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This paper investigates the doubly exponential ideal membership property of the
Mayr-Meyer ideals. These ideals were first defined by Mayr and Meyer in [MM], where
their doubly exponential behavior was first observed, and subsequently these ideals were
further analyzed by Bayer and Stillman [BS], Demazure [D], Koh [K].

The analysis in this paper, as well as in [S1, S2], is from the point of view of the
structure of the associated primes. The motivation came from a question raised by Bayer,
Huneke and Stillman of whether the doubly exponential behavior is due to the number of
minimal and/or associated primes, or to the nature of one of them. The complete answer
for the case of the Mayr-Meyer ideals with the fewest possible number of variables (the case
n = 1) is given in [S1]. For all other cases, it was proved in [S2] that the doubly exponential
behavior is due to the embedded primes. [S2] also computed all minimal components, the
minimal primes, their heights, and the intersection of all minimal components.

This paper provides partial answers about the embedded primes. In the analysis a new
family of ideals emerges which also has the doubly exponential ideal membership property.
This new family and its associated primes are further analyzed in [S3].

The main tool used below for finding the associated primes of the Mayr-Meyer ideals
are various short exact sequences, and the fact that the associated primes of the middle
module in a short exact sequence is contained in the union of the associated primes of the
two other modules. Theorem 5.8 gives a set of prime ideals obtained in this way, which
therefore contains all associated primes of the Mayr-Meyer ideals. However, not all primes
in this set need to be associated to the middle module. Removing the redundant prime
ideals is a much harder process, and is not completed here. Most of Sections 3 and 4 is
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taken up by removing (some) redundancies.

The Mayr-Meyer ideals J = J(n,d) depend on two parameters, n and d, where the
number of variables in the ring is O(n) and the degree of the given generators of the ideal is
O(d). (See definitions in the first section.) Both n and d are positive integers. Throughout
this paper it is assumed that n > 2.

For given n,d, the construction described above yields a set S(n,d) of prime ideals
which contain the set of associated primes of J(n,d). The set S(n,d) is made explicit in
Theorem 5.8. The cardinality of S(n, d) is 160n—270+31d+n(n—1)+10(%) (n—1)+31(d* +
e d? )4 ((n —Dd? + (n—2)d¥ +---+ 3d2n73) +18d2" " for n > 3. This number is
doubly exponential in n. Sections 2, 3, and 4 find 31+15d+6,,—2(d? —d)+,>2(d>—d)(n—1)
prime ideals which are indeed embedded primes of J(n,d), showing that the number of
embedded primes of J(n,d) depends on n and d. Sections 3 and 4 also prove that there
exist no embedded primes of certain kinds. It is not proved whether J(n,d) in fact has
a doubly exponential number of embedded primes. Of the primes in S(n,d), the largest
height is achieved by the prime ideals Q23 5,—2.n,1,o and @24, whose heights are 2 less than
the dimension of the ring. However, I do not know if these ideals are associated.

The generators of the Mayr-Meyer ideals in levels 1 through n — 1 have similar forms,
so that there is hope that the associated primes of the Mayr-Meyer ideals could be arrived
at via recursion. I was unable to reduce the search for the associated primes of J(n,d)
to that of finding the associated primes of J(n — 1,d). However, Section 5 modifies the
problem of finding the associated primes of J(n, d) to that of finding the associated primes
of an ideal K(n,d) to which recursion can be applied. The recursive procedure is carried
out in [S3].

Many questions remain about the embedded primes of J(n,d). Some are listed at the
end.

Originally I attempted to find the embedded components, not just the embedded
primes, but that became unwieldy. See http://math.nmsu.edu/"iswanson for these and
other computations with the Mayr-Meyer ideals which are not included here.

Acknowledgement. I thank Craig Huneke for suggesting this problem and for all
conversations and enthusiasm for this research. I also acknowledge the help by computer
algebra systems Macaulay2 and Singular with which I verified my computations for a few
small n and d. I thank Martin Greuel for helping me automate the calculations in Singular
and for speeding them up.



1. Notation

The definition below of the Mayr-Meyer ideal is taken from [S2]: it is somewhat
different from the original definition by Mayr and Meyer in [MM], but equivalent to the
original one from the point of view of primary decompositions. See [S2] for complete
justification. Namely, for any fixed integers n,d > 2, let R = k[s, f, byi, crilr = 0,...,n —
14 =1,...,4] be a polynomial ring in 8n + 2 variables over a field k, and let the Mayr-
Meyer ideal J(n,d) be the ideal in R generated by the following polynomials h,.;: first the
four level 0 generators:

hoi = coi (S_fbgz)72: 1,2,3,4

then the eight level 1 generators:
hiz = fco1r — scoz,
his = fcos — sco3,
his = s (co3 — co2),

hie = f (co2bo1r — cosboa) ,

hi6+i = fcozcii (boz — biibos),i=1,...,4,

the first four level r generators, r = 2,...,n:

hrg = sco1c11 - Cr—3,1 (Cr—2,4Cr—1,1 — Cr—2,1Cr—1,2) ,
hrs = sco1c11 -+ *Cr—3,1 (CT—2,4CT—1,4 - Cr—2,1Cr—1,3) )
hrs = sco1c11 -+ *Cr—21 (Cr—1,3 - Cr—1,2) )

hre = sco1c€11 -+ Cr_31Cr—2.4 (Cr—1,2br—11 — C¢r—13br_1.4),
the last four level r generators, r = 2,...,n — 1:
Ry 64i = SC01C11 ** " Cr—3,1Cr—2.4Cr—1,2Cri (br—1,2 — bribp_13), i =1,...,4,
and the last level n generator:
hn7 = scoic11 -+ - Cn—31¢n—24¢n—1,2 (bn—12 —bn_13).
For simpler notation it will be assumed throughout that the characteristic of k does

not divide d, but most of the work goes through without that assumption. Also, J(n,d)
will often be abbreviated to J.



For notational purposes we also define the following ideals in R:

E=(s— fbg1) + (501 — bou, bgz - bgaa bgl - bg2) ;

F = (boz — bi1bos, bia — bi1, b1z — bi1, b1z — bi1, e, — 1)
Cr=(¢r1,62,C3,C4),7=0,...,n—1

Cn = (0),
Do = (cos — Co1, Co3 — Co2, Co1 — Co2b{y ) |
D, =(¢crqa —Cr1,0r3 — CrayCra —Cp1), 7 =1,...,n— 1,
Dy = (0),

By = By = (0),

b= (1 —boi, 1 —bsiy oo, 1 —buli=1,...,4),r=2,...,n— L.
Bir = (1 = bgiy 1 = by14y .-, L= bpili=1,...,4),r
p1 =C1+ E+ Dy,
pr=Cr+E+F+B. 1+ Do+Di+-+Dp1,r>2.

I
N
S
[
—_

With this notation, here is the table of all minimal primes over J(n,d), as computed
in [S2], where o and 3 are dth roots of unity, and A varies over all subsets of {1,2,3,4}:

minimal prime height | component of J(n, d)
Py = (co1, co2;, €03, Co4) 4 po = Fo
Piog = p1 + (bo1 — aboz, bo2 — Bbos) 11 P1ag = Plag
Prop = pr r+4| prap = Prap, 2<1r<n
+(bo1 — aboa, boa — Bbos, B — b1;) ™ Prag = Prag, 7 =n
P_y = (s, f) 2 p—1 =P
P_5 = (s, co1, €02, Coa, bo3, boa) 6 p—2 = (s, o1, Co2, Coa bils, boa)
P_3 = (s, co1, o4, bo2, bos, cozbor — cozbos) 6 p-3=P_3
P_4n = (8, co1, o3, Co4, bo1, bo2) 10 p_an = (8, o1, €03, Coas bo1, biy)
+(c1i, bijli € A, j € A) +(c1ili € A)
+(bY;, boa — bijbos, bij — bije|j, 5’ € A)

The intersection of all components primary to the P_45 was computed to be
p—a = (8, o1, Co3, Coas bo1, bly) + (c14(bo2 — b1ibos), c13bf;, crierj(bry — buj)li, j = 1,...,4).

4



The following summarizes the elementary facts about primary decompositions used
in the paper:

Facts:

1.1: For any ideals I, I’ and I"” with I C I, (I+I')NnI"=1+1'NnI".

1.2: For any ideal I and element z, (z) NI = z(I : ).

1.3: For any ideals I and I’, and any element z, (I +zI'):x = (I : x) + I'.

1.4: Let z4,...,x, be variables over a ring R. Let S = R[x1,...,z,]. For any f1 € R,
fo € Rlx1], ..., fn € R[x1,...,2n_1], let L be theideal (x1 — f1,...,2,— fn)S in S.
Then an ideal I in R is primary (respectively, prime) if and only if IS+ L is a primary
(respectively, prime) in S. Furthermore, N;q; = I is a primary decomposition of [
if and only if N;(¢;S + L) is a primary decomposition of 1.5 + L.

1.5: Let = be an element of a Noetherian ring R and I an ideal. Then there exists
an integer k such that for all m, [ : 2™ C I : 2F. Then I : z¥ is also denoted
as I : 2. Also, I = (I:2%) N (I+(2¥)). Thus to find a (possibly redundant)
primary decomposition of I it suffices to find primary decompositions of possibly
larger ideals I : z* and I + (2F).

1.6: Let I be anideal in aring R. Then for any x € R, Ass (%) C Ass (%)UASS (T%»

and every associated prime of % is an associated prime of % (Use the short exact
sequenceO—>%—>?—>T% 0.)
1.7: Let x1,...,%n,Y1,...,Ym be variables over a field k£ and I an ideal in klz] =

klzi,...,2,]) and J an ideal in kly] = k[y1,. .., ym]. Then
Tk[z,y] N Jk[z, y] = TJk[z, y].

We will use the extended Kronecker delta notation dp as follows: whenever P is true,
then Adp equals A, and when P is false, Adp has no effect on the rest of the expression. To
shorten notation, whenever the range of subscripts ¢ and j is not specified, it is understood
that they vary in the set {1,2,3,4}. Thus for example, (c1;) stands for (c11, c12, €13, C14)-

2. Sixteen embedded components

The Mayr-Meyer ideals do have embedded primes. The (possible) embedded primes
will be denoted as @, , with r varying from 1 to 24, and the second part of the subscript
depending on .

Here is the first batch: for every subset A C {1,2, 3,4}, define

Q14 = (8, co1, Co4, boz, bo3, co2bo1 — co3bosa) + (c1ili € A) + (b1 — byjli, j € A).

Of all associated primes of J(n,d) found so far, these primes contain only P_3. We prove
below that each of these 16 prime ideals is an associated prime of J, with its embedded
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component being
q1a = (8, Co1, Coa, bila, b5, co2bo1 — cozbos) + (c1]i & A) + (boa — busbos, bii — bijli, j € A).

It is clear that the sixteen Q15 are prime and the ¢ are primary. Note that the height of
Q1 is 10, but if A # (), then the height of Q14 equals 9. Not only is the height of Q1 larger
than those of the others, but it even contains all Qq(;y, ¢ = 1,...,4. By a computation
similar to the one for p_4 in Section 2 of [S2], the intersection of all the ¢q4 is

a1 = (s, co1, cou, by, bls, cozbor — co3boa, c1i(boz — b1ibos), crici;(bii — bij)|i, i =1, .. S 4).
Observe that J : (fcpacos(coz — co3))> contains

d 1d
(s, co1, Coa, ba, biss cozbor — cozboa, c1i(boz — biibos)) -

This latter ideal contains J and decomposes as

d 3d . .
= m (s, cot1, Coa, ba, b3, co2bor — cosboa, €14, bo2 — b1jbos|i € A, j € A)
A

= (s, o1, Coa, boz, bos, cozbo1 — cozboa)
N m (s, €01, Co4, bita, b3, Co2bo1 — Cozboa, C1i, boz — bijbos, bij — bijrli € A, j,5' € A)
A
=p-3Naq.

Since the element fcacos(co2 — co3) is a non-zerodivisor on these components, this proves
that
J : (feozcos(coz — co3))™ = p_3Naqr.

To prove that each Q15 is associated to .J, it now suffices to prove that none of the Q-
primary components of J : (fcpacos(coz — co3))° is redundant. So let A be a subset of
{1,2,3,4}. First suppose that A # (). Then J' = J : (fcozcos(coz — 603))00(1_[;‘2/1: c1i(b1i —
blj)) is exactly p_3 N q1a # p_3, so that Q14 is associated to J.

Finally suppose that A = (). Then J" = J : (fcozcos(co2 — 003))0"(1_[1#@11- — by )) is
exactly p_3 N qip N ﬂ?:l q1{;}- Since the element bgz_lbog IL b1s isinp_3n ﬂ?zl q1{;) but
not in q¢, this proves that @)1y is associated to J.

Thus J(n,d) has at least 16 embedded primes, which are as follows:

embedded prime height component of J(n,d)

Q1 = (s, o1, co4, bo2, bos) 9,if A#0 | q1a = (s, o1, Coa, by, bis)

+(co2bor — cozboa) + (c1ili ¢ A) 10, if A =10 +(co2bo1 — cozboa) + (c1ili € A)

+(b1; — bijli, j € A) +(bo2 — b1ibos3, b1; — bijli, j € A)




3. 15(d + 1) more embedded primes (plus d? —d if n = 2)

In this section we find 15(d + 1) (+d? — d when n = 2) more embedded primes of
J(n,d). This shows that the number of embedded primes of J(n,d) depends on d. As
usual, A ranges over all subsets of {1,2, 3,4} and o and /3 vary over the dth roots of unity:

Q240 = (8, o1, Co3 — Co2, Co4, bo1, Doz, bos, boa) + (c1ili € A) + (b1, —ali € A),
Qsr = Co + (8, bo1, boz, bos, boa) + (14|t € A) + (b1; — bijli, 5 € A),

Q4,208 = (5,01, Coa, Co2 — €03, bo1, boz, bo3, boa, b11 — o, b1g — a, bz — B,b13 — B) + C1.

These ideals are clearly prime ideals. Let = = f3621b13(b21 — byy) when n > 2 and x = f3
when n = 2. We prove below that the Q2x, and the Q3,, for all non-empty subsets
A C {1,2,3,4} and all dth roots of unity «, are associated primes of .J, and that when
n = 2, also the Q4,243 are associated whenever a and 3 are distinct dth roots of unity.
Furthermore, we prove that these 15(d+ 1) (+d? —d when n = 2) primes are the only new
embedded primes of J which do not contain .

Consider the ideal

A

J = (co1 — co2blly, cos — co3bls) + s(co2 — co3)
+ co2by (b, — b3y, co2 — cos, bor — boa, bis — b3y)
+ (C02b01 — co3bo4, 602(3 - fb82>7 COZCli(bO2 - blib03)7 COngQ - 603b6l3)

2d
+ co2bj5(ci1 — 12, 14 — €13, €13 — €12, c11(b11 — b1a), c11(bi2 — b13), c116,>3).

It is easy to see that x multiplies J into J and that J contains J. We will find all
associated primes of j, of which the only new ones are the Qapn, Q3a, and Q4243. We
will show that z is not in any of the associated primes, so that then J = J :z. Thus
Ass(R/J) = Ass(R/J : x), and every associated prime of J is also associated to J. Thus
it suffices to find all associated primes of J and to show that z is not in any of them.

By Fact 1.6, Ass (%) C Ass <j:§02>UAss <j+i02)>. Note that j+(002) = (co1, Co2, Co4,

cogbg?,, $¢o3, Co3boa) = po N p_o is an intersection of some minimal components of J, and x

is a non-zerodivisor modulo each of them. Hence it suffices to find the associated primes
of J: co2, and to show that z is not in any of them:

A

J oo = (co1 — cogng, Co4 — cogbgz, s — fng)

+ b0 (bGs — bG1, co2 — o3, bor — boa, bz — b31) + (c1i(boz — bribos))

+ b(z)g(cu — C12,C14 — C13,C13 — C12, C11(b11 - b14), C11(b12 - b13), C115n23)
+ (s(co2 — co3), co2blly — cosbils, co2bor — cozboa) : coz

d d d
= (co1 — co2by, Coa — Cco2bha, s — fbYs)
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+ b5 by — b1, co2 — cos, bo1 — boa, s — b3y) + (c14(bo2 — b1ibos))
+ bgg(cn — C12,C14 — C13,C13 — C12, C11(b11 - b14), C11(b12 - b13), C115n23)
+ (co2bly — co3bis, cozbor — cosboa, bo1bs — boably)
+ s(co2 — o3, bo1 — boa, by — b3)
= (co1 — co2bfiy, cor — co2ba, 5 — f0()
+ by (bl — b1, co2 — cos, bo1 — boa, by — biy) + (c14(bo2 — b1ibos))
+ D24 (c11 — €12, €14 — €13, €13 — 12, 11(b11 — b14), c11(b12 — b13), €1100>3)

d d d d
+ (co2bhy — co3bYs, co2bo1 — co3boa, bo1bys — boabfs)-

Again by Fact 1.6, Ass <JR ) C Ass (j R ) U Ass (¢> Note that

A:coz :cogbg2 (jlcog)—l-(ng)
J: bd,) = by, cri(boz — brsb bl coob boa, bo1 b
(J : co2) + (bg2) = (o1, Coa, 8, boa, c14(boz — b1ibo3), cosbos, co2bo1 — cozboa, bo1bys3),
which decomposes as

d d
= (co1, o4, 5, bga, c1i(bo2 — b1ibos), c1:b%;, cricij(b1i — bij), co3, bot)
d d
N (o1, Coa, 8, bGas €14 (bo2 — b1ibo3), bz, cozbor — cozboa)

=p-4MNp-_3Naq,

as in Section 2. Thus x is a non-zerodivisor on this ideal, and no new associated primes
appear. Thus it suffices to find the associated primes of J: coabdy:

] . d _ d d d
J t co2bhe = (co1 — co2b(a, coa — o232, s — fbi2)
d d d d
+ (bg2 — bo15 co2 — €03, bo1 — boa, bys — bpyy)
d
+ bgy(c11 — 12, €14 — €13, €13 — ¢12, €11(b11 — b14), c11(b12 — b13), €1101,>3)

+ (€14 (boz — b1ibos), coably — co3bls, co2bor — cozboa, bo1bds — boabls) : bls.

The next two displays will compute the colon ideal in the last row. As in the computation
of p_4 in [S2],

(c1i(bog — b1ibo3), coabls — co3bls, cozbor — cozboa, bo1bis — boabls)

= ﬂ((Cozbgz — co3bils, co2bo1 — co3boa, bo1bs — boabla, c1iy boz — bijbosli € A, j € A))
A

= ((Cozbgg — co3bls, coabor — co3bos, bo1bls — boably) + C1>

(((COQb(lij — co3)b{ls, Co2bor — osboa, (bo1 — boabS;)bis, c1s, bo2 — bujbosli € A, j € A));
£0

>



which coloned with bg, equals
((602682 — co3bls, cozbor — cosbos, bo1bs — boably) + 01)
m ((Co2bilj — co3, bo1 — boabf;, c14,bo2 — b1jbos, b1 — biy|i € A, 5,5 € A))
AHQ
_ d d d d
= (co2bgy — co3bis; cozbor — cozbos, bo1bs — boabls, c1i(boz — biibos))
+ (cricrj(bri — bij), cri(bor — b$:boa), c14(cos — bilicoz)“,j) .

Thus

J + coablly = (co1 — coablly, cos — coablly, s — Fbily, coz — cos, by — by, bor — boa, bz — bl )
+ by (c11 — 12, ¢14 — c13, €13 — 12, 11 (bi1 — bia), c11(biz — bi3), c110,>3)
+ (e15(bo2 — bribos), cric1j(bi — bi;), cribor (1 — b$;), coacri(1 — b%;)|i, 7) -
Now let J' = J : coob2¢ and J” = (J : coably) + (bdy). By Fact 1.6, the set of associated

primes of J : cgabl, is contained in the union of the sets of associated primes of J' and J”.
First we analyze J":

11 d
J" = (co1, Coa, o2 — €03, S, b3;, bo1 — boa)

+ (c1i(boz — bribos), crici;(bi; — b1y), cribor (1 — bi;), concri(1 — by)|i, 7) -
This decomposes as follows:

J" = (Co + (s,b8;,bo1 — boa, c15(bo2 — b1ibo3), c1ic1;(b1i — bij), c1ibor (1 — b%;)))
N (o1, coa, Co2 — Co3, 5, b, bo1 — boa, c1i(bog — bribos), c1icij(biy — bij), cri(1 — bili)) .

Let g denote the ideal in the second row. Clearly, go decomposes as the intersection of
Q2ro-primary components. The ideal in the first row decomposes as

(Co+ (8, bgi, bo1 — boa, c1i(boz — b1ibos), c1ic1j(b1i — b1j), c1i(1 — bi)))
N (Co + (s, b3, bo1, boa, c15(boz — bribos), cric1; (b1 — biy))).
Let g3 be the ideal in the second row above. Then g3 is an intersection of the QQ3p-primary
components. The ideal in the first row contains g2, and is thus redundant for computing the
associated primes of J”. Thus the set of associated primes of J” is a subset of {Qapq, @3 }-

Clearly x is not in any Qar and Q3a.
It remains to compute a decomposition of J’:

/ d d d d d d d
J" = (co1 — co2b(a; Coa — €o2b02, 5 — fba, o2 — Co3, by — by, bo1 — boa, b3 — by )
+ (c11 — c12,¢14 — €13, €13 — €12, c11(b11 — b1a), c11(bi2 — b13), c110n>3)

+ (c11(boz2 — bsbos), c11 (b1; — buy), c11 (1 — b%) i, 4) -
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By coloning with and adding c2:

J' = (co1 — co2bly, coa — co2bily, 8 — fbias co2 — o3, bo1 — boa, by — bly)

+ (c11 — c12, c14 — €13, €13 — €12, 6n>3, bo2 — b1ibos, by — bij, 1 — bi;))

N ((co1 — oabla, coa — Co2bas s — fba, co2 — oz, ba — b1, bor — bos, bz — bGy)
+ (C11 — C12,C14 — C13,C13 — C12, C11(b11 - b14), C11(b12 - b13), C115n23)
+ (c11(bo2 — b1ibos), 31, 11 (1 — bilz)))

= p2dn=2

N ((co1 — coabfa, cos — Co2bas s — fba, co2 — oz, bz — by, bor — boa, bz — bGy) + C1)

N ((cor — Co2bly, cos — coablly, s — b, Coa — o3, iy — b1, bo1 — boa, by — bd1) + Dy
+ (b11 — b14,b12 — b13, 6>3, boz — b1ibos, 11, 1 — b?i))'

By coloning with and adding by3 on the third component,

J' = pabp—o N p1
N ((co1 — co2bl, coa — Co2bla, 8 — fbia, Coz — €03, bidg — b1, bo1 — boa, bis — bly) + Dy
+ (6n>3,bo2 — b1sbos, bis — bij, ¢y, 1 — bi;))

N ((co1, Cod, 5, Coz — €03, by, bo1 — boa, boa, Doz, bi1 — bia, b1a — b1z, dn>3, chy, 1 — b)) + Dy).

The second to the last ideal above properly contains p2d,—2, and the last ideal g4 2 is an
intersection of Q4 24-primary components when n = 2. This proves that

J =T copb?d = T : copbdz = p1 N padp—z N q4.20n=2,

and all Q4 203 With a # (3 are associated to J. As z is a non-zerodivisor modulo this ideal,
this also finishes the proof that J = J : z. Furthermore, this proves that the set of new
embedded primes of J which do not contain z is contained in the set of associated primes
of the ideal J : coably = J : copblyz, and that this latter set is a subset of

{QQAon Q3A7 Q4,2a55n:2}-

It remains to prove that the prime ideals (Q5p, are not associated to J, and that every

element of

{Qara, QsalA # 0,04 =1}

is associated to J. By construction, it suffices to show that the displayed prime ideals are
associated to J : coablyw and that the Qqp, are not associated to J : coabdy.
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Let A be a subset of {1,2,3,4}. Let K be the ideal .J : co2bdyx coloned with a power
of the element

y = H c1i(1 = bY;)coz.

1EA
JEA

Let a be a dth root of unity a, and I" a subset of {1,2,3,4} with I' # A. Note that
Y € Qara \ Q2aa- Also, y is an element of each Q4 245, and of Qsr, Qza. Also, if A # 0,
then y € py, and if A # {1,2,3,4}, then y € py. If A = (), then K = p;, which proves
that Qop, is not associated. If A # (), then K # pyd,—2, which proves that the Qapq is
associated to J.

Similarly, by coloning J : coabdyx with [] s c1i(b1j — b1;7) (b1 — b1j) H?zl(l - bilj)
we get that each QY35 is associated to J if and only if A # (). Thus

Theorem 3.1: Set © = fco1b13(ba1 — b)) when n > 2 and x = f when n = 2. Then the
set of embedded primes of J which do not contain x is

{Q1a, Q2rras Q3ar, Qu2apdn—a|N # 0, 0% = 3% =1,a # 5},

and each of these primes is associated to J. m

For clarity we record the new embedded primes in a table:

embedded prime (A # 0, a? = 1,8 =1,a # 3) height

Q2na = (8,01, C03 — €02, Coa, bo1, bo2, bo3, boa) + (c14|i € A) + (b1; —ali € A) | 12

Q3n = Co + (8, bo1, boz, bo3, boa) + (c1i]t & A) + (b1; — bijli, j € A) 12
Q4,208 = (8, co1, Co4, Co2 — €03, bo1, boz, bos, boa) 16
(b11 — o, bra — a,bia — B,b13 — B) + C if n = 2 only

4. (n —1)(d® — d) more embedded primes, for n > 2

The embedded primes of J found so far do not contain by; — by;. Without this as-
sumption there are many more embedded primes of J, and the number of these primes
grows with n and d. In this section, (n—1)(d® —d) more embedded primes are found in the
case when n > 2. The main theorem of this section, Theorem 4.1, says that these primes

are the only new ones not containing the element x, where x is

T = f3(621 e 'Cr—1,1)b%g+1(523 o 'br—1,3)(1 - br1)7 if r <n,
f3<621 s Cr_l’l)b%g_'_l(bgg e bT_l’g), lf r=n.
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Throughout this section, n > 2.
For each r € {2,...,n} and «a, 3 and v in k such that a? = 8¢ = 49 = 1, define

Qurapy = (8, co1, Co4, Co2 — €03, bo1, boz2, bos, boa)
+ (b12 — baibi3, ba; — b2j)5r>2 + (b11 — o, b1a — a, b1 — B,b13 — )
+C1+Dy+---+ D1 +Cr+ B3 1.
It is proved in this section that these prime ideals are associated to J if and only if
{a, 8,7} > 1, i.e., if @, 3 and 7 are not identical. We also prove that these (n —1)(d® —d)
prime ideals are the only new associated prime ideals of .J which do not contain the element
x defined above.

For all 2 < r < n, with the convention that ¢,; = b,; = 1, C,, = (0), all these cases
can be analyzed simultaneously. Consider the ideal

K = (co1 — co2bla, co1 — coa, $(co2 — co3), co2bor — cosbou, coa(s — fbi), coabls — cosbils)
+ 02 (b, c13bi3) (b — b1, coa — o3, bor — boa, bz — by ) + (co2¢14(bo2 — b1:bos))
+ coabig(c13bf; — c13bls) + concrsbiy (D1 + (big — bra, 1 — b))

+ coac13b34 ((c11,bo2, bos) (1 — b2;) + (brz — baib1a, bai — ba;)) 6rs2
r—2

+ Z Co2b(2)g613 (D + (1 —bgy14)) + 6026135(2)g (Dy—1+C).
k=2

It is easy to see that K contains J and that x multiplies K into J, except possibly that x
multiplies the element coab2dci1ci3(1 — by;) into J:

coabBaciicis(l — bay)x € (f2coabgaciicis(l — bai)earbias H) + J
= (fPcobigciicis(l — ba)earbis) + J
= (sfeo1ciy (1 — bo)caibiz) + J

= (sfcoaciicia(l — bai)caibiz) + J

= (sfcoaciici2(biz — bi2)cai) +J

= (sfcoicii(ci3biz — ciabia)cos) +J

= (sfcoaci1(ci3biz — c12b12)biscai) + J

= (sfcozc11(c1z — c12)boabls teai) + J

= (sfcozcr1bin(c1z — c12)biscai) + J

= (sfcorciibii(c1z — cr2)coi) +J = J.

The intermediate goal in this section is to find a primary decomposition of K. It turns

out that = is a non-zerodivisor on K, which proves that K = J : z, and thus determines
all associated primes of J which do not contain z.
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By Fact 1.6, Ass( )CASS<K )UASS(%

equals (co1, Co2, Co4, 5C03, Co3boa, Co3bd3) = poNp_o, which is an intersection of some minimal

) . The second set is easy: K+ (co2)

components of J (none of which contain x), so it suffices to find the associated primes of
K : cgo. By Facts 1.3 and 1.4:

K : co2 = (co1 — co2blly, cor — coa, 5 — fbs)
+ (by, c13bs) (b3y — b, co2 — o3, bor — boa, by — bi1) + (c14(boz — b1ibo3))
+ b5 (cuibi; — c13bls) + cuzbs (D1 + (bi1 — bia, 1 = b7)))

+ 13034 ((c11, boz, boa) (1 — b2i) + (brz — baibis, bai — baj)) dr>
r—2

+ 3 b3ders (Di + (1 — biyr)) + casbis (Do + Cy)
k=2

+ (s(co2 — €o3), Co2bo1 — cozboa, Co2blls — co3bls) : coa.
The latter colon ideal equals

d d d d d d
(co2bys — co3bis, co2bor — cosboa, bo1bgs — boabhy) + s(co2 — cos, bo1 — boa, by — b3)s

so that

K : co2 = (co1 — co2bfy, co1 — Coa, s — fbly)
+ (bly, c13b35) (D3 — b3, coa — o3, o1 — boa, by — bd1) + (c1i(bo2 — b1:bo3))
+ bgg(clzb(liz - Cl3bil3> + Clegd (Dl + (bll — b1y, 1 — bh )

+ c13b33 ((c11, bo2, boz) (1 — ba;) + (br2 — baibiz, ba; — ba;)) §rma
r—2

+ ) B3ders (Di + (1 = bpar i) + cisbpd (D1 + Ch)
k=2

d d d d
+ (co2bGy — co3bhs, co2bo1 — co3boa, bo1bgs — boabps)-

Again by Fact 1.6, Ass ( s ) C Ass (m) U Ass (W) Note that

(K : coz) + (bd3) = (co1 — coably, cor — Coay 8 — fbia, bs) + (c1i(boa — biibos))

4 by (b, by, coa — €03, bo1 — boa) + (cozbls, co2bo1 — co3boa, boably).

By Fact 1.6, Ass ((K : co2) + (bd3)) C Ass <((K:602)f(b33)):b82) U Ass <(K coz)f(bd b )
Then

(K : co2) + (bis, bly) = (5, o1, Coa, bk, bis, c1:(boa — b1:bo3), co2bor — co3boa)
= (s, co1, Coa, boz, bos, co2bo1 — co3boa)

d 1d
N (s, co1, Coas bGas bG3, €15 (bo2 — b13bos), cricij(bii — bij), co2bor — cozboa)-
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The first component is P_3, and the second component is the intersection of ideals primary
to the Q1a, as A varies over the subsets of {1,2,3,4}. None of these prime ideals contains z.
Next, ((K : co2) + (bd3)) : by equals

= Co + (5, bo1, by, bk, bos) + (b5, c14(boz — b1ibos), co2bor — cozbos) : by

= Co + (8,01, b, b4, bos) + C1,
and again x is a non-zerodivisor modulo this ideal, and the associated prime of this ideal
(Q3p) is not associated to J by Theorem 3.1.

This finishes the analysis of the associated primes of (K : cp2) + (bd3). It remains to
analyze K : coobds. This colon ideal is

K : coabls = (co1 — co2blla, co1 — coa, s — fbly)
+ c13(bdy — b3, con — co3, bo1 — boa, bs — b3))
+ bgz(clib(lii — Clgbilg)) + Cl3bgg (Dl + (bll — b14, 1-— bi))

+ c13bds ((e11, D02, boz) (1 — ba;) + (b1a — baibiz, ba; — ba;)) Srma
r—2

+ Z biscis (Di + (1 — brta,i)) + cazbis (Dr—1 + Cr) + (L 2 bis)
k=2

where

L = (c1i(boa — b1ibo3)) + bl (bly — by, coz — co3, bor — boa, btz — by)

+ (co2bfly — cosbils, cozbor — cosboa, bo1bs — boabfly)-
The next two pages will compute L : bds. First of all, coloning with bd, gives:

L . ng = (bgz — bgl’ Co2 — Cps, bOl - b047 bg3 - bgl)

+ (c1i(boz — bribos), co2blly — cosbis, co2bor — cosboa, bo1bls — boablly) b,
which by a computation on page 8 equals

L . ng = (ng — bgl’ Co2 — Cp3, bOl - b047 bg3 - bgl)

+ (e1i(bo2 — b1ibos), cric1; (b1i — bi;), borcri (1 — bS,), cozeri(1 — b)),
so that L : bdybo; equals

(by — b, co2 — co3,bo1 — boa, bits — by, c1i(boz — bribos), cricij(bii — bij), cri(1 — b%,)).
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Note that neither bg; nor bgs is a zero-divisor modulo L : ngbm, so that by Fact 1.5,
L = (L : bybo1) N (L + (babor))
= (bgz — b1, coa — o3, bo1 — Doa, by — b3, c1i(bog — b1ibos), cricij(bri — bij), c1i(1 — b%))
N ((Cu(boz — biibos)) + s (bo1, b, b3, coz — cos, boa)
+ (co2bly — cosbis, cozbor — cosbou, b01b6lg))
= (bgg - bgp co2 — €03, bo1 — bo4, bgg - bgl, Cli<b02 - bubog), Cliclj<b1i - blj); Cli<1 - b%))
N <C1 + by (bo1, by, bls, con — co3, boa) + (Coably — co3bls, cozbor — cosbos, bmbgg))

ﬂ ((Cozbm — cozboa, bo1b3s) + (crili & A)
A#£D

+ (bog — b1iboz, bY;b35(bo1, by, coa — oz, boa), b5 (coabl; — co3)|i € A))

This is still part of the effort to compute L : bd;. Coloning the second component above
with bl equals

C1 + (bo1, bls) + (bgz(bm, biy, coa — o3, boa) + (co2bly — co3bls, conbor — Co3b04)) : b
But
by (bot1, b, coz — €03, boa) + (coably — co3bls, coabor — cozbos)
= (bgg; bo1, Co2 — €03, boa, Co2blly — Co3bgg> N <b6lz, co3bis, cobor — Co3b04);

so that

Cy + (boy, biy) + (bgz(bm; by, con — Co3, boa) + (Coablly — co3bls, coabor — Co3b04)> L by =
= C + (bo1, bdy) + (bég, bo1, Co2 — €03, boa, Coabls, Cozbgg> N (ng, €03, 002501>

d d
= C1 + (bo1, bga, co3bys, (co2 — co3)co3, boacos),

so that finally L : bd; equals

<bg2 — b, coa — o3, bo1 — boa, by — b3, c1i(bog — b1ibos), c1ici;(bri — bij), c1s(1 — b(fi))
N <C1 + (bot, bila, co3bis, (co2 — co3)cos, b04003)>

ﬂ <(b01, co3bos) + (c1i]i € A)
A#£D
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+ (bog — b1iboz, b1i — buj, b (bis, co2 — cos, boa), co2bl; — cosli, j € A))
= (bgg — by, co2 — co3, bo1 — boa, bids — b1, cri(boz — biibos), c1ic1; (b — bij), e1i(1 — b%i))
N ((bm, b3a, co3bls, (Coz — cos)cos, boacos)
+ (c1i(boz — bribos), cric1; (b1i — bij), c1:b%; (coa — o3, boa), cri(co2by; — Co3)>
= (b, — by, cos(bis — bG1)- (coz2 — co3)cos, boacos — bo1coz)

+ (c1i(boz — bribos), crici; (b1i — bij), c1ib%;(coz — o3, boa — bot), c1i(coabt; — cos))

+ bo1(coz — €03, bor — boa, btz — by, c1i(1 — b)),
Thus finally

K : coabls = (co1 — co2bla, co1 — coa, s — fbiy) + c13(coz — o3, bor — boa, bz — b))
+ ba (c13bY; — c13bfs) + ciabis (D1 + (bi1 — bia, 1 — b))

+ 13035 ((c11, bog, Do) (1 — ba;) + (b1g — baibiz, bay — baj)) 2
r—2

+ Z biscis (D + (1 = bga,:)) + ci3bls (Dr—1 + Cy)
k=2

+ (bdy — b1, cos(bis — 1), (coz — co3)co3, boacos — bo1co2)
+ (c14(bog — b1:bos), cric1j (b1 — bij), c1ibf;(co2 — o3, boa — bo1), c1i(co2bf; — cos))

+ 501(002 — ¢03,bo1 — 5047 bf)l:a - bglv Cli(l - bili))'

By Fact 1.6, Ass ( C Ass ( U Ass ( R ) Note that

R R
K2002b33> K:COngBClg) (K:Cszgs)—F(Clg)

(K : coabls) + (c13) = (co1 — co2bls, cor — Coa, 5 — fbia, c13)
+ 05 (c1ibl;) + (052 — b51, co3(bG3 — b1, (coa — co3)cos, boacos — boicoz)
+ (€15(boz — bribos), cric1; (b1 — biy), c13bi;(coz — cos, boa — bor ), c14(co2bf; — co3))
+ bo1 (o2 — o3, bor — boa, bz — by, c1:(1 — bE,)).
No b3, co; or by; appear in a minimal generating set of this ideal, so that by Theorem 3.1,

(K : co2bds)+(c13) gives no new embedded primes of J. Furthermore, z is a non-zerodivisor
on all of these. Thus it remains to analyze the associated primes of K : cpabdscis:

K : coablscis = (co1 — co2blla, co1 — oy 8 — Fbla, co2 — o3, bo1 — boa, by — by)
+ bgg (D1 + (b11 — b1a, 1 — bllii))

+ b5 ((c11, Doz, bo3) (1 — ba;) + (b1g — baibiz, ba; — baj)) o
r—2

+ ) bl (D + (1 = ba1,i)) + by (Dr_y + Ch)
k=2
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+ (boz — bisbos, c14(b1i — b13), bi3(coa — co3, boa — bor), co2bTs — cos, bor (1 — bi3))
+ (bdy(c13bly — cribfili # 3) + L) : ea3,

where

L' = (b, — b3y, cos(bls — bl ), (co2 — co3)cos, boacos — borcoz, cric1j(bri — bij)|i, j # 3)
+ (c1i(boz — briboz), c1:bf; (coz — co3, boa — bot), c1i(cozby; — cos)|i # 3)
+ bo1(co2 — €03, bor — boa, s — b, c1:(1 — b%,)|i # 3).
= (by — b1 co3(bG3 — b31); (co2 — co3)cos, (boa — bor)cos, cricr; (brs — biy)li, j # 3)
+ (c1i(boz — briboz), c1ibf; (coz — cos, boa — bot), cricos(bf; — 1)]i # 3)
+ bo1(co2 — o3, bor — boa, by — by, c15(1 — b{,)|i # 3).

Clearly (bdy(c13b%s — c1:0%|i # 3) + L) : 13 contains

L" = b (c13bfs — cribi;) + bGabls(c1s — 15, boa — biibos, 1 = by, cri(bri — big)[i, j # 3)
+ (bdy — b3y, co3 (b — b1 ), (co2 — cos)cos, (bos — bo1)cos)
+ (c14(bog — b1ibos), cric1j(bii — bij), c1ib%i(co2 — o3, boa — bo1), cricoz(bY; — 1)|i, j # 3)
+ bo1(co2 — o3, bor — boa, by — by, c15(1 — bS,)]i # 3).
It turns out that L” = L’ : ¢13, as the proof below shows.
Let y € (bdy(c13b%5 — c10%,)|i # 3) + L') : c13. Write

yeis = > yibis(crsbiy — cridy) +1,
i#3
for some y; in the ring and [ € L. Then y;bdyc11b¢; € L’ + (c12, c13, 14), so that without
loss of generality
y1 € (c12, 14, by — b1, co2 — o3, b01 — boa, b — bily, bo2 — bi1bos, by — 1).

Thus y; b3, (c13b%5 — c11b%,) is contained in

by (c13bs — c11b%y) (c1j, co2 — cos, bor — boa, bls — by, bo2 — bi1bos, by — 1,15 # 1,3)

C L' + by (ci3bls — c11bdy) (c1j, boz — bribos, by — 1|5 # 1,3)

C L' + by (crsbis — c11bfy) (c1j]5 # 1, 3) 4 biac13bds(boz — br1bos, by — 1)

C L' + biycr1(crsbfs — c1;b;)) + biac1sbls(c1j — ca1, boz — bribos, by — 1|5 # 1,3).

Thus for some y' € blyc13b5(c1j — c11, boa — bi1bos, bf; — 1|7 # 1,3) C L” and some yh, v}
in the ring,

(y—)ers — > yibla(casbly — cridf;) € L.
i—2.4
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Then yhbdyciob{s is in L' + (13, c14), so that

yhc12bls € (c13, c14, by — bily, co2 — o3, bo1 — boa, bls — b))
+ (Cli(l - bili)7 Cli<b02 - blib03)7 C11C12(b11 - b12)|i =1, 2);

whence

Y4 € (13, €14, Co2 — €03, bo1 — boa, btz — by, 1 — by, boa — biabos, c11(b11 — bi2)).

By reasoning similar to the one for y;, there exists y” € L” and g} in the ring such that
(y —y —y")e1z — yibdy(ci3bdy — c14bd,) € L'. Then y/bdyc14b%y € L' + (c13), and again
one can conclude that y; € L” + (c¢13). Thus y is an element of L’ modulo L”, so that
L" = L' : ¢13. Thus finally

K : coabisers = (co1 — co2bly, cor — coa, 8 — by, coz — cos, bor — boa, by — bly)
+ by (D1 + (b1 — b1a, 1 —1,))

+ b5 ((c11, Doz, boz) (1 — ba;) + (b1 — bagbiz, ba; — b2j)) G2
r—2

+ ) bl (Dr + (1= bg1,i)) + by (D1 + Cr)
k=2

+ (bog — b13bos, c1i(b1i — bi3), biabls(b1s — b13)bos, by — b3))
+ (6027 b01)<1 - b(li?), CliCOQ(l — bill)|7, 7é 3)

By Fact 1.6, Ass <¢) C Ass <¢> U Ass( Lis ) The latter

K:C()ngSClg K:C()nggclg (K:cozbg3013)+(bg3)
ideal equals and decomposes as:

(K : coablscis) + (bd3) = (s, cor, coas Co2 — o3, bo1 — boa, by, Doz — bizbos, bls)
+ (c1i(bri — bis), coz2(bs — 1), bo1(1 — bs), cozers (bf; — 1)), bor(cri(1 — b))
= (Co + (s, D01, boa, boa — b13bos, bls, c1i(b1i — 513)))

d d
N ((8, o1, €04, Co2 — €03, bo1 — boa, b3, bo2 — b13bos, bis3)

+ (c1i(b1i — b13), b5 — 1, cra (b — 1))),

which is an intersection of Q3p- and (Qopn-primary components, where A varies over all
subsets of {1,2,3,4} for which 3 € A. These do not give any new embedded primes of J,
and furthermore none of these primes contains .

It remains to analyze the associated primes of K : coab3dcys:

Coog2d. d d
K : coabggers = (o1 — co2bla, o1 — Coas 8 — fbGa, coz — co3,bo1 — boa, boz — bi3bos)
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+ Dy + (bi1 — bua, 1 — b)) + ((c11, Doz, boz) (1 — ba;) + (b1 — bagbiz, ba; — baj)) o
—2

+ Z (Dg + (1 = bgy14)) + Dy + Cr 4 (b5(b1; — b13)bo3)
k=2
+ (b5 — bG1> c1i(bri — bis)) + (cos, bor) (c1s(bS; — 1), 1 — bi3)) : b
= (co1 — co2bly, cor — co1, 5 — fb, co2 — co3, bo1 — boa, boz — bi3bos)
+ Dy + (b1 — bia, 1 — b)) + ((c11, Doz, bo3) (1 — ba;) + (b12 — bagbiz, bay — baj)) G2
r—2

+ Z (D + (1 = bgt1,4)) + Dr—1 + Cp + (b1 — b13)(bos, c1i) + (bgg — bgl) .
k=2

<

Note that this decomposes as

d d
((001 — €200, €01 — €04, S — fb{a, Co2 — €03, bo1 — boa, bo2 — bisbos) + D1

r—2
+ (1= b, (1= b2i)0rs2, b1z — bui, by — b3y) + Z (Dr. + (1 = bry1,4)) + Dr1 + Cr>
k=2
N ((S; €015 Co4s Co2 — €03, bo1 — boa, boz, bog, b)) + C1 + (b1 — bra, 1 — b%)
r—2
+ (b12 — b2;b13, ba; — b2j)dp>2 + Z (D + (1 = bgg1,)) + Doy + Cr>.
k=2

(The key to this decomposition is the fact that (c11, bo3) intersected with the first compo-
nent is contained in K : cogbggclg.) The first component above is p,., so all of its associated
primes are minimal over J. It is easy to read off the associated primes of the last compo-
nent as well. First note that none of these primes contain x, which finishes the proof that
x is a non-zerodivisor modulo K. Thus as J C K and zK C J, it follows that K equals
J: .

It remains to determine the associated prime ideals of the last component of K :
c02b3gc13 in the display above. The last component is the intersection of Q4,ag,-primary
components, as «, 3, and «y vary over all dth roots of unity in K. Note that Q4 raaa-
component contains p, and is thus redundant in the decomposition. But coloning with
b1z — by; for various ¢ shows that the remaining prime ideals are indeed associated to K
and thus to J.

This proves

Theorem 4.1: Let n > 2. Forr e {2,...,n—2}, set x = f(co1---cr—11) (b13---br_1,3)
¢r41,1(1 — br1), and forr =n—1,n, set x = f(co1---cr—11)(b1g---br_13). Then the set
of embedded primes of J not containing x is contained in

{QlA,QZA’a;QSA"A; A, C {1727374}7 |A/‘ > O}
U {Q4,2aﬁ6n:27 Q4ro¢6'y(5n>2|r =2,...,m ad = Bd = 7d =1, |{O‘7677}| > 1}7
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and each listed prime ideal is associated to J.

These new associated primes are also recorded in a table:

embedded prime (o = 8% = 4% =1, , 3,7 not all equal) height
n>2r=2...,n
Qurapy = (8, o1, o3 — 02, Co4, bo1, boz, bos, boa) r+24+46,<n

+(b12 — baibis, bai — b2j)dr>2 + (b11 — @, biga — a, bia — B,b13 — )

+C1+ D2+ -+ Dp1+Cp + B3 1

5. Reduction to (J(n,d) : scoz2) + (co2, f)

In this section the finding of the embedded primes of .J gets reduced to that of finding
the associated primes of certain ideals on which recursion can be applied. The main
methods are repeated applications of Facts 1.5 and 1.6. For example, the set of associated
primes of J is contained in Ass (J+( )) U Ass ( )

To start off, the decomposition of J + (s) is easy:

J 4 (s) = (s) + f (cot, Coa, co2bfla, cosblis, cozbor — cosbou, coaci (boz — b1ibos))
= (s, £) N (s, co1, Coa, Co2bly, cosbils, cozbor — cozbou, cozcri(boz — b1ibos))
= p_1 N (s, co1, cos, co2bly, cosblls; cozbor — cosboa, coac1i(boz — bribos), co2)
N ((s, o1, Coas Co2bila, co3bilss coabor — cozboas coaci(boz — b1ibos))  co2)

d
(s, cot, coas Coz, Co3bs, Cosbos)

=p-10
N (8, co1, Coa, by, Cosbis, co2bor — cozboa, bo1bis, c1i(boz — biibos))
= p_1 N (s, o1, Coa, Co2, co3) N (8, Co1, Coa, o2, b3, boa)
N ((s, co1, o, bila, co3bis, cozbor — cosboa, bo1bls, c15(bo2 — biibos)) : bils)
N (s, co1, Coa, by, co3bils, cozbor — cozboa, bo1bls, c1i(boz — biibos), bis)
= p_1 N (s, co1, Coa, Co2, C03) N P—2
N (S Co1, Co4, b027 o3, bo1, Cli(bOZ - blibOB); Cliclj(bli - blj); C1ib‘11i)
N (8, co1, Coa, bila, b3, coabor — cozbou, c1i(boz — biibos))
= p_1 N (8, o1, o4, Co2,C03) NP2 NP_4
N (S €01, Co4, b027 bog; co2bo1 — co3boa, Cli<b02 - bubos), Cliclj<b1i - blj))
N (s, co1, Coa, bo2, bos, cozbor — cozboa)

(
= p_1 N (S, co1, Coa, Co2,Co3) N P—2 Np_a Nq1 Np_s.
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Recall that p_;,p_o and p_s are minimal components of J, that p_4 and ¢; are the

intersections of 16 components of J each, but that (s, co1, co4, Co2, Co3) is not associated to

J as it is not in the list in Theorem 3.1 and not on the list of minimal primes on page 4.
This proves (by Fact 1.6):

Theorem 5.1: The set of embedded primes of J is contained in {Q1a|A}UAss (). m

The next task is to compute J : s and to analyze its associated primes. Any associated
prime of J : s is also associated to J. Computing J : s is straightforward (next Theorem),
but analyzing its associated primes takes many steps and the rest of this paper.

Theorem 5.2: Let Jy be the ideal in R generated by all the hy;/s, > 2. (Note that all
these h,; are multiples of s.) Then J : s equals

J s = (co1 — coabl1, cos — Co2, Coa — Co2bly) + Jo + coz(fb — 5)
+ (feoz, ¢5a) (b1 — bG2s ba — bG35 bo1 — bos)
+ coz (bo1bs — boably, c1i(boz — b1ibos))
+ co2 (e15e1j(bri — biy), e1i(bor — bY;boa), cozcri(1 — b%;))
where the indices © and j vary from 1 to 4.
Proof: First observe that

J =5 (co1 — co2biy, cos — co2, Coa — Co2bly) + sJo + FK + (feor — sco2),

where K = (co1 — o2y, coa — cosbls, co1 — coa, co2bor — cosboa, cozc1i(boz — b1ibos)). Thus
J s = (001 — co2bdy, co3 — o2, Coa — cogb84) + Jo +(fK + (fcor — sco2)) = s. Let x €
(fK + (fcor — scoz)) = s. Write xs = kf + a(fco1 — scoz) for some k € K and a € R. By
adding to x a multiple of fcg; — scp2 and an element of fK, and correspondingly changing
a and k, without loss of generality no s appears in a, and as fK N (s) = sf K, without loss
of generality also no s appears in k. From xs = kf + a(fco1 — scoz2) it follows that

a€ (K+(s)): feor=(s)+ (K :co1),

and as no s appears in a and the generators of K, actually a € K : ¢g;. By Fact 1.4,
K: Col1 — K Cogng = (601 — Cogng, Coqa — Cogbgg)) + (K/ . 602b82>, where

K’ = (co2bly — co3bls, co2bo1 — coszbos, co2c1i(bo2 — b1iboz)) -
Then

K’ coo = (co2bly — cosbis, cozbor — cosboa) : coz + (c1i(boz — b1sbo3))

d d d d
= (co2bly — co3bis, cozbo1 — cozboa, bo1bhs — boabdy, c1i(boz — b1ibos))
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and by the same proof as on page 8,

Y d d d d
K’ : coabgy = (co2bly — co3bss cozbor — cosboa, bo1bis — boabiy, c1i(boz — b1ibos))

+ (cric1; (brs — b1j)s cri(bor — bSbo4), c1i(cosz — bilicoz)) .
Thus

o d d
a€ K :cp = (601 — C02b02, Coq4 — 603b03)
d d d d
+ (co2bGy — co3bls, Co2bor — cosboa, bo1bgs — boabl, c1i(boz — biibos))

+ (cricrj(bri — bj), c1i(bor — bS:bo4), c1i(coz — bilicoz)) .

Recall that = € K : s and sz = kf + a(fcor — scoz) for some k € K and a € K : ¢p1.
Thus s(x 4 acp2) = f(k + acp1), and as no s appears in a and in k, x + acgy = 0, so that
x € co2(K : ¢cp1). Thus

J 15 C (co1 — co2bly, cos — coz, Coa — co2bly) + Jo + (feor — scoz) + FK
+ co2 (o1 — co2bls, cos — co3bls)
+ co2 (Co2bily — co3bls, co2bor — cosboa, borbits — boablla, c15(bo2 — b1ibos))
+ Co2 (Cliclj<b1i - b1j), Cli(bOI - 5%504), Cli(COB - bilicoz))
= (co1 — co2bl, cos — co2, Coa — coabily) + Jo + o2 (fb3, — )
+ f (co1 — co2bls, coa — co3bls, cor — coa, cozbor — cozboa, coaci(boz — bisbos))
+ ¢ba (b1 — BB, bia — b33, bG2 — b33, bor — boa, cri(1 — b))
+ co2 (bo1bils — boabls, c15(bo2 — b1:bos), cric1;(b1i — bij), cri(bor — bf;bos))
= (co1 — co2bl, cos — co2, Coa — coably) + Jo + o2 (fb3, — )
+ feoa (b1 — bG2s bga — b33, bor — bos)
+ 5o (681 — bGas bia — b33, bor — boa, cri(1 = bYy))
+ Co2 (501583 - 504582, Cli<b02 - bubos), Cliclj<b1i - blj); Cli<b01 - bcllib04)) .
It is easy to verify that the other inclusion also holds, which proves the theorem. m

Incidentally, this also shows:

Proposition 5.3: The Mayr-Meyer ideal J(n, d) is not a radical ideal: the element scoz(bg1—
bos) is in v/ J but not in J. m

This was already proved in [S2] with the assumption that d > 2, without giving an
element of the radical which is not in the ideal.
Furthermore, it is easy to see the following:
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Corollary 5.4: Let a be one of the listed generators of J(n,d) : s. Then s-a can be
written as a linear combination of the generators of J(n,d) with coefficients of degree at
most 2d + 1. Also, coabdici1 -+ Cn21(Cn11 — Cn_1.4) liesin J(n,d):s. m

Let J) be the ideal obtained from Jy after rewriting each cg; as cogbgl, Co3 as cp2, and
cos as coabd,. Note that Jj is a multiple of ¢z and that the theorem above also holds with
J4 in place of Js.

Observe that (J : s) + (cg2) = Cyp = po, a minimal prime ideal over J. Thus by
Fact 1.6:

Theorem 5.5: The set of embedded primes of J equals {Q1a|A} U Ass (L» which is

J:sco2
R R
Al U Ass U Ass :
{Q1A| } (J . 56(2)2) ((J : 8602) + (COQ))

contained in

Note that

155( s 7)) <4 (@ s 7) Y4 (T s

Here are all the ideals appearing in this theorem:

J : sco2 = (o1 — co2bly,s co3 — Coas Coa — Co2bly) + J5/con + (fb3; — )
+ (f, co2) (b§; — b3z, bGs — bz, bor — bos) + (borbGz — boabls)
=+ (Cli(bOQ — b1ibo3), C1iC1j (b1; — b1j), c1i(bo1 — b({lib04), cozc1i(1 — b(fi)) )
J:schy = (co1 — co2bd,, co3 — co2, Coa — cogb6l4) + J5/con + (fb3, — s)
+ (bg1 - bgz, 534 - 66’3, bo1 — boa, Cli<b02 - blib03)7 Cliclj<b1i - b1j), Cu(l - bili)) )
(J = sco2) + (co2) = Co + J3/con + (fO51 — 8) + [ (b1 — bzs ba — i3, bor — boa)
+ (bo1bds — boably, c1i(boz — b1sbos), cric1; (b1 — bis), cri(bor — b;bos))
((J = scoa) + (c02)) : f = Co + Jp/con + (Fb5; — 5,51 — ba, bgs — bz: bor — boa)
+ (Cli(bOQ - bubos), Cliclj(bli - b1j), Cli<b01 - bilibo4)) )
(J = sco2) + (o2, ) = Co + J5/con + (s, f,bo1bs — boably)
+ (e14(bo2 — b1ibos), cric1j(b1i — bij), cri(bor — bY;boa)) -

Observe that (J : sc3,) + (bd;) equals
(co1, co3 — o2, Coas 8, b5, bor — o, c1i(boz — bribos), cricij (b — biy), cri(1 — %))
and (((J : sco2) + (co2)) = f) + (bF1) equals
Co + (5,b8:, o1 — boa) + (€15(bo2 — b1ibo3), cric1;(b1i — bij), cri(bor — b;boa)) -
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Clearly the associated primes of these two ideals do not contain x, where z = fca1b13(b21 —
bao) when n > 2 and z = f when n = 2. Thus by Theorem 3.1, these ideals do not
contribute anything new to the set of embedded primes of J.

Thus by another application of Fact 1.6,

Theorem 5.6: The set of embedded primes of J is contained in

{Q1r, Qanre, Qan/| A, N C{1,2,3,4},|A] > 0,0 = 1}
R

UASS<L>UASS< )UASS( R ) [
J : sc8abt, ((J : scoz) +(co2)) = fbG, (J = sco2)+(co2, f))

We now determine the embedded primes of .J that arise from the associated prime
ideals of J : sc2,bd; and ((J : sco2) + (coz2)) @ fbe;.
Define J4 to be the ideal

Jy = (hyj|r > 2) with setting s = co1 = cos = 1.

This is the same as taking the ideal Js, rewriting each cg; and cy4 as cogbgl (whence each
element is divisible by co2bd;), and then dividing that ideal by co2bd;. Recall that Jj is the
ideal obtained from .J, by rewriting each cy; as cOngl and cg4 as 002b84. Then

=D + Z C11- Cr1< r1 + (bp1 = bra, crg1,1(br2 — br+1,ibT3)))7

using the convention that ¢,; = 1 = b,; and D,, = (0), and
Jb /o2 + (o1 — bosa) = Jo'bdy + (bo1 — bos) -
Thus
J: sciabd = JY + (co1 — Co2b§1, Cos — Coz, Coa — Co2bfly, s — fbgl)
+ (b3 — b3y, b4 — b3, bor — boa, c1i(boz — bisbos), cricrj(bri — biy), cri(1 — b)) = b3y

" d d
= JY + (co1 — co2blly, cos — o2, cos — co2blly, s — Fb3))

+ (b — b, by — bls, bor — boa) + c11 (bo2 — b1ibos, c11(b1; — b1j), 1 —bS;),
and

((J = sco2) + (co2)) = fbd = Co+ J§ + (s — fbdy, bor — bos)
(531 - ng, b3y — bis, Cu(boz — b13bo3), crica;j (b1 — b1y), c1ibor (1 — bY;)) « b3,
=Co+ J5 ( fb01a b02,b 4—bg3,b01 —b04)
+ ¢11 (bo2 — byibos, Cll(bli — by;),1—b;).
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Let L be either of the two ideals above. Then L is of the form
Lo+ JY + (s — fbly, by — by, b, — bis, bor — boa) + 11 (bo2 — biiboz, c11(bri — bij), 1 — b)),

where LO is either CO or (601 — Cogbgl, Co3 — Cp2,Co4 — Cogbg4).
By Fact 1.6, Ass(R/L) C Ass(R/(L : ¢11))UAss(R/(L+(c11)))- It will be proved that
the only embedded prime of J in this larger union set Ass(R/(L : ¢11))UAss(R/(L+(c11)))

are the Q4ragy Or the Q4243
First of all,

L+ (c11) = Lo+ C1 + (s — fbly, b3 — by, b3, — bls, bo1 — bos) = Lo + p1,

which equals the intersection of minimal components pins if Lo = (co1 — cOngl, Co3 —
Co2,Co4 — c02b34), and is not associated to J by Theorem 3.1 if Ly = Cj.

Thus it remains to find the associated primes of L : ¢1; in order to find the associated
primes of L which are also associated to J. For this first note that JJ = Dy + ¢11J%" for
some (obvious) ideal J§ in R. Thus

LZCll :L0+D1+J///
+ (5 — b1, by — by, by — bls bor — boa, boz — b1ibos, c11(bri — bij), 1 — bSy).

Note that L : ¢11bo3 equals
Lo+ D1+ J5 + (s — fby, b — ba, by — b3, bo1 — boa, boz — b1ibos, bi; — bij, 1 — by,),

which decomposes:

=((Lo+ D1+ + Dy +Cr+ By
r=2

+ (s — by, bl — by, by — bis, bor — boa, bo2 — b1ibos, b1 — bij, 1 — b?z‘))

= (to+ ).

r=2

As before, when Ly = (co1 — cogbgl, €03 — Co2, Cosa — c02b34), the above is just the intersection
of some minimal components of J, and when Ly = Cj, the associated primes are of the
form Cy + Prq3, r > 2, whence are not associated to J by Theorems 3.1 and 4.1.

Thus it remains to find the associated primes of

(L : c11) + (bo3) = Lo + D1 + JY + (s, b1, bo1 — bou, boz, bos, c11(b1i — bij), 1 — b;),
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which similarly decomposes (first add c¢;; and colon with ¢11) as

= ﬂ (Lo +Cy+Dy+---Dypq +Cp 4 Bs 1+ (5,b8, bor — boa, boz, bos, 1 — b;)
r=2

+ (b11 — b14) + (b12 — baibis, bai — b21)dr>2 + (b12 — b13)5n:2)

ﬂ (Lo +Dy+ -+ Dy + Cr+ Br_y + (5,b3, bor — bos, boa, bog, b1i — b1j, 1 — b(lii)>v
r=2

from which it is easy to read off the associated primes. By Theorems 3.1 and 4.1, only the
Q4rapy Or the Q42,3 among these are embedded primes of J.
This proves the following:

Theorem 5.7: The set of embedded primes of J is contained in

{Q1A7Q2A’a:Q3A’|A:A/ g {1727374}7 |A/| > 0}
U {Q4,2a65n:27 Q4To¢ﬂ75n>2|r = 27 R 2 ad = ﬂd = 7d = 17 ‘{Oé,ﬁ,’}/H > 1}7

UASS((J:SCOQ)]%+(COQ,f>),

where the explicitly listed 31 + 15d + d*6,—2 + (n — 1)(d® — d)d,~2 prime ideals are indeed
associated to J = J(n,d). =

Note that (J : sco2)+(co2, f) equals K (n, d)+Co+(s, f), where K (n, d) is the ideal gen-
erated by the following elements which do not involve any of the variables s, f, co1, co2, o3, Co4:

go1 = bo1bls — boabls,

g1i = c14 (bo2 — b1ibo3) i =1,...,4,

g1,a+i = c1i (bor — b;boa) i =1,...,4,

g1ij = cricij (b1 — biy), 1 < i< j <4,

921 = bisc11 — by cra,

922 = b sc1a — by c1s,

923 = b1 (c12 — c13),

g24 = bg4(c1zb11 - C13514),

92.4+4i = bg461262i (byg — baib13),i=1,...,4, when n > 2
gos = bl,c1¢0; (bio — by3), when n = 2,

gr1 = bglcu " Cr_3,1 (Cr—2,4Cr—1,1 - Cr—2,1Cr—1,2) ,T=2,...,m,

d
gr2 = 501011 ©Cr-3,1 (Cr—2,4Cr—1,4 - Cr—2,1cr—1,3> s T=2,...,n,
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d
gr3 = bo1011 o Cr_21 (Cr—1,3 - Cr—1,2) ,T=2,...,m,
d
gr4 = b01C11 ©Cr—3,1Cr—24 (Cr—1,2br—1,1 - Cr—1,3br—1,4) ,T=2,...,m,
d .
Grati = byic11 - Cro3,1Cr—2.4Cr—12Cr; (bp—12 —bribr_13),i=1,...,4,r=2,...,n—1,

d
Gns = bg1C11 - Cn_31Cn—2.4¢cn—1,2 (bp—1,2 — bn_13) .

The family of ideals K (n,d) is analyzed in [S3]. In particular, it is proved in [S3] that
this family also satisfies the doubly exponential ideal membership property. Furthermore,
the set of associated primes of K(n,d) recursively depends on the set of associated primes
of K(n—1,d?).

By Fact 1.4, any prime ideal associated to K (n,d), after adding Cy+ (s, f), is possibly
associated to J(n, d). In [S3] the obtained set of prime ideals possibly associated to K (n, d)
consists of 20 variously subscripted families and the ideals associated to K(n — 1,d?) +
C1 + (bo1, bo2, bos, bosa), where K (n — 1,d?) involves the variables c.;,7 > 2, and b,;,r > 1.
From these families by Fact 1.4 then one easily constructs the corresponding families of
prime ideals, here subscripted with 5 through 24, which are possibly associated to J(n,d).
To list these families, as usual, A always varies over all subsets of {1,2,3,4} and A’ varies
over all non-empty subsets of {1,2,3,4}. Also, we will use the ideals

T =(s,f)+Co+---+Cr+ (byli=1,...,4t=0,...,7r—1).

With this then the list of prime ideals in [S3] of prime ideals possibly associated to K (n, d)
lifts to the following prime ideals possibly associated to J(n, d):

Qsrar =T + (br1,bpa) + (Cry1,ilt € A) + (br2 — bry1,3br3, brgp1i — ey jli,5 € A),
height 8 + 12,0 <r < n — 2,

Qor = T + Crsy + (brab%y — boab® ), height 87+ 11,0 < <n — 2,

Qrr = T + (Cr41,15 Cr1,25 Cra1,4, 0r1, b2, b 1.3, br 41 4),
height 8 + 13,0 <r <n — 2,

Qsra =Ty + (¢r41,1, Crg1,4, 001, br2, brp 1.2, 0041,3, Crp1 200411 — Crg1,30r41,4)
+ (¢rg2,lt € A) + (1 — bypo,i]i € A), height 8 + 17,0 <r <n — 3,

Qor =T, + (Cr+1,17 Cr4+1,4, b1, bro, br—|—1,27 br—|—1,37 Cr+1,2br—|—1,1 - Cr+1,3b7"—|—1,4)7
height 8 + 13,0 <r <n — 2,

Qiora =Ty + (Cr41,1, Cr41,3, Cr1,4, b1, bp2, brg1 1, brg1 2)
+ (CT-I-Q,i‘i g A) + (bT+2,i|i S A)7 helght 8r + 177 0<r<n- 37

QllT‘A/ = TT‘ + (CT‘+1,17 Cr+1,3,Cr41,4, brl; br27 br+1,17 br+1,27 br—|—1,3)
+ (Cr+27i|i 4 A/) + (br—l—Q,i — br+2,j|i,j € A,), height 8 + 17,0 <r <n — 3,
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Q12rAa = Tr + C1 + (bo1, boz, bos, b12, b13) + (c2ili € A) + (b2 — ai € A), ot = L,
height 8 + 19,0 <r <n — 3,
Qizra =T + Crp1 + (br1, br2, b3, brg1,2, bry 1 3)
+ (¢ry2,ilt € A') + (bri2i — bryajli, j € A'), height 8r +18,0 <r <n —3,
Quara = T + Cry1 + (b1, br2, 003, bra, b 12,00 11.3) + (Cryoili € A)
+ (bryai — bryali,j € A), height 87+ 19 + 0y_,0 < 7 < n — 3,
Qi5rn =15 + (Cr+1,1, Cr+1,3 — Cr41,2,Cr41,4, br1, br2, br—|—1,17 br+1,27 br—|—1,37 br+1,4)
+ (¢rg2,lt € A) + (1 — bypo,i]i € A), height 8 + 19,0 <r <n — 3,
Qiera = T + Cry1 + (br1,br2, brg1,1, 041,20 41,3, br41,4)
+ (cry2.ilt € A) + (1 — bppo,i]i € A), height 87 +20,0 <7 <n — 3,
Qurra =Ty + Cryr + (bp1,br2, by 1,1, 01,2, 00413, br1,4) + (Cryoili € A)
+ (bryai — bryagli,j € A), height 87+ 19 + 0y_,0 < 7 < n — 3,
Qisra =Ty + Cri1 + (bp1, 002,003, br1.1, br11,2, brg 1,3, bp41,4) + (Crg2,ili & A)
i,J € A), height 8r + 20 + 65—p,0 <r <n—3,

+ (br+2,i — briz,j
Qiornra =Ty + Cri1 + (br1, b2, 03, bp 41,1, brgp1,2, br 41,3, bry1.4)
t (Crazili @ A) + (byas — ali € A'),a® =1,a% #£1,
height 8 + 21,0 <r <n — 3,
Q20r'a =Ty + Crg1 + (b1, br2, b3, bp401.1, brg1,2, br1,3, byrg1,4)
+ (Cryili € N) + (brygi —ali € N'), 0% =1,
height 8 + 21,0 <r <n — 3,
Qairt =T +Dypyo+ -4+ D1+ Cy + By
+ (¢r41.1 — bf«lil,gcrﬂz, Cr41,4 — Cr41,1,Cr+1,3 — Cri1,2)
+ (br2 — bry1,20r3, brp1,2 — bypg1,i, bp1 — bf«l+1,gbr4),
height 7t +r + 404, 0 < r < n — 2,
Q22rt =T +Crp1+Dypyo+ -+ Dy + Cy + Bay 1
+ (bra — brg1,2br3, brg1,2 — brg1,is brr — bﬁ+1,2br4) ,
height 7t +7r + 1+ 404, 0 < 1r <n — 2,
Qarin-20 = Tr + Crir + Cpyz (b1 = b1 oy, bras by, brsa g = brina)

2" 2" .
+ (bry12 — abri13,bps11 — Bbry13), 0 =4 =1, height 8n,
Q23rtap = Tr + Cri1 4+ Dygo + -+ Di—y + Co + Bay—1 + (b1 — b4 5bra, br2, bys)

+ (br—|—1,2 - Oébr+1,3, br+1,1 - 5br+1,3, br+1,1 - br+1,47 br+2,i - Oé) )
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o = g% — 1 height Tt + 7 +2 + 46,2, 0 <7 < n — 3,
Q24 =T5—1 + (bp—11 —bp—1.4,bn—12 — by_13), height 8n.

Thus finally:

Theorem 5.8: With n > 2, the set of embedded primes of the Mayr-Meyer ideal J =
J(n,d) is contained in the set

{Q1A7 QQA’OM Q3A’7 Q24} U {Q4,2aﬂ6n:27 Q4raﬁ'y5n>2‘ad = 6(1 = Vd = 17 |{Oé, 67 ’Y}‘ > 1}
r=2

n—2

J{Qsrar, Q). Qureli = 6,79k = 21,221t =r +2,... n}
r=0

n—3
J{Qira, Qrrali = 8,10,14,15,16,17,18; k = 11,13}
r=0
n—3

or 21‘—‘,—1 or
U {Qi2rA0 Qrorarar s onrA/a\Oéd =1, o/? =1, o'l # 1}
r=0
n—3 )

27 27 on—
U{QQBTtO‘BV' = 7’+2,...,TL; ad = 6d = 1}U{Q23,n—2,n,1a‘ad = 1}7

r=0

where A varies over all subsets of {1,2,3,4}, and A’ varies over all non-empty subsets of
{1,2,3,4}. =

Remark 5.9: [t was proved in Section 3 that the Q1p, Q2ara, Q3ar are indeed associated
to J, and in Section 4 the same was proved for the Quirapy and the Qi2q3-

The last theorem proves that the Mayr-Meyer ideal J(n, d) for n = 2 has at most 52+
15d+d? embedded prime ideals and that when n > 3, it has at most 160n—270+31d+n(n—
1)+10(2) (n—1)+31(d> +---+d>" ")+ ((n — DA +(n—2)d® +--+ 3d2"’3) +184%"
embedded prime ideals.

Also, for all n > 2, none of the maximal ideals is associated to the Mayr-Meyer ideals.

Whereas the theorem above gives some information on the structure of the associated
prime ideals of J(n,d), much is left to be done to answer the Bayer-Huneke-Stillman
question. I end this paper with a list of questions:

1. Some of the prime ideals in Theorem 5.8 may not be associated to J(n,d). Find all
such primes, or in other words, find the exact set of embedded primes of J(n,d), not
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just a set containing it. In particular, determine if the set of associated primes of

J(n,d) is truly doubly exponential in n.

2. Determine if any of the associated prime ideals of J(n,d) play a crucial role in the

doubly exponential behavior. The prime ideals Q)23 n—2n,1,o and Q24 may be likely

candidates.

3. Theideal J(n,d)+(s, f)z—f—z::f:_g (¢r1, Cra, Cr3, cra)? exhibits the same doubly exponen-
tial syzygetic behavior as J(n,d). It has height 2 4+ 4n, whereas J(n, d) has height 2.
What kind of primary decomposition or associated prime ideal structure does this

larger ideal exhibit?
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