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ABSTRACT. We prove that each ideal of a locally formally equidimensional analytically un-
ramified Noetherian integral domain is the contraction of an ideal of a one-dimensional semilo-
cal birational extension domain. We give an application to a problem concerning the primary
decomposition of powers of ideals in Noetherian rings. It is shown in [S2] that for each ideal I
in a Noetherian commutative ring R there exists a positive integer k such that, for all n > 1,
there exists a primary decomposition I™ = Q1 N --- N Qs where each ); contains the nk-th
power of its radical. We give an alternate proof of this result in the special case where R is
locally at each prime ideal formally equidimensional and analytically unramified.

In this paper we prove that every ideal in a locally formally equidimensional analytically
unramified Noetherian ring R is the contraction of an ideal of a one-dimensional semilocal
extension which is essentially of finite type over R. If R is a domain, the extension may
be taken to be birational, i.e., with the same field of fractions as R.

By passing to the extended Rees ring R[It,t7!] of an ideal I of R, these contraction
properties give a type of uniform primary decomposition for the powers of I. This is based
on the fact that the primary decomposition of a height-one ideal in a one-dimensional
semilocal ring is unique, and the primary decomposition for powers of a fixed ideal in
such a ring is obtained from just taking the powers of the primary components of the
fixed ideal. Furthermore, contracting primary decompositions from an overring gives a
primary decomposition for the contracted ideal. Our interest in establishing this result was
motivated by a question, recently answered in [S2], concerning the primary decompositions
of powers of an ideal.

All rings we consider are commutative and our notation is as in [AM] and [M].
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1. Powers of ideals and primary decompositions.

Let I be a proper ideal of a commutative Noetherian ring R. It is known that only
finitely many prime ideals of R are associated primes of a power of I [Rat], and that
all suitably large powers of I have the same associated primes [B]. In considering primary
decompositions of the powers of I, it is natural to ask about the growth of the exponents of
primary components of I”, where the ezponent of a primary ideal @ with rad(Q) = P is the
smallest positive integer e such that P¢ C @ [ZS, page 153]. If @) is a primary component
associated to a minimal prime P of I, then Q(™), the inverse image in R of Q™Rp, is the
unique P-primary component of I™ and the exponent growth of the P-primary component
of I" is linearly bounded as a function of n in the sense that if () has exponent e, then
Pem C Q™. The situation, however, for embedded associated primes of I is not as obvious
[He], [S1]. By proving a version of the linear uniform Artin-Rees lemma in the spirit of
Huneke’s paper [Hu], it is shown in [S2] that there exist primary decompositions of the
powers I™ of I for which the exponent growth of the primary components is linearly
bounded. We present here an alternative approach to obtain a special case of this result.

HFI=Q:N---NQ; is a primary decomposition, then we clearly have
(1.1) mc@rn---NQy,

but in general the inclusion in (1.1) may be proper, and powers of a primary ideal need
not be primary.

A case where equality holds in (1.1) is if the intersection of the @; is also their product.
And a case where the intersection of ideals is their product is that of pairwise comaximal
ideals. Thus if dim(R/I) = 0, then the primary components of I are pairwise comaximal
and for each positive integer n, I" = Q7 N...Q% is the unique irredundant primary
decomposition of I™. Our proof of a special case of the linearly bounded exponent growth
result of [S2] is based on obtaining primary decompositions for the powers of I via descent
from a regular principal ideal of a one-dimensional semilocal extension ring.

We use the following elementary lemma.

Lemma 1.2. Suppose R is a subring of a ring S and = € R is a regular element of S. If

xR =xSN R, then "R = 2™ S N R for each positive integer n.
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Proof. We clearly have z"R C ™S N R. Assume by induction that n > 2 and 2" 'R =
z" 1SN R. Then

z"SNR=2"SNzR=2z(z""'SNR)=zz""'R=2z"R,

where equality in the middle step uses that z is a regular element of S. [

Remark 1.3. With R, S,z as in (1.2), if S is one-dimensional and Noetherian, then each
associated prime of £S5 is a maximal ideal of S and a minimal prime of £S. Hence the ideal
xS has a unique irredundant primary decomposition, say xS = Q1N ---NQs, and for each
positive integer n, ™S = Q7 N---N Q7 is the unique irredundant primary decomposition

of z"S. If xR = S N R, then by (1.2), we have
(1.4) z"R=(QTNR)N---N(QYNR)

for each positive integer n. Since )7 is primary in S, the ideal Q7 N R is primary in R.
The decomposition given in (1.4) may fail to be irredundant, but it can be shortened to an
irredundant primary decomposition. Moreover, if rad(Q;) = M; and e; is the exponent of
Q;, then for k = max{ey, ..., e, } we have MF" C QT for each i, and therefore (M;NR)*" C
(Q" N R) for each ¢. This shows that the exponent growth of the primary components of

2™ R in a primary decomposition obtained from (1.4) is linearly bounded.

Remark 1.5. Let I be an ideal of a Noetherian ring R and let ¢ be an indeterminate over
R. With S = R[It,t7!], the extended Rees ring of I, we clearly have t~"S N R = I™ for
each positive integer n. Therefore to show the existence of primary decompositions of the
powers of I with linearly bounded exponent growth, by passing from I to the principal
ideal t—189, it suffices to consider the case where I is a principal ideal generated by a regular
element.

In view of (1.3) and (1.5), we are led to ask:

Question 1.6. Suppose R is a Noetherian ring and z € R is a regular element. Does
there exist a one-dimensional Noetherian extension ring S of R such that z is a regular
element of S and zR =zS N R?

In §2 we present an affirmative answer to (1.6) for a restricted class of Noetherian
rings by proving that ideals in this restricted class of rings contract from one-dimensional

Noetherian ring extensions. We are aware of no example where (1.6) has a negative answer.
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2. One-dimensional semilocal extension rings.

Let R be a Noetherian ring and let I by an ideal in R. We prove in this section that
under certain assumptions on R, I contracts from a one-dimensional semilocal Noetherian
ring extension. Let I = Q1 N ---N @, be an irredundant primary decomposition and let
P; = rad(Q;). Our first step is to prove that each Q;Rp, contracts from a Noetherian ring
extension of Rp, which has smaller dimension than Rp, (see Theorem 2.1 for the precise
statement). This and induction on dimension then imply that each Q;Rp,, and hence also
Q;, is contracted from a one-dimensional Noetherian ring extension. Theorems 2.3 and
2.4 then prove the contraction property for all ideals I in locally formally equidimensional
analytically unramified Noetherian rings. Corollary 2.6 then gives the linear growth of

exponents of primary components of powers of an ideal.

Theorem 2.1. Let (R,m) be a reduced local ring and let ) be an m-primary ideal.
Assume that the integral closure R’ of R in its total quotient ring is a finitely generated
R-module and that the height of each maximal ideal of R’ is at least two. Then there exist
regular elements a,b € m such that mR[a/b] is a nonmaximal prime ideal of R[a/b], and

S = Rla/blmR[ase) is a local ring with dim(S) < dim(R) and QSN R = Q.

Proof. Since R is reduced, the total quotient ring of R is a finite product of fields and
R’ is a finite product of normal Noetherian domains, say R’ = R} x --- x R} . Let r be
a positive integer such that m"” C (). By the Artin-Rees lemma, there exists a positive
integer n such that m"R' N R C m". Let a,b € m™ be such that the ideal (a,b)R’' has
height two. It follows that a and b are regular elements of R and the images of a,b in
R} form a regular sequence for 1 < i < m. Let ¢ be an indeterminate over R’ and let
¢’ : R'[t] — R'[a/b] be the R’-algebra homomorphism such that ¢'(¢) = a/b. Then R'[t] =
R}[t] x --- x Rl,[t]. Since the images of a, b in each R} form a regular sequence, ker(¢’) =
(bt — a)R'[t]. Let ¢ : R[t] — R[a/b] be the restriction of ¢'. Since ker(¢’') C m™R’[t] and
ker(¢) = ker(¢') N R[t], ker(¢) C m" R[t]. Since mR[t] is a nonmaximal prime ideal of R][t]
with ht(m) = ht(mR][t]), and since QR]t] is mR[t]-primary and ker(¢) C QR|[t], it follows
that mR[a/b] is a nonmaximal prime ideal and QR[a/b] is mR[a/b]-primary. Therefore
S = R[a/blmR[ase) is a local ring with dim(S) < dim(R) and QSN R =Q. O

Corollary 2.2. Let (R,m) be a formally equidimensional analytically unramified local
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ring with dim(R) = d > 1, and let @ be an m-primary ideal. There exists a one-dimensional
local extension ring T' of R such that T is a subring of the total quotient ring of R and is

essentially of finite type over R, and is such that ) contracts from 7.}

Proof. The fact that R is analytically unramified implies that the integral closure R’ of R
in its total quotient ring is a finitely generated R-module, and that finitely generated R-
subalgebras of the the total quotient ring of R also have this property [R1, Theorem 1.5].
The assumption that R is formally equidimensional implies that: (i) R is universally
catenary, (ii) equidimensional local rings essentially of finite type over R are formally
equidimensional, and (iii) all the maximal ideal of R’ have height equal to dim(R) = d
[M, Theorem 31.6]. If d > 1, then (2.2) implies the existence of regular elements a,b € m
such that mR[a/b] is a nonmaximal prime ideal and S = R[a/b|mg[a/s) is a local ring with
QSN R = Q. Since R is equidimensional and universally catenary, dim(S) =d —1, and S
is equidimensional, and therefore formally equidimensional. A simple induction argument
implies the existence of a one-dimensional local extension T' of R such that T is essentially

of finite type over R, a subring of the total quotient ring of R, and QTN R=Q. O

Now let again I = Q1N ---N Qs be a primary decomposition of I and let P; = rad(Q;).
By (2.2) we know that each Q; contracts from a one-dimensional local extension ring as
long as Rp, is formally equidimensional and analytically unramified. The following lemma

proves that in this case then I is also contracted from a one-dimensional extension ring.

Lemma 2.3. With notation as above, assume there exists, for each 7, 1 <17 < s, a one-
dimensional local extension ring T; of Rp, such that Q;Rp, = Q;T; N Rp,. Let T be the
direct product 77 X --- X Ts. Then T is a one-dimensional semilocal extension ring of R

and I contracts from T, i.e., I = IT N R.

Proof. Since the canonical map of R into the direct product Rp, X ---x Rp, is an injection,

and Rp, is a subring of T; for 1 < 4% < s, the canonical map of R into T is an injection.

1An alternative proof of this corollary can be given using work of Rees. For simplicity let (R, m) be
a reduced equidimensional complete local ring, and let @ be an m-primary ideal. There exists an ideal
I, generated by parameters, such that the integral closure of I is contained in @ [R1]. By [R2], it follows
that the equations defining the Rees algebra R[It] have coefficients contained in @, and it then follows
that a suitable affine piece of the blowup of I, localized at the extension of the maximal ideal m satisfies
the conclusion of (2.2).
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It is clear that T is one-dimensional and semilocal. Since (); is primary it is the inverse

image in R of QQ;Rp,. Therefore Q;T N R =@, for 1 <7 < s. Hence

ITNRC(QiTNR)N---N(QsTNR)=Q1N---NQs=1. O

Thus every ideal in a locally analytically unramified and formally equidimensional Noe-
therian ring is contracted from a one-dimensional Noetherian ring extension which is es-
sentially of finite type. In case R is an integral domain one can take the extension to be a
domain by replacing the finite direct product in the preceding proof with an intersection.

Theorem 2.4 is related to [GH, (3.21)] which applies to a Cohen-Macaulay domain.

Theorem 2.4. Let I be an ideal of a Noetherian integral domain R. Assume that for each
P € Ass(R/I) the local ring Rp is analytically unramified and formally equidimensional.
Then there exists a one-dimensional semilocal birational extension T of R such that T is

essentially of finite type over R and ITNR = 1.

Proof. Let Ass(R/I) = {P;}{_,, and let ); be a P;-primary component of I. By (2.2)
there exists a one-dimensional local extension domain 7; of Rp, such that T is a subring
of the fraction field of R and QT; N Rp, = QRp,,1 <1 < s. Since T; has center P; on R,
for 4 # j, the one-dimensional local domains T; and T} are not dominated by a common
valuation domain. Hence by [HO, (2.9) and (2.10)], T = N{_;T; is a one-dimensional
semilocal domain and each localization of T' at a prime ideal is essentially of finite type
over R. It follows that T is essentially of finite type over R, and Q;T N R = Q; for each
1, 1<i1<s,solTNR=1. 019

As a consequence of these results on contractions of ideals we obtain our results on

exponents of primary components of powers of ideals:

Theorem 2.5. Let R be a Noetherian ring and let z € R be a regular element. Assume
that for each associated prime P of I = xR, the local ring Rp is analytically unramified
and formally equidimensional. Then there exists a positive integer k£ such that, for all
n > 1, there exists a primary decomposition I™ = Q1 N --- N Qs where each @; contains

the nk-th power of its radical.
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Proof. By (1.3), it suffices to show the existence of a one-dimensional semilocal extension
ring S of R such that z is a regular element of S and zR = xS N R. This follows by (2.2)
and (2.3). O

Since the passage from a Noetherian ring to an extended Rees ring preserves the property
of being locally formally equidimensional and analytically unramified, Remark 1.5 and

Theorems 2.4 and 2.5 imply:

Corollary 2.6. Let R be a Noetherian ring that is locally at each prime ideal analytically
unramified and formally equidimensional, and let I be an ideal of R. There exists a one-
dimensional semilocal extension ring S of R which is essentially of finite type over R and
is such that every power of I is contracted from a principal ideal in S. If R is an integral
domain one can take S to be a domain. Also, there exists a positive integer k such that,
for all n > 1, there exists a primary decomposition I” = @1 N ---N Qs where each ;

contains the nk-th power of its radical. [J

Remark 2.7. In general, an ideal I of a Noetherian integral domain R need not be the
contraction of a principal ideal of a birational extension of R. For example, if K is a field,
t is an indeterminate over K, and R is the localization of K[t3,* ¢°] at the maximal ideal
(3,14, 5) K [t3,t*,¢°], then the ideal I = (#3,t*)R is not the contraction of a principal ideal

of a birational extension of R.
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