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by
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These errata pages are based on observations by many people. We thank Rüdiger Achilles,
Russel Barnes, Carles Bivià-Ausina, Dylan Beck, Trung Dinh, Florian Enescu, Darij Grin-
berg, William Heinzer, João Hélder, Cristodor Ionescu, Dan Katz, Youngsu Kim, Karl-
Heinz Kiyek, Manoj Kummini, Pedro Lima, Giulio Peruginelli, Janet Striuli, Bernd Ulrich,
Marie Vitulli, and two anonymous referees.

p. 8, lines 6–7 of proof of 1.3.3: replace “The lowest degree component” by “The low-
est degree component monomial”; replace “components” by “component mono-
mials”.

p. 12, in Definition 1.4.7, now allow the Newton polyhedron to be the convex hull to
be either in Rd or in Qd. This harmonizes with the subsequent general definition
of the Newton polyhedron in 18.4.1.

p. 13, Theorem 1.4.10: The following proof is clearer:

Proof: Let n ≥ d. It suffices to prove that In is integrally closed under the
assumption that I, I2, . . . , In−1 are integrally closed. For this it suffices to prove
that every monomial Xc1

1 · · ·X
cd
d in the integral closure of In lies in In. Let

{Xv1 , . . . , Xvt} be a monomial generating set of I. By the form of the integral
equation of a monomial over a monomial ideal there exist non-negative rational
numbers ai such that

∑
ai = n and the vector (c1, . . . , cd) is componentwise

greater than or equal to
∑
aivi. By Carathéodory’s Theorem A.2.1 (new version

in errata!), by possibly reindexing the generators of I, there exist non-negative

rational numbers b1, . . . , bd such that
∑d
i=1 bi ≥ n and (c1, . . . , cd) ≥

∑d
i=1 bivi

(componentwise). As n ≥ d, there exists j ∈ {1, . . . , d} such that bj ≥ 1. Then
(c1, . . . , cd) − vj ≥

∑
i(bi − δij)vi says that the monomial corresponding to the

exponent vector (c1, . . . , cd)− vj is integral over In−1. Since by assumption In−1

is integrally closed, the monomial corresponding to (c1, . . . , cd) − vj is in In−1.
Thus Xc1

1 · · ·X
cd
d ∈ In−1X

vj ⊆ In.

p. 15, Proposition 1.6.2: improved the proof (first need to reduce to S being finitely
generated as a module over R).

p. 18, Theorem 1.7.3: A reference is added where the result appeared first: J. T.
Arnold and R. Gilmer, On the contents of polynomials, Proc. Amer. Math. Soc.
24 1970, 556–562.

p. 25, Lemma 2.1.7: The “Thus” part does not need the domain assumption.

p. 25, Lemma 2.1.8: M has to be finitely generated. In the second part, M has to be
faithful over R[x].

p. 26, Lemma 2.1.9 (3): M has to faithful over R[x1, . . . , xn]. Modify the parts of the
proof involving (3).
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p. 28, Lemma 2.1.15 (2): The ring L contains all Ri so that the intersection makes
sense.

pp. 31–32: The last two lines of page 31 and the first line of page 32 are redundant:
P can be an arbitrary ideal and Q is not needed at all.

p. 32, line -16: zi should be zi0 in the definition of n.
p. 34, line 2 of Section 2.3: “noni-negative” should be “non-negative”
p. 34, 2.3.1: clarify that each Rg is an additive subgroup of R. Add that elements of

Rg and Mg are said to be homogeneous of degree g.
p. 35, line 5: variables should be over S rather than R. I added further clarifications

there and fixed the double usage of the integer n.
p. 36, line 3 of 2.3.5: add “of” before “R”.
p. 36, 2.3.5 (2) should say that R is a G-graded subring of S, inheriting the G-grading

from S; p. 36, 2.3.5 (3) should say that the idempotents of R are of the form
f/g, where f, g are homogeneous elements of R and g is a non-zerodivisor.

p. 37, line 7: ri should be in Pi, pi ∈ ∩j 6=iPj \ Pi. The Pi at the end of the second
paragraph and at the beginning of the third should be PiS.

p. 37, in the statement of 2.3.6, K is not defined (and is not needed): it is implicitly
the total ring of fractions.

p. 38, line 4 of Corollary 2.3.7: E ∈ Nd should be E ⊆ Nd.
p. 39, line 3: R[S0] should be S0[Rn].
p. 39, line -9: “torsion-free ideal” should be “ideal containing a non-zerodivisor or a

unit”. Similarly correct line 8 on p. 40.
p. 40, Lemma 2.4.3: We need to assume that yJ ⊆ R for some non-zerodivisor y on

R, and the conclusion is then that HomR(I, J) is identified with 1
xy (xyJ :R I).

p. 41, example after Discussion 2.4.7: I is mistyped, it should be instead I = (t3, t5),
the rest is as was. The current principal I couldn’t possibly be a counterexample.

p. 42, Exercise 2.3 (i): Change “A” to “R”.
p. 42, Exercise 2.7 and p. 43, Exercise 2.9: Added that these two exercises came from

Bill Heinzer’s MA 650 course in 1988.
p. 43, line 4 of Exercise 2.10: “a R-submodule” should be “an R-submodule”.
p. 43, Exercise 2.12 (ii): Also need to assume that the number of minimal prime ideals

of R and S are the same. Otherwise k[x] → k[x] × k is a counterexample. The
new phrasing: Prove that R :R S is not contained in any minimal prime ideal of
R and that R and S have the same number of minimal prime ideals if and only
if R and S have the same total ring of fractions.

p. 43, Exercise 2.15 is wrong as stated. Replace by another exercise. Also, 2.14 and
2.15 are redundant, so both replaced.

p. 43, Exercise 2.16: the (i), (ii), (iii) should be replaced by: (i) w = 1+
√
D0

2 if
D0 ≡ 1 mod 4, (ii) w =

√
D0 if D0 6≡ 1 mod 4.

p. 44, Exercise 2.18: F should be declared as (Q≥0E) ∩ Nd. One exponent d + n in
(iv) should be m+ d.

p. 44, Exercise 2.21: We could grade trivially. Find a non-trivial monoid.
p. 44: Exercise 2.23 uses almost integrality, which is defined in Exercise 2.26. Thus

now 2.23 is moved to behind 2.26, which regretfully messes up the numbering.
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p. 45: Exercise 2.26 (ix): Replace “Xn, Y n
2

” with “Xn · Y n2

”.

p. 46, line 4 below the exercises: Change “AP ” to “RP ”.

p. 47, Discussion 3.1.2: two lines below the display is the definition of yj (and not of
yi).

p. 57, the fourth paragraph is wrong. Remove it (or replace R by k[X,Y ]/(X3, XY )).
Reorganized Section 4.1 on page 57, and changed the old Proposition 4.1.2 to
a stronger Proposition 4.1.3 (as needed in the new proof of the Mori–Nagata
Theorem):

Proposition 4.1.3 Let (R,m) be a Noetherian local ring. Then m is principal
generated by a non-zerodivisor if and only if R is a Dedekind domain, and that
holds if and only if every non-zero ideal in R is principal and generated by a
non-zerodivisor. Furthermore, for such a ring R, every ideal is a power of m, and
there are no rings strictly between R and its field of fractions.

p. 57: the proof shows that part (1) can be phrased more strongly.

p. 59, proof of 4.2.3: If k is a finite field, then k′ = k and the paragraph three is
wrong. Here is a correction:

Now assume that k is an arbitrary field, possibly finite. By repeated use of
Corollary A.3.2, which says that all associated prime ideals in R are homogeneous,
and by repeated use of the homogeneous Prime Avoidance Theorem (A.1.3), there
exists a sequence x1, . . . , xm of homogeneous elements in R such that for all i =
1, . . . ,m, xi is not in any prime ideal minimal over (x1, . . . , xi−1). Let m be the
maximal integer for which this is possible. By possibly lifting each xi to a power,
we may assume that all xi have the same degree, say degree ed. By construction
the only prime ideal in R containing x1, . . . , xm is the maximal homogeneous
ideal M. Then Mc ⊆ (x1, . . . , xm) for some integer c, and in particular if R̃ is
the subring of R generated over k by all homogeneous elements of degree ed, then
the maximal ideal of R̃ raised to the cth power is contained in (x1, . . . , xm)R̃.
Thus as in the first paragraph we may assume that R is generated by elements of
degree ed. By homogeneity and degree count Mc = Mc−1(x1, . . . , xm), so that M
is integral over (x1, . . . , xm). By Proposition 2.3.8, R is integral over its subring
A = k[x1, . . . , xm]. Since M has height m by the construction of the xi, there
exists a minimal prime ideal P in R such that the height of M/P is m and hence
by the Dimension Formula (Theorem B.5.1) the height of (x1, . . . , xm)A = M∩A
modulo A/(P ∩ A) is m. This means that ht((x1, . . . , xm)A) = m and so that
x1, . . . , xm are algebraically independent over k.

p. 64, line 3 of proof of 4.4.4: W should be W ′.

p. 65, line -2: change p0 to p

p. 71, add “is” in the definition of singular locus (4.5.4).

p. 78, line -19: TR̂/Qi should be R̂/Qi; Li+ should be Li.

p. 78, the last two paragraphs of the proof of 4.7.3: it is not clear how x/y could

satisfy an equation of integral dependence over R̂. Here is a correction, by first
changing the assumptions of the proposition: R is not assumed to be local but
only semilocal, and then R̂ is the completion of R in the topology determined by
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its Jacobson radical:
If x

y ∈ T ∩K, with x, y non-zero elements of R and y not in any minimal prime

ideal of R, then x ∈ yT . Since x, y ∈ R, by Proposition 1.6.1 the image of x in
T is in the integral closure of yT , whence by Proposition 1.1.5 the image of x in
R̂ is in the integral closure of yR̂, and by Proposition 1.6.2 x ∈ yR, whence by
Propositions 1.6.1 and 1.5.2, x ∈ yR. Thus x

y ∈ R, which proves that R = T ∩K.

Now let α ∈ T+ ∩ K. Since K is the total ring of fractions of R+, there exist
x, y ∈ R+ such that y is not in any minimal prime ideal of R+ and such that
α = x

y . Let R′ be the subring of R+ generated over R by x and y. Since R′ is
a module-finite extension of R, it is Noetherian. By Lemma 2.7.1, each maximal
ideal m′ in R′ contracts to a maximal ideal in R, and by the Incomparability
Theorem (2.2.3), m′ is minimal over (m′∩R)R′. Since R′ is Noetherian, for every
maximal ideal m of R, there are only finitely many prime ideals in R′ minimal
over mR′, which shows that R′ is semilocal. Let T ′ be obtained from R′ in the
same way that T is constructed from R. Since R̂ ⊆ R̂′ is module-finite, necessarily
T ⊆ T ′ and T+ ⊆ (T ′)+. Since y is not in any minimal prime ideal of R+, it is
not in any minimal prime ideal of R′, and so not in any minimal prime ideal of
T ′. Thus α ∈ Q(T ′) is integral over T and hence over T ′, so that α ∈ T ′. Thus
α ∈ Q(R′) ∩ T ′, and by the previous paragraph, α ∈ R′. It follows that α ∈ R+.

p. 85, line 3 of 4.9.4: discrete valuation rings have not yet been defined. Change
“Then RQ is a discrete valuation ring of rank one between R and K” to Change
“Then RQ is a one-dimensional Noetherian integrally closed domain”. Add in
the proof: “The rest is the Krull–Akuziki Theorem (Theorem 4.9.2).”

p. 85, line 3 of proof of 4.9.5: change “Ṫhen” to “, then”. In line 5, x ∈ J rather than
x ∈ R. Change “the conductor” in the last line to “J”.

p. 87, the proof of the Mori–Nagata Theorem has a big gap (in the last paragraph).
The corrected new proof is written below completely, even though some parts
are repetitions of the old proof. (A reader familiar with valuations can make
shortcuts in this proof.)
Let P1, . . . , Pr be the minimal prime ideals of R. Then the total ring of fractions of
R is K1×· · ·×Kr, where Ki is the field of fractions of R/Pi. By Corollary 2.1.13,
the integral closure of R is the direct product of the integral closures of the R/Pi
in Ki. Thus it suffices to prove that each integral closure of R/Pi is a Krull
domain. This reduces the proof to the case where R is a Noetherian domain.
By Lemma 4.9.4, R satisfies the first property of Krull domains.
For an arbitrary non-zero x ∈ R, there exists a non-zero y ∈ R such that yx ∈ R.
Lemma 4.9.5 proves that the contractions of height-one primes minimal over xyR
are among the associated primes of xyR. There are only finitely many such
contracted ideals. By Proposition 4.8.2 there are then only finitely many prime
ideals in R that lie over these contractions, so that xy and hence x are contained
in only finitely many prime ideals of R of height one. This proves that R satisfies
the third property.
It remains to prove that R satisfies the second property of Krull domains. Sup-
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pose that the second property holds for R if R is a local domain. Then Rm =⋂
P (Rm)P , where P varies over all the height-one prime ideals in Rm. Since Rm is

a localization of R, each such (Rm)P is a localization of R at a unique correspond-
ing prime ideal Q in R of height one. Also, every prime ideal Q in R of height one
contracts to a prime ideal in R contained in some maximal ideal m of R, whence
RQ is a localization of Rm at a height-one prime ideal. Thus

⋂
mRm =

⋂
QRQ,

where Q varies over all the height-one prime ideals in R, and m varies over all the
maximal ideals in R. Clearly R ⊆ Rm for each maximal ideal m. If α ∈

⋂
mRm,

then the ideal (R :R α) is not contained in any maximal ideal of R, hence it must
contain 1, whence α ∈ R. This proves that R =

⋂
mRm as m varies over all the

maximal ideals of R, whence by what we already proved, R =
⋂
QRQ, where Q

varies over all the height-one prime ideals in R. Thus it remains to prove the
second property of Krull domains for R under the assumption that R is a local
domain.

Let R̂ be the completion of R in the topology determined by the maximal ideal.
Let Q1, . . . , Qs be all the minimal prime ideals in R̂. Set Ti = R̂/Qi. By Propo-
sition 4.7.3, R embeds canonically in T = T1 × · · · × Ts, the field of fractions K
of R is contained in the total ring of fractions L of T , and R = T ∩ K. Cer-
tainly R ⊆ ∩QTQ as Q varies over all the height-one prime ideals in T . Now let
α ∈ ∩QTQ ∩K. By the form of prime ideals in direct sums, for each i = 1, . . . , s,
α ∈ ∩Q(T i)Q, where Q varies over all the height-one prime ideals in T i. By
Theorem 4.3.4 and by Proposition 4.10.4, T i is a Krull domain, so that α ∈ T i
for all i. By Proposition 2.1.16, α ∈ T (the role of R in that proposition is played
by T here, and the role of S is played by L). Hence α ∈ T ∩K = R. This proves
that R =

⋂
Q(TQ ∩K), where Q varies over height-one prime ideals in T .

We next prove that for any non-zero element b in R and any prime ideal P in
R containing b there exists a height-one prime ideal in R contained in P and
containing b. Let S0 consist of the height-one prime ideals in T that contain b.
Then S0 is a finite set, and bR =

⋂
Q(bTQ ∩R) =

⋂
Q∈S0

(bTQ ∩R). Each bTQ is

primary, hence so is each bTQ∩R, and by possibly merging and omitting we get an
irredundant primary decomposition bR = q1 ∩ · · · ∩ qs, with each

√
qi contracted

from at least one prime ideal in T . By Lemma 4.8.4 there exists a Noetherian ring
A between R and R such that with p = P ∩ A, RP is the integral closure of Ap.
Note that A[b] is Noetherian and that the integral closure of A[b]P∩A[b] is RP , so
by possibly changing notation we may assume that b ∈ A. By Propositions 1.6.1

and 1.5.2, bAp = bRP ∩ Ap = bRP ∩ Ap, which is the intersection of all the
qiRP ∩Ap. Since A is Noetherian, bAp has height one, whence some qiRP ∩Ap has
height one. It follows by Theorem B.2.5 (Dimension Inequality) that ht qiRP ≤ 1,
and so qi ⊆ P and ht qi ≤ 1. Since b ∈ qi, necessarily qi and the prime ideal

√
qi

have height one.

We next prove that for any non-zero b in R, all primary components of bR have
height 1. We use notation as in the previous paragraph. Suppose for contradiction
that the height of p1 =

√
q1 is not 1. By Exercise 4.30, Rp1 =

⋂
(TQ ∩K), where
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Q varies over those height-one prime ideals of T for which Q ∩ R ⊆ p1. First
suppose that each such Q contains b. Then (Rp1)b =

⋂
((TQ)b ∩ K) = K, so

that b is contained in every non-zero prime ideal of Rp1 . By the established third
property of Krull domains, this means that Rp1 has only finitely many height-
one prime ideals. By the Prime Avoidance Theorem (A.1.1), there is x ∈ p1
not contained in any of these height-one prime ideals, contradicting the previous
paragraph. Thus necessarily there is a height-one prime ideal Q0 in T such that
Q0∩R ⊆ p1 and b 6∈ Q0. Set P = Q0∩R. Since the given primary decomposition
of bR is contracted from a primary decomposition in a Noetherian ring, pt1 ⊆ q1
for some positive integer t. By irredundancy there is a possibly smaller positive
integer t such that pt1 ∩ q2 ∩ · · · ∩ qs ⊆ bR and pt−11 ∩ q2 ∩ · · · ∩ qs 6⊆ bR. Let
c ∈ pt−11 ∩ q2∩ · · ·∩ qs \ bR. Then cP ⊆ cp1 ⊆ bR. As b is a unit in TQ0 , it follows
that c

bP ⊆ R ∩Q0 = P . We will get a contradiction when we prove that c
b ∈ R,

thus establishing that all primary components of bR have height one. Namely,
for any d ∈ P and any positive integer n, ( cb )

nd ∈ P ⊆ R. By Proposition 4.1.3,

for each height-one prime Q in T , there is y ∈ T such that yTQ = QTQ, and we
can write d = uyi and c

b = vyj for some integers i, j and some units u, v in TQ.

Since ( cb )
nd = uvnyi+nj ∈ TQ, necessarily i + nj ≥ 0 for all n, whence j ≥ 0,

which says that c
b ∈ TQ. Since this holds for all Q, we get that c

b ∈ R, which is
the needed contradiction.

It follows that bR = ∩P bRP ∩ R, as P varies over height-one primes containing
b, or even as P varies over all the height-one prime ideals in R.

If a
b ∈ ∩PRP , where P varies over the height-one prime ideals in R, then a ∈

∩P bRP ∩R = bR, so a
b ∈ R. This finishes the proof of the theorem.

p. 89, line 1 of Exercise 4.9: remove “positive prime”; line 3: remove “of elements”

p. 90, Exercises 4.11: the summation on line 3 should start with 1, not with 0.

p. 92 (in the latest version p. 93): added a new exercise, which is used in the new
proof of the Mori–Nagata Theorem:

Exercise 4.30 Let R be a domain contained in a field L. Assume that R =⋂
V ∈S V , where S is a collection of one-dimensional integrally closed Noetherian

domains contained in L such that every non-zero element of R is a non-unit in
at most finitely many elements of S. Prove that for any multiplicatively closed
subset W of R, W−1R =

⋂
V ∈S0

V , where S0 consists of those elements V of S
in which all elements of W are units.

p. 94, below 5.1.5: The first part of “Clearly” is redundant.

p. 94, 5.1.6: the maximal ideal M also needs to contain m/I, not just all homogeneous
elements of positive degree.

p. 95, paragraph above Section 5.2: change discussion of “general fiber”. New:
consider setting t−1 to a unit of R.

p. 96, 5.2.3: change the superscript on Z from “d” to “e”.

p. 96, proof of 5.2.3: no need to pass to R[t], passing to R[t] suffices.

p. 97, line 1 of the proof of 5.2.5: R should be S.

p. 99, Proposition 5.3.4: Add “domain” in front of the first “R”. All calls to 5.3.4
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have the domain assumption. (And a touch-up in the proof.) In addition, in part
(3), need to name the base ring over which R is finitely generated as an algebra
as A.

p. 105, line 2 of proof of 5.5.4: Replace “G” with “G(T1, . . . , Tn)”. In line 6 of the
same proof, replace “F = G” with “G = F”, and in line 7, replace “weight of F”
with “weight of F1”.

p. 116, line 1: remove the second “V”
p. 116, line 1 of proof of 6.2.5: specify that m,n are integers and that m is positive.
p. 117, line 2 of 6.3.1: x has to be in K∗, not in K.
p. 118, line 1: add that we switch notation and call P now m.
p. 118, line -6: “hence TM is a Noetherian valuation domain” uses a subsequent 6.4.4.

Add “by Proposition 6.4.4” and switch sections 6.3 and 6.4.
p. 119, Lemma 6.4.3: Add the assumption that I is an ideal in R; in (1), state that m

is a positive integer; modify the proof accordingly; in (2), assume that u1, . . . , un
are units in R and that their differences are not in any mi ∩R.

p. 121, 6.4.5: change all R to V : so ΓV will make sense.
p. 122, line -2: change period to comma.
p. 127, Theorem 6.6.7, (2): the exponent on Z should be the rational rank, not n.
p. 130, paragraph below Example 6.7.1, add “alter” after “could” to get “Notice that

we could alter this valuation...”
p. 131, Example 6.7.5: the generalized power series

∑
n ant

en with strictly increasing
rational en also need the assumption lim en =∞. Otherwise, one could not add∑
n t

1−1/n to t.
p. 131, Example 6.7.6: Summation in the third line should have index n rather

than i. The construction of fn is wrong. Here is a correction: “Let k = R,
X and Y variables over R, V and v as in the previous example, and the map
k[X,Y ] → V sends X to t and Y to

∑∞
n=2 t

en , with en = 1 + 1
2 + · · · + 1

n .
For any subset S of Q and for any n ∈ N, let nS = {s1 + · · · + sn : si ∈ S}.
Set S1 = T1 = {en : n ≥ 2}, and for n ≥ 2, set Tn = nSn−1 and Sn =
Tn \ {min{Tn}}. The elements of Sn and Tn are (some) sums of n! elements
in S1. By induction on n and k = 2, . . . , n, Tn excludes exactly those n!-sums
for which (i − 1)((i + 1)(i + 2) · · ·n) summands are ei for i = 2, . . . , k − 1 and
for which strictly more than (k − 1)((k + 1)(k + 2) · · ·n) summands are ek. The

minimum element of Tn is
∑n−1
k=2(k−1)((k+1)(k+2) · · ·n)ek+nen, and min(Sn) =∑n−1

k=2(k − 1)((k + 1)(k + 2) · · ·n)ek + (n− 1)en + en+1, which equals an integer
cn plus 1

n+1 . Now set f0 = X, f1 = Y . If fn−1 ∈ k[X,Y ] has the image in
V a power series in t with positive coefficients and with exponents exactly the
elements of Sn−1, then v(fnn−1) is the integer ncn−1 + 1, and for some c ∈ k,
fn = fnn−1 − cXncn−1+1 ∈ k[X,Y ] maps to a power series in t whose exponents
are exactly the elements of Sn. Thus v(fn) = min Sn = cn + 1

n+1 . Hence for all

n ∈ N, fn/X
cn has v-value 1

n+1 , whence the value group of v contains Q, and
thus equals Q.”

p. 135, Corollary 6.8.6: don’t need the Noetherian assumption; this was already
proved in Remark 1.3.2 (4).
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p. 135, Corollary 6.8.7: don’t need the Noetherian assumption, and I should not be
0.

p. 136, line -2, and p. 137, lines 1 and 3: change . . . to · · ·. After the first sentence
on page 137, add: “(If k = l, take e = 1.)”

p. 138, proof of 6.9.1, line 4 from qed up: remove a stray c.
p. 138, bottom line: “Thus u ≥ N” should read “Thus lim inf ordI(x

n)/n ≥ N .”
p. 142, (ii) of Exercise 6.24: Change the second sentence to: “Prove that there are

infinitely many K-valuations v such that for each n, v has center mn on Rn, and
that there is at least one such valuation for which the residue field has positive
transcendence degree over each Rn/mn.” The reference for the exercise should
be Corollary of Theorem 10 on p. 21 Zariski–Samuel Volume II.

p. 142, line 4 of Exercise 6.25: “Watanabe” should be hyphenated differently.
p. 151, definition of I: change Xi+1 into Xi; many subscripts j in Mj should be

changed to i; KMi
should be localized at Mi also in the rewriting. Also, in the

definition of I, X1 · · ·XiYiZ
i−1
i rather than X1 · · ·Xi+1YiZ

i−1
i ; in the definition

of K, end with Yi−2Z
i−3
i−2 − Y

i−2
i−2 rather than Yi−3Z

i−4
i−3 − Y

i−3
i−3 .

p. 151, line 1: replace NI by FI(R).
p. 154, line 2 of Corollary 8.2.2: change the order of “homogeneous” and “minimal”.
p. 157, Corollary 8.2.5: The minimal number of generators is at least `(I).
p. 157, line 2: uses existence of minimal reductions, and this is only proved in subse-

quent 8.3.6. Therefore, move the block starting with the paragraph before 8.3.6
and ending with the paragraph after the proof of 8.3.6 to after Example 8.3.4.

p. 157, Proposition 8.3.7: the assumption on the infinite residue field appears twice
p. 162, Proposition 8.5.7: n should be greater than or equal to m+ c.
p. 163, line 6: c ≤ k < n should be c ≤ k < n−m
p. 165, Corollary 8.6.2: x∗ is the image of x in I/I2 ⊆ grI(R).
p. 173, Exercise 8.3: Add the assumption that the ring is Noetherian local.
p. 184, line 4 of Lemma 9.3.3: “dormula” should be “formula”
p. 188, line 2 below second display: add parentheses to get ∩ri=1(InVi ∩R).
p. 190, in Theorem 10.1.6, the Noetherian assumption is not needed.
p. 193, in proof of Proposition 10.2.2: Need to clarify what happens to V that do

contain S1. For that, need Lemma 10.2.1.
p. 193, in Proposition 10.2.3: the choice of m has to be more careful, and there

is a typographical error on the exponent of I in the display: “Let v0 be the
integer-valued valuation corresponding to V0. Since t = nv0(I)−v0(r) is positive,
there exists m such that v0(c) < tm. But crm ∈

⋂
V 6=V0

ImnV ∩ R, so that

Imn =
⋂r
V ∈T I

mnV ∩ R is properly contained in
⋂
V 6=V0

ImnV ∩ R. Hence V0 is
not redundant.” This finishes the proof.

p. 194, Proposition 10.2.5: the ui need to be units in R.
p. 195, proof of Corollary 10.2.7: delete “since I”
p. 203, line 5 of Example 10.4.6: “a monomial valuation” should be “the monomial

valuation”.
p. 209, Exercise 10.12: changed “an an”, and corrected the definition of m-full when

the residue field is not infinite by inserting a new exercise.
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p. 210, lines 1 and 2 (exercise 10.18 (ii)): “that are primary to (X1, . . . , Xn) and”
and “with” are redundant. Remove.

p. 210, Exercise 10.19 (ii): parenthetical “integer-valued” should be ”normalized”

p. 210, Exercise 10.20: added reference to Hübl–Swanson [132]. i (ii): parenthetical
“integer-valued” should be ”normalized”

p. 211, added two exercises:

Exercise 10.34: Let R be a Noetherian ring and I an ideal in R that is not
contained in any minimal prime ideal of R. Let Iα be any rational power of I.

(i) Prove that RV (Iα) = RV (I).

(ii) Prove that for large integers n, Ass(R/Inα) = Ass(R/In).

Exercise 10.35: Let (R,m) be a Noetherian analytically irreducible local ring

and I an m-primary ideal. Prove that |RV (I)| = |RV (IR̂)|.
p. 214, after Definition 11.1.5: the Hilbert polynomial PI,M (n) as written is actually

PI,M (n + 1). For uniformity of notation, we therefore change all binomials of
the form

(
t+i
i

)
to form

(
t−1+i
i

)
: this affects the paragraph above Lemma 11.1.1,

the statement and proof of Lemma 11.1.1, the proof of Lemma 11.1.2, Discussion
11.3.6, and Exercise 11.1.

p. 218, Theorem 11.2.4 and p. 342, Theorem 17.4.8: ”Associativity Formula” is
changed to ”Additivity and Reduction Formula”. This terminology agrees with
Nagata’s. (This change also forced changes in referring to these theorems; see
pages 220, 222, 230, 315, 342, 343, 346, 347, 348, 349, and the Index pages.)

p. 222, last line: delete “both the rings ... and ... are finitely generated over R, and”

p. 237: In the proof of Theorem 12.2.3 we now clarify that the chosen x satisfies both
generic properties.

p. 232: In each of Exercises 11.3 and 11.4, an extra closing parenthesis is needed in
the last line of the exercise.

p. 238, proof of (3) of Proposition 12.3.2: We cannot immediately conclude that the
height of (g1, . . . , gn) is n: we could multiply all gi be a non-unit not in P . We
only need that locally at P the height of (g1, . . . , gn) is n, but that is true since
RP∩R is a regular ring.

p. 248: paragraph above 13.2.1: Originally it was stated that in a two-dimensional
regular local ring an ideal with a two-generated reduction has reduction number
two. The correct statement is that every integrally closed ideal with a two-
generated reduction has reduction number one. (This affects two sentences.)

p. 252, proof of 13.3.3, second paragraph: the two instances of R should be B.

p. 260, Definition 14.1.5 of m-full does not conform to Junzo Watanabe’s original
definition. Correct definitions are in exercises 10.11–10.13.

p. 257, statement of 14.4.4: add ”integrally” before the second ”closed”

p. 266, first sentence of the last paragraph of the section: this only holds for divisorial
valuations!

p. 268, third line of the statement of 14.3.7: S = R[mx ] rather than S = R[ yx ] (it is
the same thing, IF y is defined so that m = (x, y)).

p. 268, line 14 of the proof of Proposition 14.3.7: change K to J .
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p. 269, second line of the proof of 14.4.3: We need to check that IS = IS (rather than

I
S

). Also, the part involving J needs to state that J is m-primary, and when
applied to I times a power of m, this holds.

p. 272, line 11 (on third to the last line in the first paragraph): the second r should
be ri, other r remain r.

p. 272, Lemma 14.4.7: weaken the “regular local ring” assumption to “Noetherian
local domain”

p. 272, third line of the proof of Lemma 14.4.7: write “and zero on R[X] \mR[X]”
rather than “and zero on R[X] \ {0}”.

p. 272: line 4 of the second paragraph of the proof of 14.4.7: move one closing
parenthesis from end of the line to the beginning of the line

p. 273, the last four lines of the proof of Theorem 14.4.8 have a gap. Here is the
corrected version. “It remains to prove that InV ∩ R ⊆ mn ord I . If not, then
b = n ord I − ord(InV ∩ R) is positive, and In and mb(InV ∩ R) have the same
orders. Also, mb(InV ∩ R) ⊆ (InV ∩ R) ∩ mn ord I = In, so that deg(c(In)) ≤
deg(c(mb(InV ∩R))) = deg(c(InV ∩R)) ≤ ord(InV ∩R) < ord(In). But then by
Proposition 14.1.12, In = mJ for some ideal J , whence by unique factorization
of integrally closed ideals, I = mJ ′ for some ideal J ′. But this contradicts the
assumption that I is simple.”

p. 274, Definition 14.5.1 and Theorem 14.5.2. The count 1, . . . , n − 1 should be
replaced by 1, . . . , n.

p. 277, introduction to Section 14.6: note that the restriction to infinite residue field
is not a severe restriction

p. 278, last display in the proof of 14.6.1: replace tr.deg by λ.
p. 279, the last part of the proof of 14.6.2: starting with “whose integral closure is the

valuation ring corresponding to v′.” on line 9, replace the rest of the proof by:
“Thus ∆(v′) = λκ(mC′ )

(κ(m
C′
′)) = λκ(mC)(κ(mC)) = ∆( vI). (Here, mA denotes

the unique maximal ideal of the ring A.) Since (c, d)R′ is a reduction of JR′, by
Proposition 14.6.1, v′(JR′) = v′((c, d)R′) = v′(cY − d), so by Proposition 6.8.1,

vI(J)∆( vI) = v′(J)∆(v′) = v′(cY − d)∆(v′) = λC′(C
′/(cY − d)C ′)

= λ(R(X,Y )/(bX − a, cY − d)).

p. 283, on the line with “(3)”: add “and cR”.
p. 284, line 4 of 15.1.2: “the one” should be “that one”, insert “can” before “insert”.
In chapter 15 on computation, removed two instances of “absolute integral closure”–

that was non-standardly referring to the integral closure of the ring in its field of
fractions.

p. 286, line 18: change “when” to “where”.
p. 292, Lemma 15.3.1 needs the assumption that J be non-zero.
p. 292, Theorem 15.3.2 needs the assumption that J be integrally closed and non-zero.
p. 292, last line: remove ”Then”.
p. 300, Exercise 15.18: the field needs to have characteristic 0, otherwise there are

straightforward counterexamples.
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p. 300, Exercise 15.19: change comma at the end of the first line to period. More
importantly, I ∩ k(S)[T ] should be Ik(S)[T ] ∩ k[X].

p. 306, proof of Theorem 16.2.3: perhaps there is no well-known structure theorem
of finitely generated submodules of free modules over valuation domains. In the
new version we provide a detailed and simple argument for what is needed.

p. 307, line 2-3 of 16.2.4: it should be Eisenbud, Huneke, and ULRICH.
p. 310, line 2 of 16.4.5 (2): remove “and if”.

p. 329, line 2 of Exercise 16.13: L = ∩g ker(SymM
Sym g−→ SymF ) (in the text, “ker” is

missing).
p. 329, in Exercise 16.16, clarify that the definition of Rees algebras that depends on

the embedding is 16.2.1.
p. 336, statement of Proposition 17.3.2: in line 2, the indices on the a should be

ai1, . . . , aili (rather than a11, . . . , a1li), and in the last line, the indices on the
first l1 u should be u11, . . . , u1l1 (rather than ui1, . . . , uili).

p. 337, statement of Proposition 17.3.3: No need to introduce ideals Ii.
p. 354, statement (2) of Corollary 17.7.3: Replace e(I [d−i], J [i];M) by e(I [i], J [d−i];M).
p. 371, third display: remove “big”
p. 392: all F+ should be F+ (positive parts of the fields), and actually, a different

version is needed in Chapter 1. Here is the new statement with proof:
Theorem A.2.1 (Carathéodory’s theorem) Let n be a positive integer, and
v1, . . . , vr ∈ (R≥0)n. Suppose that for some ai ∈ R≥0, v =

∑
i aivi. Then

there exists a linearly independent subset {vi1 , . . . , vis} such that

v =
∑
j

bjvij , bj ≥ 0, and
∑
j

bj ≥
∑
j

aj .

The same result also holds if Q is used instead of R.
Proof: If v1, . . . , vr are linearly independent, there is nothing to show. So assume
that there exist ci ∈ R, not all zero, such that

∑
i civi = 0. Necessarily some ci are

positive and some are negative. By possibly multiplying by −1 and by reindexing
we may assume that

∑
ci ≤ 0 and that c1 > 0. Note that for any i such that

ci > 0, v =
∑
j 6=i(aj − ai

cj
ci

)vj and
∑
j 6=i(aj − ai

cj
ci

) =
∑
j aj −

ai
ci

∑
j cj ≥

∑
j aj .

By induction on r it suffices to show that v can be written as a linear combination
of r− 1 of the vi, with non-negative coefficients that add up to a number greater
than or equal to

∑
aj . For contradiction we assume the contrary. Then aj > 0

for all j and from the previous paragraph applied to the case i = 1 we deduce
that for some j > 1, aj − a1 cjc1 < 0. After reindexing without loss of generality
j = 2. This implies that c2 > 0. Next we apply the previous paragraph with i = 2
and either the conclusion holds or there exists j 6= 2 such that aj − a2 cjc2 < 0.
Necessarily j > 2, cj > 0, and by reindexing j = 3. We continue this process, and
by the assumption we can only stop at the rth step to get all ci positive, which
is a contradiction.

p. 393, Propositions A.3.1, A.3.2: the monoids should be totally ordered, not well-
ordered.
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p. 393, Proposition A.3.1, line 2: ideal I is not needed at all.
p. 395, in the Hilbert–Burch theorem, the matrix should be n × (n − 1) rather than

(n−1)×n. The ideal generated by (d1, . . . , dn) should contain a non-zerodivisor,
and the non-zerodivisor at the end should be named a rather than t.

p. 396, in the three-line display in the proof of Lemma A.5.1, we do not need a comma
in line 1.

p. 405: references 7 and 8 should be switched. There is also a new reference: J. T.
Arnold and R. Gilmer, On the contents of polynomials, Proc. Amer. Math. Soc.
24 1970, 556–562.

p. 407: references 40, 41, 42, should be 42, 40, 41; references 51 and 52 should be
switched.

p. 31: reference [111] should be W. Heinzer and C. Huneke, The Dedekind-Mertens
lemma and the contents of polynomials, Proc. Amer. Math. Soc. 126 (1998),
1305–1309.

Back cover: “multiplicty” should be “multiplicity”
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