also has height 2.
Thus every generalized row generates an ideal of height exactly 2, yet I2(Y ) is principal,
so it cannot have height 2. Thus this Y is not 1-generic.

The 1-genericity of any one among X, Y or Z implies the 1-genericity of the others,
and even more is true:
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Proposition 3.6: If n ≥ m+p−1, the following are equivalent (without any assumption
on the field K):
(i) X is 1-generic.
(ii) The transpose of X is 1-generic.
(iii) Y is 1-generic.
(iv) Z is 1-generic.

Proof: As n ≥ m+p−1, X is 1-generic if and only if it is 1-generic in Eisenbud’s sense [E1,
E2]. But a matrix is 1-generic in Eisenbud’s sense if and only if its tranpose is 1-generic
in Eisenbud’s sense. This proves that the first two statements are equivalent.

The proof that the first and the third statements are equivalent is essentially the same
as the proof of the equivalence of statements (ii) and (iv). We explicitly only prove here
that if X is 1-generic, so is Y . The converse has a completely analogous proof.

Assume that Y is not 1-generic. First observe that an invertible row operation on
Y corresponds naturally to a linear change of variables among Z1, . . . , Zp, and thus to an
identical invertible row operation on X. Thus without loss of generality we may assume,
if Y is not 1-generic, that the entries of the first row of Y generate an ideal L of height
strictly smaller than m. Let the entries i1, . . . , im−1 generate L. Let i′1, . . . , i

′
n−m+1 be

such that {i1, . . . , im−1, i
′
1, . . . , i

′
n−m+1} is the set {1, . . . , n}. Then the assumption is that

there exist elements dl′l in K with 1 ≤ l′ ≤ n−m + 1 and 1 ≤ l ≤ m− 1 such that

il′th entry of the first row of Y =
∑

j

ail′ j1Yj

=
m−1∑

l=1

dl′l(lth entry of the first row of Y )

=
m−1∑

l=1

dl′l


∑

j

ailj1Yj


 .

Comparing the coefficients of the variable Yj on both sides we get that, for each index
j = 1, . . . , m,

ail′ j1 =
m−1∑

l=1

dl′lailj1.

Now consider the ideal generated by the entries of the first row of X. For every j =
1, . . . , m, we have

∑

i

aij1Xi =
m−1∑

l=1

ailj1Xil
+

n−m+1∑

l′=1

ai′
l′ j1

Xi′
l′

=
m−1∑

l=1

ailj1Xil
+

n−m+1∑

l′=1

(
m−1∑

l=1

dl′lailj1

)
Xi′

l′
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=
m−1∑

l=1

ailj1

(
Xil

+
n−m+1∑

l′=1

dl′lXi′
l′

)
.

In conclusion
({∑

i

aij1Xi : l = 1, . . . , m− 1

})
⊆

({
Xil

+
n−m+1∑

l′=1

dl′lXi′
l′

: l = 1, . . . , m− 1

})

which is an ideal of height m− 1. Thus X is not 1-generic.

Remark 3.7: David Eisenbud pointed out another proof of this proposition: X is 1-
generic if and only if each generalized row of X gives an injective map from Km to the
space of linear forms in K[X1, . . . , Xn], with the jth basis element mapping to the jth
entry of this generalized row. Also, Y is 1-generic if and only if each generalized row of Y

gives an surjective map from Kn to the space of linear forms in K[Y1, . . . , Ym], with the ith
basis element mapping to the ith entry of this generalized row. But the matrices X and Y

are adjoints of each other in the sense of Eisenbud-Popescu [EP], with a generalized row
of X corresponding to the analogous generalized row of Y , so that by the duality between
injectivity and surjectivity between adjoints, X is 1-generic if and only if Y is.

The large number of the Xi make it so that X is 1-generic if and only it its transpose
is. The analogous statement is false for Y . For example, let

Y =
[

Y1 Y2 0
0 Y1 Y2

]
.

Then Y is 1-generic but its transpose is not, as say the entries of the first column of Y

generate an ideal of height strictly smaller than 2.
By the last proposition, we know that for this Y , both X and Z are 1-generic matrices.

We calculate them:

A = [ Z1 Z2 ]
[

Y1 Y2 0
0 Y1 Y2

]


X1

X2

X3


 = [X1Y1Z1 + X2Y1Z2 + X2Y2Z1 + X3Y2Z2] ,

so that

X =
[

X1 X2

X2 X3

]
, Z =

[
Z1 Z2 0
0 Z1 Z2

]
.

Thus Z is also 1-generic, but its transpose is not.

Corollary 3.8: Let Y be a 1-generic matrix and TZ = K[Z1, . . . , Zp] \ {0}. Then
T−1

Z (AX) = T−1
Z (Y ).
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Proof: Certainly T−1
Z (AX) ⊆ T−1

Z (Y ). As Y is 1-generic, so is Z. By Lemma 3.5 then
Im(Z) contains an element of TZ . Thus by Lemma 2.1, Y Im(Z) ⊂ AX , so that T−1

Z (AX) =
T−1

Z (Y ).

Lemma 3.9: Let X be a 1-generic matrix, TZ = K[Z1, . . . , Zp] \ {0} and T̂Z a multi-
plicatively closed subset generated by the homogeneous linear polynomials in K[Z1, . . . , Zp].
Then T−1

Z (AY ) and T̂−1
Z (AY ) are prime ideals of height m.

Proof: T−1
Z (AY ) is generated by m elements each of which is a linear form in X1, . . . , Xn

with coefficients in the field T−1
Z K[Z1, . . . , Zp]. Thus T−1

Z (AY ) = T−1
Z (ZX) is prime ideal

which by 1-genericity of X has height m. Let Xi1 , . . . , Xim
be the generators of this ideal.

By elementary linear algebra, all the other Xi are expressible as linear combinations of the
Xij with coefficients in T̂−1

Z K[Z], so that T̂−1
Z (AY ) = T̂−1

Z (Xi1 , . . . , Xim). And that is of
course a prime ideal of height m.

In fact, T−1(AY ) is a prime ideal of height m for an even smaller multiplicatively
closed subset T of TZ :

Lemma 3.10: Assume that X is 1-generic, that K is algebraically closed, and let l be an
integer between 1 and p. Let T be the multiplicatively closed set {1, Zl, Z

2
l , Z3

l , . . .}. Then
in the localization T−1R, T−1AY is a prime ideal of height m.

Proof: We proceed by induction p. First let p = 1. Then the ideal T−1(AY ) is generated
by the entries of the 1 by m matrix X. This ideal has height m by 1-genericity of X, and
is a prime ideal as it is generated by linear forms.

Now let p > 1. Suppose that the height of T−1(AY ) is strictly less than m or that
T−1(AY ) has two distinct prime ideals minimal over it. As T ⊆ T̂Z and T̂−1

Z (AY ) is a prime
of height m, there exists a prime ideal Q in R, minimal over (AY ), such that Zl 6∈ Q and
T̂Z ∩Q is non-empty. As Q is a prime ideal and every element of T̂Z is a product of linear
forms, we may assume that there exists a linear form f2 in T̂Z ∩Q. Necessarily f2 and Zl

are not multiples of each other. Thus there exist linear forms f3, . . . , fp in K[Z1, . . . , Zp]
and an invertible p by p matrix M with entries in K such that Z = (Zl, f2, . . . , fp)M .
Thus

AY = ZX = (Zl, f2, . . . , fp)MX.

Note that MX is still 1-generic. Let X ′ be the submatrix of MX consisting of all but
the second row. X ′ is 1-generic, so by induction on p, the m entries of (Zl, f3, . . . , fp)X ′

generate an ideal of height m in T−1K[X1, . . . , Xn, Y1, . . . , Ym, Zl, f3, . . . , fp]. But Q ⊇
(AY ) + (f2) = I1((Zl, f3, . . . , fp)X ′) + (f2), which has height at least m + 1. This con-
tradicts the assumption that Q was minimal over an m-generated ideal. Thus the height
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of T−1(AY ) is exactly m and its radical is a prime ideal. Thus T−1(AY ) is generated
by a regular sequence, so it has no embedded primes. Hence as a further localization of
T−1(AY ) is a prime, so is T−1(AY ).

Next result summarizes all the information we have about the interaction between
the concepts of general position and 1-genericity. It also underlines the interplay and the
properties of the matrices X, Y and Z.

Theorem 3.11: Let n ≥ m + p − 1 and n ≥ m ≥ p. Let K be an algebraically closed
field. Then the following are equivalent:

(i) X is a 1-generic matrix.
(ii) The transpose of X is a 1-generic matrix.
(iii) Y is a 1-generic matrix.
(iv) Ip(Y ) has height m.
(v) The radical of Ip(Y ) is (Y1, . . . , Ym).
(vi) Z is a 1-generic matrix.
(vii) Im(Z) has height p.
(viii) The radical of Im(Z) is (Z1, . . . , Zp).
(ix) A is a trilinear form in general position.

Proof: Proposition 3.6 proves that (i), (ii), (iii) and (vi) are equivalent. Lemma 3.5 proves
that (iii), (iv) and (v) are equivalent and also that (vi), (vii) and (viii) are equivalent.
Thus the first eight statements are equivalent.

By the third condition of general position, (ix) implies (iv). Finally, Lemmas 3.3, 3.5,
3.8, and 3.10 prove that the first eight statements imply the last one.

This theorem shows that perhaps one should define general position by a simpler
formulation such as statement (iv). However, for the proofs in the following it is more
convenient if we keep referring to the conditions of general position in its original definition,
Definition 2.2. Moreover, the equivalences in the theorem only hold when K is algebraically
closed, but we do not use an algebraically closed field throughout the paper.

In the rest of this section we prove that there are many trilinear forms in general
position. First of all, all the examples in [BBG] are in general position:

Corollary 3.12: Assume that K is algebraically closed, that n = m + p − 1 and that
aijk 6= 0 if and only if i = j + k − 1. Then the aijk are in general position.

Proof: Remark 1.3 in [BBG] says that Ip(Y ) = (Y1, . . . , Ym)p. Thus the height of Ip(Y )
is m and the conclusion follows from the previous proposition.

The trilinear forms analyzed in [BBG] describe a particular class of three-dimensional
arrays with non-zero hyperdeterminant. Much more is true for the trilinear forms in general
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position:

Proposition 3.13: Let K be an algebraically closed field. When n = m + p− 1, A is in
general position if and only if the three-dimensional array identified by its coefficients has
non-zero hyperdeterminant.

Proof: In [GKZ, Theorem 3.1, page 458] it is shown that the hyperdeterminant of the three-
dimensional array identified by the coefficients of a trilinear form A, with n = m + p− 1,
is zero if and only if the system of multilinear equations

AX1(Y ,Z) = · · · = AXn(Y ,Z) = 0

has a non-trivial solution.
We show that A is in general position if and only if AX1(a, b) = · · · = AXn(a, b) = 0

if and only if a and b are both 0, (here a ∈ Km and b ∈ Kp). By Theorem 3.11, A is in
general position if and only if the corresponding matrix X is 1-generic. Since n = m+p−1
this happens if and only if X is 1-generic in Eisenbud’s sense (see [E1, page 604] and [E2,
page 547]). In other words taking any two non-zero vectors in Km and Kp, say a and b,

bXat =
n∑

i=1




m∑

j=1

p∑

k=1

aijkajbk


Xi

is different from zero. Naturally this is equivalent to saying that
n∑

i=1

AXi(a, b)Xi 6= 0, and

we conclude that A is in general position if and only if given any two non-zero vectors a

and b, then there is an index i for which AXi(a, b) is different from zero, as desired.

Clearly this means that when n = m + p− 1, the coefficients of the trilinear forms in
general position vary in a Zariski-open subset U of Knmp. As shown below, this statement
remains true in the case n > m + p− 1:

Proposition 3.14: Let K be an algebraically closed field. There exists a non-empty
Zariski-open subset U of Knmp such that if (aijk) ∈ U , then the corresponding A is in
general position.

Proof: We will prove that whenever (aijk) ∈ U , then Ip(Y ) = (Y1, . . . , Ym)p.
Let Aijk, i = 1, . . . , n, j = 1, . . . , m, and k = 1, . . . , p be indeterminates over

K[Y1, . . . , Ym]. Let Ŷ be the “generalized” version of Y , namely let it be a p by n matrix
whose kith entry is

∑
j AijkYj . Let M1, . . . , M(n

p) be all the p by p submatrices of Ŷ and
let F1, . . . , F(m+p−1

p ) be a generating set for Y p. Note that for all l, det Ml ∈ Y pK[Aijk, Yj ]
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and that there exist sij ∈ K[Aijk] such that

detMi =
∑

j

sijFj .

Let S be the
(
n
p

)
by

(
m+p−1

p

)
matrix whose ijth entry is sij . By the assumption that

n ≥ m + p− 1 it follows that
(
n
p

) ≥ (
m+p−1

p

)
.

Now, after some specialization Aijk 7→ aijk ∈ K, Ip(Y ) = (Y1, . . . , Ym)p if and only
if some

(
m+p−1

p

)
by

(
m+p−1

p

)
minor of S is non-zero (after the same specialization). Thus

it suffices to determine that the ideal I in K[Aijk] generated by the maximal minors of
S is non-zero. Then U is the non-empty set of all points on which I does not vanish.
This ideal I is non-zero if and only if there exist examples of aijk for which Ip(Y ) equals
(Y1, . . . , Ym)p. If n = m + p − 1, all cases in [BBG] (see Remark 1.3 in [BBG]) satisfy
the condition. If, however, n > m + p− 1, we make up examples as follows: into the first
m + p − 1 columns of Y we place an example from [BBG], and place zeros in the rest of
the columns.

In conclusion, the trilinear forms in general position represent a much wider class than
that described in [BBG]: they include the catalecticant, generic, generic symmetric, and a
lot more kinds of matrices.

4. The minimal primes of JA

We determine explicitly all the minimal primes of JA for A in general position. Several
proofs of this section employ ideas of [BBG]. However, our results are more general, and
proofs often simpler.

In this section the underlying field does not need to be algebraically closed.

Proposition 4.1: Let A be a trilinear form such that the height of Ip(Y ) is m. If Q is a
prime ideal containing JA, then Q contains either the ideal (Z1, . . . , Zp, AZ), or the ideal
(Y1, . . . , Ym, AY ) + Ip(X).

Proof: If (Z1, . . . , Zp) ⊆ Q, certainly (Z1, . . . , Zp, AZ) ⊆ Q.
Now suppose that not all the Zi lie in Q. By Lemma 2.1 we conclude that Ip(Y ) and

Ip(X) are contained in Q. By Lemma 3.5, (Y1, . . . , Ym) ⊆ √
Ip(Y ), so that (Y1, . . . , Ym) ⊆

Q. Thus Q contains AY (by definition), all the Yi, and Ip(X).

Thus by the definition of general position:

Corollary 4.2: Let A be a trilinear form in general position. If Q is a prime ideal contain-
ing JA, then Q contains either the ideal (Z1, . . . , Zp, AZ), or the ideal (Y1, . . . , Ym, AY ) +
Ip(X).
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To find the minimal primes of JA one needs, as in [BBG], to use some techniques from
the theory of symmetric algebras. We recall that if M is a free module over R of rank g,
then the symmetric algebra S(M) is just the polynomial ring in g indeterminates over R:

S(M) ∼= R[ T1, . . . , Tg ]. If M has a presentation F
(cij)−→ G −→ M −→ 0 with F and G

free of ranks f and g, respectively, then S(M) is isomorphic to R[T1, . . . , Tg]/I, where I is
generated by the f elements

∑g
j=1 cjiTj , 1 ≤ i ≤ f .

Proposition 4.3: If the height of Ip(Y ) is m and m > p, then (Z1, . . . , Zp, AZ) is a
minimal prime ideal of JA of height 2p.

Proof: By Proposition 4.1 it suffices to prove that (Z1, . . . , Zp, AZ) is a prime ideal of
height 2p. For that it suffices to prove that AZ is a prime ideal of height p.

Let S be the ring K[Y1, . . . , Ym]. Consider the map from Sp to Sn given by the
transpose Y T of Y . Then as Ip(Y ) has height and grade m ≥ 1, by the Buchsbaum-
Eisenbud criterion for exactness [BE], Y T is injective. Let N be the cokernel. Then

0 −→ Sp Y T

−→ Sn −→ N −→ 0 is exact, so that the symmetric algebra S(N) of N can be
represented as

S(N) =
K[X1, . . . , Xn, Y1, . . . , Ym]

(AZ1 , . . . , AZp)
.

For all t between 1 and p, grade (It(Y T )) ≥ grade (Ip(Y )), which by assumption is m ≥
p + 1. Thus one may use [H, Theorem 1.1] to conclude that S(N) is a Cohen-Macaulay
domain of dimension m + n − p. Hence (AZ)S is a prime ideal of height p, which proves
the proposition.

Our next step is to show that under some assumptions, the ideal (Y1, . . . , Ym)+AY +
Ip(X) is perfect. Of course, it is enough to show that AY + Ip(X) is perfect.

Lemma 4.4: Assume that A is in general position, or equivalently, that X is 1-generic.
Then the height of I1(ZX) : Z is at least m. Also, the height of Ip(X) + I1(ZX) is at least
m.

Proof: As Ip(X) + I1(ZX) ⊆ (I1(ZX) : Z), it suffices to prove that the height of
Ip(X) + I1(ZX) is at least m.

Let Q be a prime ideal in K[X1, . . . , Xn, Z1, . . . , Zp] containing Ip(X) + I1(ZX). If
Q contains all the Zk, then (Z1, . . . , Zp) + Ip(X) ⊆ Q. Since A is in general position
we have ht Ip(X) = m − p + 1 and we deduce that ht Q ≥ ht ((Z1, . . . , Zp) + Ip(X)) ≥
p + m− p + 1 = m + 1.

If Q does not contain all the Zk, then again ht Q ≥ m because A is in general position
and satisfies condition 4 of Definition 2.2.
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Remark 4.5: There always exists a minimal prime ideal Q of Ip(X) + I1(ZX) which
does not contain all the Zk. This is so for otherwise (Z1, . . . , Zp) ⊆

√
Ip(X) + I1(ZX) ⊆

(X1, . . . , Xn), which is a contradiction. So let Q be a minimal prime not containing some
Zk. Then after localization at Zk, the ideals Ip(X) + I1(ZX), I1(ZX) : (Z1, . . . , Zp) and
I1(ZX) are all equal. As I1(ZX) is generated by m elements, then after localization at
Zk the ideal Ip(X) + I1(ZX) has height at most m. Thus with hypotheses in the lemma,
the height of Ip(X) + I1(ZX) is exactly m.

Proposition 4.6: Let X be a 1-generic matrix, or equivalently, let A be a trilinear form
in general position. Then Ip(X) + I1(ZX) is a perfect ideal of height m.

Proof: Let U be a p by n matrix of indeterminates Uij , and S the polynomial ring
generated over K by all the Uij and all the Zi. Let I = (Z1, . . . , Zp)S, A = I1(ZU) ⊆ I

and J = I1(ZU) :S (Z1, . . . , Zp).
By the initial assumption that all the variables appear even after a linear change of

variables, we get that I1(X) = (X1, . . . , Xn). As X is a p by m matrix, there are exactly
mp − n linearly independent linear relations f̃1, . . . , f̃mp−n among the entries of X. The
f̃l are linear forms in K[X1, . . . , Xn]. For each l = 1, . . . , mp− n, let fl be the linear form
obtained from f̃l by replacing each ijth entry of X by Uij . Then f1, . . . , fmp−n is a regular
sequence on S and S/I. Also, S/(f1, . . . , fmp−n) ∼= K[X1, . . . , Xn, Z1, . . . , Zp], and the
image of U modulo (f1, . . . , fmp−n) is X.

Let ′ denote images modulo (f1, . . . , fmp−n).
By Lemma 4.4, ht (A′ : I ′) = ht (I1(ZX) : Z) ≥ m.
By a result of Bruns, Kustin and Miller, [BKM, Proposition 4.2], the ideal J has

height m, and S/J is a Cohen-Macaulay ring. If we knew that I ′P = A′P for every prime
ideal P containing I ′ with ht P ≤ m, we could conclude by using a result of Huneke and
Ulrich, [HU, Proposition 4.2, ii)]. So we now verify I ′P = A′P .

Since I ′ = (Z1, . . . , Zp)S and A′ = I1(ZX), it is enough to show that (Z1, . . . , Zp)P ⊆
I1(ZX)P for every prime ideal P containing (Z1, . . . , Zp) and of height ≤ m. Clearly Ip(X)
is not contained in P , otherwise P would contain the ideal (Z1, . . . , Zp) + Ip(X) which by
the generic assumption has height ≥ m + 1. Thus Ip(X) 6⊆ P . Then ZIp(X) ⊆ I1(ZX)
implies that (Z1, . . . , Zp)P ⊆ I1(ZX)P . Hence we can indeed apply the Huneke-Ulrich
result to finish the proof.

Proposition 4.7: Assume that A is in general position. Then the ideal

(Y1, . . . , Ym, AY ) + Ip(X)

is a perfect prime of height 2m, hence a minimal prime ideal of JA.

Proof: By Corollary 4.2 it suffices to prove that (Y1, . . . , Ym, AY )+Ip(X) is a perfect prime
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of height 2m. For that it suffices to prove that AY + Ip(X) = Ip(X) + I1(ZX) is a perfect
prime of height m. As perfection and the height were already proved in Proposition 4.6,
it suffices to prove that Ip(X) + I1(ZX) is a prime.

First we prove that Z1 is a regular element modulo Ip(X) + I1(ZX). By perfection
it suffices to prove that the height of Ip(X) + I1(ZX) + (Z1) is at least m + 1. Set
Z̃ = (Z2, . . . , Zp) and let X̃ be the submatrix of X without the first row. Then

Ip(X) + I1(ZX) + (Z1) = I1(Z̃X̃) + Ip(X) + (Z1).

Let Q be a prime ideal minimal over this ideal. If Q contains (Z2, . . . , Zp), then Q contains
Z1, . . . , Zp and Ip(X). Then by genericity, the height of Q is at least m + 1. If instead Q

does not contain (Z2, . . . , Zp), then as Z̃Ip−1(X̃) ⊆ I1(Z̃X̃) ⊆ Q, we get that Ip−1(X̃) ⊆ Q,
so that Q contains Ip−1(X̃)+I1(Z̃X̃)+(Z1). By Proposition 4.6, Ip−1(X̃)+I1(Z̃X̃)+(Z1)
has height at least m + 1, so that ht Q ≥ m + 1.

This proves that Z1 is a regular element modulo Ip(X) + I1(ZX). By Lemma 2.1, in
the localization at {1, Z1, Z

2
1 , Z3

1 , . . .}, the ideals Ip(X) + I1(ZX), I1(ZX), and AY are all
the same ideal, and by genericity this ideal is a prime of height m. But Z1 is a regular
element modulo Ip(X) + I1(ZX), so that even before localization, Ip(X) + I1(ZX) is a
prime ideal of height m.

Corollary 4.8: If A is in general position, then Ip(X) is a prime ideal in F [X]. Its
height is m− p + 1.

Proof: As Ip(X) = ((Y1, . . . , Ym, AY ) + Ip(X)) ∩ F [X], the first part follows from the
Proposition above. The height part follows by the definition of general position.

When K is algebraically closed, this amounts to saying that if X is 1-generic, then
Ip(X) is a prime ideal of height m − p + 1, as was already proved in [Ke] and [E2, page
542].

Theorem 4.9: Assume that A is in general position, and that m > p. Then the minimal
primes of JA are (Z1, . . . , Zp, AZ) and (Y1, . . . , Ym, AY ) + Ip(X).

Proof: Use Propositions 4.1, 4.3, and 4.7.

If p = m, it follows by symmetry from Proposition 4.7 that

(Y1, . . . , Ym, AY ) + Ip(X) and (Z1, . . . , Zp, AZ) + Ip(X)

are both minimal prime ideals of JA. Here Ip(X) = (det(X)). Note that Y · det(X) ⊆
I1(Y X) = AZ but neither Y nor det(X) lies in AZ . Thus neither AZ nor (Z1, . . . , Zp, AZ)
are prime ideals.
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Theorem 4.10: Assume that A is in general position and that m = p. Then the minimal
primes of JA are

(Z1, . . . , Zp, AZ) + Ip(X), (Y1, . . . , Ym, AY ) + Ip(X), and (Y1, . . . , Ym, Z1, . . . , Zp).

Proof: There are no inclusion relations among the listed three ideals. By the observation
above, the first two ideals are minimal primes. If Q is any other minimal prime, it fol-
lows from Proposition 4.1 and symmetry that Q must contain both (Y1, . . . , Ym, AY ) and
(Z1, . . . , Zp, AZ). Hence Q must contain (Y1, . . . , Ym, Z1, . . . , Zp). As the latter ideal is
prime and contains JA, it is minimal over JA.

Proposition 4.11: Assume that A is in general position and that n ≥ m− p + 1. Then
ht JA = 2p. If m = p, all the minimal primes have the same height.

Proof: First let m > p. By Proposition 4.3, ht (Z, AZ) = 2p, and by Proposition 4.7, the
height of the other minimal prime ideal, namely the ideal (Y ,AY ) + Ip(X), is 2m > 2p.

If m = p, then by Remark 4.5, ht (Y ,AY , Ip(X)) = 2m and ht (Z, AZ , Ip(X)) = 2p.
Hence ht (Y ,AY , Ip(X)) = ht (Z,AZ , Ip(X)) = m + p = ht (Y ,Z).

Note that in this section we only used the first four conditions of Definition 2.2.

5. Minimal components and the radical of JA

In this section again the underlying field does not need to be algebraically closed. The
minimal components and the radical of JA are straightforward to compute when A is in
general position.

Theorem 5.1: Let A be in general position and let P be a prime ideal minimal over JA.
Then the P -primary component of JA is P .

Proof: First assume that P = (Z1, . . . , Zp, AZ). Let TY = K[Y1, . . . , Ym] \ {0}. By the
remark after Definition 2.2, T−1

Y (AX) = T−1
Y (Z). As TY has no elements in common with

P , then also (AX)P = (Z)P . Thus the P -primary component contains Z, hence it is equal
to P .

Now assume that P = (Y1, . . . , Ym, AY ) + Ip(X). Since A is in general position,
T−1

Z (AX) = T−1
Z (Y ), where TZ = K[Z1, . . . , Zp] \ {0}. As TZ has no elements in common

with P , then also (JA)P contains Y . Moreover, by Lemma 2.1, (JA)P also contains Ip(X).
Thus again the P -primary component equals to P .

Finally, let P = (Y1, . . . , Ym, Z1, . . . , Zp). Since T−1
X (AY ) = T−1

X (Z), where TX =
K[X1, . . . , Xn] \ {0}, then Z lies in the P -primary component. But in this case m = p, so
by symmetry also Y lies in the P -primary component.
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Theorem 5.2: If A is a trilinear form in general position,√
JA = JA + Y Z.

Proof: First assume that m > p. Then

√
JA = (Z,AZ) ∩ (

(Y ,AY ) + Ip(X)
)

= AZ + Z ∩ (
(Y ,AY ) + Ip(X)

)

= AZ + AY + Z ∩ (
Y + Ip(X)

)

= AZ + AY + Z(Y + Ip(X)) (by multi-homogeneity)

= AZ + AY + Y Z (by Lemma 2.1)

= JA + Y Z.

Similarly, if m = p,

√
JA =

(
(Y ,AY ) + Ip(X)

) ∩ (
(Z,AZ) + Ip(X)

) ∩ (Y ,Z)

=
((

(Y ,AY ) + Ip(X)
) ∩ (

(Z, AZ) + Ip(X)
)) ∩ (Y ,Z)

=
(

Ip(X) + AY + Y ∩ (
(Z, AZ) + Ip(X)

)) ∩ (Y ,Z)

=
(

Ip(X) + AY + AZ + Y ∩ (
Z + Ip(X)

)) ∩ (Y ,Z)

= (Y ,Z) · Ip(X) + AY + AZ + Y · (Z + Ip(X)
)
.

By Lemma 2.1, Z · Ip(X) is contained in AY , and as m = p, by symmetry also Y · Ip(X)
is contained in AZ . Thus this radical also simplifies to JA + Y Z.

If Y · Z ⊆ JA, then of course we have found a primary decomposition of JA. Note
that if mp > n, then Y · Z 6⊆ AX and Y · Z 6⊆ JA, so there exist embedded primes.

6. About the embedded components of JA

We find the embedded components in the case that p = 2 and K is algebraically
closed. Not all the embedded components are equal – for example, they depend on n and
m.

We also discuss the embedded components in cases when p > 2, and raise some
questions.

Proposition 6.1: Assume that A is in general position. Then

JA =
√

JA ∩
(
JA + Ip(X) + Ip(Y ) + Im(Z)

)
.
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Thus every embedded component of JA contains
(
JA + Ip(X) + Ip(Y ) + Im(Z)

)
.

Proof: By Lemma 2.1 and multihomogeneity,
√

JA ∩
(
JA + Ip(X) + Ip(Y ) + Im(Z)

)

= JA + Y · Z ∩ (
JA + Ip(X) + Ip(Y ) + Im(Z)

)

⊆ JA + Y AY + ZAZ + Y · ZIp(X) + ZIp(Y ) + Y Im(Z).

Thus, JA =
√

JA ∩
(
JA + Ip(X) + Ip(Y ) + Im(Z)

)
, as wanted.

As A is in general position, the radical Ip(X)+Y +Z of JA + Ip(X) + Ip(Y ) + Im(Z)
is a prime ideal by Lemma 4.8. However, JA + Ip(X) + Ip(Y ) + Im(Z) is in general not
primary to this prime. In fact, as shown in [BBG] and in [BG], there are cases of trilinear
forms in general position where the maximal irrelevant ideal is an associated prime, so that
for those the ideal JA + Ip(X) + Ip(Y ) + Im(Z) could not be primary to the non-maximal
ideal Ip(X) + Y + Z.

To simplify notation, we next introduce several admissible changes of variables, ad-
missible in the sense that the primary decompositions stay the same. We admit linear
changes of variables among the Xi, the Yj and the Zk separately. Such a change is an
automorphism of K[X,Y , Z] and it maps isomorphically the Jacobian ideal JA to the cor-
responding new Jacobian ideal JA. Thus the primary decomposition of JA is unaffected
by these changes.

Some specific changes we can use are as follows:
1. Renaming of the Xi, in other words, a linear change of variables among the Xi,
2. Elementary row operation on X: this corresponds to a linear change of variables

among the Zk and an elementary row operation on Y ,
3. Elementary column operation on X: this corresponds to a linear change of variables

among the Yj and an elementary row operation on Z.
Note that none of these changes affects the 1-genericity of X, and so by Proposition 3.6

it also does not affect the 1-genericity of Y and Z.

When p = 2, by Eisenbud [E2, Theorem 5.1 iii)] these admissible changes transform
X into the scrollar space form M(a1, . . . , ad) with a1 ≥ a2 ≥ · · · ≥ ad ≥ 1,

∑
i ai = n,

d = n−m. Explicitly, X has the form:
[

X1 X2 · · · Xa1−1

X2 X3 · · · Xa1

∣∣∣∣
Xa1+1 · · · Xa1+a2−1

Xa1+2 · · · Xa1+a2

∣∣∣∣ · · ·
∣∣∣∣
Xa1+···+ad−1+1 · · · Xa1+···+ad−1

Xa1+···+ad−1+2 · · · Xa1+···+ad

]
.

For example, when n = m + 1 (smallest possible),

X = M(m + 1) =
[

X1 X2 · · · Xm−1 Xm

X2 X3 · · · Xm Xm+1

]
,
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and when n > m + 1, X is a juxtaposition of d = n −m such matrices, with no overlaps
among the variables in these submatrices. We will use the name scroll to indicate a single
block of M(a1, . . . , ad).

We will calculate the primary decomposition of JA when p = 2. We first explicitly do
the case m = p = 2 separately for the sake of clarity. Here, n ≥ m + p − 1 = 3, and as
every variable Xi is used, necessarily 4 = mp ≥ n.

Theorem 6.2: Let m = p = 2. If n = 4, JA has no embedded components. If n = 3, an
irredundant primary decomposition is

JA =
(
(Y , AY ) + I2(X)

) ∩ (
(Z,AZ) + I2(X)

) ∩ (Y ,Z) ∩ (X,AX , I2(Y ), I2(Z)).

Proof: In case n = 4, after renaming the Xi, the matrix X is

X =
[

X1 X2

X3 X4

]
.

It is easy to check that in this case, AX = Y ·Z, so that JA has no embedded components,
and so Theorem 5.2 calculates the primary decomposition of JA.

Now suppose instead that n = 3. The first three ideals in the intersection in the
statement of the theorem are the minimal primes and (X,AX , I2(Y ), I2(Z)) is the claimed
unique embedded component. Clearly it is primary to the maximal homogeneous ideal.

We know that d = n−m = 1, so that

X = M(3) =
[

X1 X2

X2 X3

]
.

Since A = X1Y1Z1 + X2Y1Z2 + X2Y2Z1 + X3Y2Z2, we explicitly obtain
AX1 = Y1Z1

AX2 = Y1Z2 + Y2Z1

AX3 = Y2Z2

AY1 = X1Z1 + X2Z2

AY2 = X2Z1 + X3Z2

AZ1 = X1Y1 + X2Y2

AZ2 = X2Y1 + X3Y2

We have Y1Z2 6∈ JA, but

X1Y1Z2 = Z2
∂A

∂Z1
−X2

∂A

∂X3
,

X2Y1Z2 = Z2
∂A

∂Z2
−X3

∂A

∂X3
,

X3Y1Z2 = X3
∂A

∂X2
− Z1

∂A

∂Z2
−X2

∂A

∂X1
.

Thus X · (Y1Z2) ⊆ JA. As Y · Z = AX + (Y1Z2), this means that X · Y · Z ⊆ JA, hence

JA ⊆
√

JA ∩ (X + I2(Y ) + I2(Z) + AX)

= JA + Y · Z ∩ (X + I2(Y ) + I2(Z) + AX)

⊆ JA + Y · Z ·X + ZI2(Y ) + Y I2(Z) + AX

⊆ JA,

19



which was to be proved.

Thus the primary decompositions depend on n.
Before we start the general p = 2 case, we renumber the variables Yj to be

Y1, Y2, . . . , Ya1−1, Ya1+1, . . . , Ya1+a2−1, . . . , Ya1+a2+···+ad−1+1, . . . , Ya1+a2+···+ad−1.

Thus the subscripts of the Yj correspond to the subscripts of the variables Xi in the first
row of the scrollar matrix X = M(a1, . . . , ad).

Lemma 6.3: With notation as above, let Xi appear in the hth column of a scroll, and
let Xj appear in the kth column, first row, of a possibly different scroll. If h ≥ k− 1, then
XiYjZ ⊆ JA.

Proof: We first reduce to showing that XiYjZ2 ∈ JA. If Xj is the first variable in its scroll
(appearing in the top left corner of that scroll), then YjZ1 = AXj ∈ JA. Since Xj is in
the first row of its scroll, it is not the last variable there, so AXj = YjZ1 + Yj−1Z2. Thus
XiYjZ1 = XiAXj −XiYj−1Z2. Thus in order to finish the proof, it suffices to prove that
XiYjZ2 ∈ JA.

If Xj is in the last column of its scroll, then AXj+1 = YjZ2. So we may assume that
Xj is not in the last column of its scroll. If Xi is not the last variable in its block, then

XiYjZ2 = XiAXj+1 − Yj+1AYi + Xi+1Yj+1Z2,

so that it suffices to prove that Xi+1Yj+1Z2 lies in JA. Notice that in this step we increased
by one the indices of both Xi and Yj . This means that we increased the column numbers
of Xi and Xj by one, or if Xi was already in the last column, then we made the new Xi

the last variable in its scroll.
As h ≥ k − 1, we have thus reduced the proof to showing that XiYjZ2 lies in JA,

where Xi is the last variable in its scroll and Xj does not lie in the last column of its scroll
in X. If Xj is the first variable in its scroll, then whenever Xi is not the first variable in
its scroll, XiYjZ2 = YjAYi−1 −Xi−1AXj , and we are done. So we may assume that Xj is
not the first variable in its scroll. But then

XiYjZ2 = YjAYi−1 −Xi−1AXj + Xi−1Yj−1Z2,

which is the reverse operation of what we just did: here we shift back the indices of the
columns. Now, as h ≥ k, this procedure ensures that, in at most k − 1 steps, the Xj gets
pushed into the first entry of its scroll, whence XiYjZ2 lies in JA.
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Corollary 6.4: With notation as above, assume that ah ≥ ak − 2. Then for all Xi taken
from the scroll corresponding to ah and all Yj such that Xj is from a scroll corresponding
to ak,

XiYjZ ⊆ JA.

Proof: As in the proof of the lemma, it suffices to prove that XiYjZ2 lies in JA, where
Xj does not lie in the last column of its scroll and Xi is the last variable in its block. But
then by the reduction of indices procedure as at the end of the previous proof, Xj reduces
to the first variable in its scroll in at most ak − 2 ≤ ah steps, whence XiYjZ2 ∈ JA.

Theorem 6.5: Suppose that p = 2, n < 2p, and X = M(a1, . . . , ad) with a1, . . . , ad ∈
{a, a + 1, a + 2} for some integer a. Then JA has exactly one embedded prime, namely the
maximal homogeneous ideal. As the embedded component one can take JA+(X1, . . . , Xn)+
I2(Y ) + Im(Z).

Proof: By the previous corollary, X Y Z ⊆ JA. Then

JA = (JA + Y Z) ∩ (JA + I2(Y ) + Im(Z) + X),

so that the only embedded prime is the homogeneous maximal ideal, with the displayed
embedded component.

Remark 6.6: This gives precisely the primary decomposition in the case p = 2 and
n = m + 1, since in that case there is only one scroll in X.

In the next result we tackle the general p = 2 case. The ideas of the proof are similar to
the ideas of the proof of Lemma 6.3, however, the two proofs accomplish slightly different
things.

Theorem 6.7: Let p = 2, m and n arbitrary. If n = 2m, JA has no embedded compo-
nents. When instead n < 2m, then JA has only one embedded component, and that one is
primary to the maximal homogeneous ideal. The embedded component may be taken to be

JA + (X1, . . . , Xn)m−1 + I2(Y ) + Im(Z).

Proof: The first statement holds by the remark after Theorem 5.2.
We use the notation of the previous few results. It is easy to see that it suffices to

prove that every Xi1 · · ·Xim−1YjZk lies in JA. As in the proof of Lemma 6.3, it suffices to
prove this for k = 2.

If Xj is in the last column of its scroll, then AXj+1 = YjZ2. So we may assume that
Xj is not in the last column of its scroll. If for some s, say s = 1, Xis is not the last
variable in its block, then

Xi1 · · ·Xim−1YjZ2 =
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Xi1 · · ·Xim−1AXj+1 −Xi2 · · ·Xim−1Yj+1AYi1
+ Xi1+1Xi2 · · ·Xim−1Yj+1Z2,

so that it suffices to prove that Xi1+1Xi2 · · ·Xim−1Yj+1Z2 lies in JA. By raising the indices
more if necessary we have thus reduced the proof to showing that Xi1Xi2 · · ·Xim−1YjZ2

lies in JA, where all Xis are the last variables in their scroll and where Xj does not lie in
the last column of its scroll in X. If Xj is the first variable in its scroll, then

Xi1 · · ·Xim−1YjZ2 = Xi2 · · ·Xim−1YjAYi1−1 −Xi2 · · ·Xim−1Xi1−1AXj
,

and we are done. So we may assume that Xj is not the first variable in its scroll. But then

Xi1 · · ·Xim−1YjZ2 =

Xi2 · · ·Xim−1YjAYi1−1 −Xi2 · · ·Xim−1Xi1−1AXj + Xi2 · · ·Xim−1Xi1−1Yj−1Z2,

so it suffices to prove that Xi2 · · ·Xim−1Xi1−1Yj−1Z2 lies in JA. We can play “reduce the
indices game” on the is as long as possible. Now, as Yj is not the last variable in its scroll
and there are m variables Yk, the index reduction procedure ensures that, in some step,
we arrive at an element of the form Xi1 · · ·Xim−1YjZ2, where Xj is the first variable in
its scroll but some Xis is not. But then XisYjZ2 = YjAYis−1 −Xis−1AXj , and so we are
done.

The class of Jacobian ideals of trilinear forms considered in [BBG] always had the
maximal irrelevant ideal as an associated prime. Theorems 6.5 and 6.7 are further evidence
of this behavior. We do not know if the same holds more generally for arbitrary n ≥ m ≥ p:

Question 6.8: Is the maximal irrelevant ideal an associated prime whenever K is alge-
braically closed and A is a trilinear form in general position?

We now briefly discuss the general case n ≥ m ≥ p. The main reason for lack of
positive results for p ≥ 3 is that there is unfortunately no natural description of p by m

1-generic matrices. Unlike in the p = 2 case, for larger p a trilinear form in general position
need not be of the form studied in [BBG] with all coefficients equal to 1. In fact, when
p = m = 3, n = 5, then for

A = [Z1 Z2 Z3 ]




X1 X2 X3

X2 X3 X4

2X3 X4 X5







Y1

Y2

Y3


 ,

I2(X) + (Y ,Z) is not a prime ideal, whereas for

A = [Z1 Z2 Z3 ]




X1 X2 X3

X2 X3 X4

X3 X4 X5







Y1

Y2

Y3


 ,
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I2(X) + (Y ,Z) is a prime ideal associated to JA. Thus X for the first A is not equivalent
via admissible changes to the second X. This shows that when p = 3, the primary
decompositions are much more difficult to get at than when p = 2.

Note that both of the trilinear forms above are of the form studied in [BBG], but the
second one is symmetric and the first one is not.

With the help of the computer algebra system Singular [GPS] we have calculated
primary decompositions for several cases when m = p = 3. If

X =




X1 X2 X3

X2 X3 X4

X3 X4 X5


 or X =




X1 X2 X3

X2 X4 X5

X3 X5 X2


 ,

and a few other symmetric matrices, Singular returns (X,Y , Z) and JA+I2(X)+(Y ,Z) as
the embedded primes. In general, Singular finishes the primary decomposition calculation
for symmetric matrices within a day via its Gianni-Trager-Zacharias algorithm [GTZ] and
within half an hour via its Shimoyama-Yokoyama algorithm [SY]. For non-symmetric 1-
generic 3 by 3 matrices, however, we have not gotten a single primary decomposition via
Singular.
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