DERIVATIONS AND THE INTEGRAL CLOSURE OF IDEALS

REINHOLD HUBL*

ABsTrRACT. Let (R, m) be a complete local domain containing the rationals. Then there
exists an integer [ such that for any ideal I C R, if f € m, f ¢ I™ then there exists a
derivation § of R with §(f) ¢ I+t

This note grew out of a question raised by C. Huneke some years ago: Suppose
(R, m) is a complete local domain with perfect residue class field & which it contains.
Call an element z € R derivationally constant for R/k if §(x) = 0 for all k—derivations
d € Derg(R), and denote by C(R/k) the subring of derivationally constant elements of
R/k. In this context Craig Huneke asked:

(1) If I C R is an ideal, does there exist a constant | = [(R,I) € N with the
following property: If z € R with 6(z) € I™*! for all § € Dery(R) then there
exists a ¢ € C(R/k) with z — c € I"?

(2) Is it possible to bound [ in (1) in some uniform way?

Here (2) is meant to cover the situation arising via the techniques of tight closure
and reduction mod p: If I arises via reduction mod p from an ideal J given in an
algebra M containing the integers, then Huneke asks for a bound | = I(J) working for
the reductions modulo all but finitely many primes p.

Originally this question arouse in the study of rational and F-rational singularities
and the relations between them (cf. [F]), and interest in it has been revived by recent
attempts to prove Kodaira vanishing with tight closure techniques (cf. [HS]). In [FHH]
a positive answer to (1) was given in case char(k) = 0 and I C R is an m—primary
and one-fibred ideal. Some partial results in positive characteristics are available, for
instance in the graded case ([F]) and for regular local rings. In this note we will prove
the following generalization of [FHH], (1.6):

Theorem. Let k be a field, char(k) = 0 and let (R, m)/k be a local domain such that
the universally finite deriation dg/ : R — Q}?’/k ezrists. Then there exists a constant

I = l(R) with the following property: If I C R is an ideal and r € m is an element with
§(r) € It for all § € Dery,(R) then r € I".

This completely answers (1), and it also gives a uniform bound (as asked for in (2)),
depending on the ring only. A first attempt to solve this problem would be to try
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to generalize [FHH], (1.4). This however only gives a weaker result which in addition
depends on I (cf. the appendix by I. Swanson).

§1 DERIVATIONS AND DIFFERENTIAL FORMS

Let k be a noetherian ring and let R/k be an algebra. Throughout this paper we will
assume that the universally finite derivation of R/k exists (cf. [KD], §11 or [SS;]), i.e.
we assume that there exists a finite R—module Q}z Ik and a k-derivation

gR/kx :R— Q}%/k

with the following universal property:
If M is a finite R—-module and 0:R— Mis a k—derivation then there exists a unique
R-homomorphism f : Q}z/k — M with 6 = f o dgyy.

1.1 Remark. A universally finite k—derivation exists in each of the following cases:

(1) R/k is essentially of finite type. In this case the universal derivation of R/k is
universally finite.

(2) k is a field with a valuation and R is an analytic k—algebra, i.e. R is finite over
some ring k((X1,..., X,)) of convergent power series over k.

(3) k is a field, R is complete and R/m is a finitely generated field extension of k.

Proof. (1) is obvious and (2) is proved in [BKKN]. As for (3) choose y1,...,y: in R
whose residue classes form a transcendence bases of R/m over k and a system of pa-
rameters 1, ...z4 of R. Then R is finite over k(y1, ..., yt)[[®1, . - ., z4]] by the Nakayama
lemma for complete rings ([KD], (12.8)). The universally finite differential module of

k@, .-, w)l[z1, ..., z4]] exists by [KD], (12.5), and therefore Q} . exists by [KD],
(11.9).

1.2 Remark. If k is a field, char(k) = 0, the existence of SNZ}Q s implies that R is excellent
(cf. [SS1], Satz (8.10))

Assume now in addition that R is a local domain with field of fractions L = Q(R).
As in [FHH] we denote by SNl}}/k the module (Nl}z/k/torsion, i.e. the image of Q}z/k by
the canonical map

Qpsk — Qi ®r L= Dy(L)

with Dg(L) as in [SSq] resp. [KD], §13. By d* we denote the composition

gR/k ~

R 5 0% =25 Qh




DERIVATIONS AND THE INTEGRAL CLOSURE OF IDEALS 3

1.3 Proposition. (Universal property of SNZ’;%/k). (NZ’I*%/k 1s an m—adically separated and
torsion—free R—module, and if M is an m—adically separated and torison—free R—module,
and 6 : R — M is a k—derivation, then there exists a unique R—homomorphism f :

ﬁ;‘z/k — M with 06 = fod*. Hence we have a canonical isomorphism

Homp (5, M) — Derg(R, M), f+— fod’

Proof. Clearly for any f € HomR(QE/k,M) we have f o d* € Derg(R,M). Thus it
remains to show the first part of the proposition. By the universal property of the
module Q}z/k of Kahler differentials, there exists FY : Q}z/k — M with § = Fiodg/;. As

Fy is continuous for the m-adic topology and as M is separated, F1((,,cy m"Q}{/k) =0.
Therefore F; induces a map
Fy: Qpy = Qpp/ ([ m" Q) — M
neN

(c.f. [KD] (11.13)). Since M is torsion—free, F» induces f : ﬁ?—‘t/k — M as desired.

In the proof of the theorem we will also need the following:

1.4 Propositon. Let k be a field, char(k) = 0, and let (R, m)/k be a complete local
domain such that R/m is a finitely generated field extension of k. Then there erists a
constant 1, = 11 (R) with the following property:

If I C R is an ideal and z € R is an element with d*z ¢ I"QE/k then there exists a
§ € Dery(R) with §(z) ¢ I™H.
Proof (¢f. [FHH], (1.7)). Let y1,...,y; be elements in R whose residue classes form

a transcendence basis of R/m over k, let z1,...24 be a system of parameters of R,
and set L = Q(R). Then the images of d*yi,...d*ys, d*x1,...,d*z4 form a L-basis

of Qﬁ/k ®r L as char(k) = 0 and L is finite over Q(k(y1,---,y¢)[[®1,-..,24]]). Hence
d*yy,...,d*ys, d*xy, ..., d*z4 generate a free R—submodule F' of ﬁ}/k with F Qgr L =
Dy (L). Thus there exists an r € R with r-QF, Ik C F. By Huneke’s uniform Artin—Rees
Lemma [Hn], (4.12), there exists an [y = [1(R) such that for any ideal I C R and any
n € N: _ _ _
" Qn N Qg ST 1 - Qp

Hence if z € R with d*z ¢ I™ - fl}}/k then rd*z € F \ I"*1 . F. Thus there exists
I € Hompg(F, R) with I(rd*z) ¢ It as F is free, and the composition

D 21 Qg CF 5 R
determines via (1.3) a § € Derg(R) as desired.

1.5 Remark. The proof of (1.4) actually proves a uniform version of [FHH], (1.7): If
M is a finite and torsion—free R-module, then there exists an [ € N with the following
property: If m € M, m ¢ I™M, then there exists an f € Hompg(M, R) such that

f(m) ¢ 17+,
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1.6 Corollary. In the situation of (1.4) C(R/k) = k, the algebraic closure of k in (any
choice of ) a coefficient field of R/k. In particular if k = R/m then C(R/k) = k.

Proof. Clearly k C C(R/k), as k/k is algebraic and separable. Now suppose that z € R
and either z € m or the residue class of z in R/m is transcendental over k. Then either z
is part of a system of parameters of R or the residue class of z is part of a transcendence
basis of R/m over k. In either case d*z # 0 in Q% . (as in the proof of (1.4)) and the

claim follows from (1.4) (applied to a sufficiently high power of m).

1.7 Remark. In the situation of (1.4) assume that z € R is an element such that its
residue class Z € R/m is transcendental over k. Then there exists a 6 € Derg(R) such
that 0(z) € R* is a unit.

Proof. As char(k) = 0 there exists a coefficient field K C R containing z. Then
Dery(K) C Derg(K, R) C Derg(R) (the latter as Q;}/k R Q}?,/m/k = QK/k is surjec-

tive). The assumptions imply that dg /4 (2) # 0, and therefore there exists a 6 € Der(R)
with 6(z) € K \ {0}.

1.8 Remark. (1.4) holds true if char(k) = p > 0 as well. If in addition k is perfect, then
C(R/k) = LP N R in this case. If furthermore R is normal then C(R/k) =

§2 PROOF OF THE THEOREM

Throughout this section we assume that we are in the situation of the theorem. Let
J C R be an ideal. Recall that x € R is called integral over J if it satisfies an equation
"+ a1z '+ -+ a, =0 with a; € J for j =1,...,n. The elements of R which are
integral over J form an ideal J, called the integral closure of .J.

The crucial ingredient in the proof of the theorem will be the following strengthening
of [SS4], (8.11) (see also [SSsz], (5.1)) which relates integral closure to derivations:

2.1 Proposition. Let A and J be two proper ideals of R and suppose that
d* C Rd*J + Q[QR/k

Then
ACT

Proof. Since R is universally catenary by (1.2) it suffices by [Li] (1.1) to show the
following: If L = Q(R) and if v is a prime divisor of R with valuation ring V' C L,
i.e. V is a discrete valuation ring with R C V and m = my N R (c.f. [Ll] §1), then
AV C JV. To do so it obviously suffices to show AV C JV where V denotes the
my-adic completion of V. By Cohen’s structure theorem we can write V = K[[X]]
with a field K D k. Now denote by 0 the k—derivation

o]

~ -

R &Ny 2%y
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As V is an m- -adically separated and torsion—free R—module, there exists an R-linear
homomorphism f : Q* Rk V such that § = f od by (1.3). Hence we get

A

3(A) = £(dA) C f(Rd + A ) C 6(J)V + AV

Since AV is a proper ideal of V we have 6(2A)V ¢ AV (for if a € A with 9(a) =
min{t(a) : a € A} then 9(da) = v(a) — 1 < min{d(a) : a € ™A} since char(k) = 0).
Hence we have to have 6(A)V C §(J)V implying that AV C JV, as desired.

2.2 Corollary. Let r € m with d*r € JQR/k Then r € J.
Proof. Apply (2.1) to A = J +rR:

d*% = d*(J +rR) C Rd*J + Rd"r + rQ, C Rd*J + AQp,

The integral closure J of an ideal J is "not very much bigger” than the ideal J
itself. More precisely, in our situation the assumptions of [Hn] (4.13) are satisfied, and
therefore

2.8 Remark. There exists a constant ls = lo(R) such that for any ideal I C R and any
n € N we have: Intlz C ™,

PROOF OF THE THEOREM:
Let {1 be as in (1.4), Iy as in (2.3), and set [ := Iy +1lo. If r € m, r ¢ I™ then
r ¢ Intl - 0% 1, as otherwise r € Intle C I™ by (2.2)/(2.3). Thus there exists a

§ € Derg(R) with 6(r) ¢ I"Thtle = "t by (1.4). O

2.4 Remark. i) If R is regular, then Q R/k is free. Thus we may take [; = 0 in this case.
Furthermore we may take lo = dim(R) — 1 by the Briancon—Skoda theorem (cf. [LiS]),
hence [ = dim(R) — 1.

ii) If R is a pseudorational local ring, and if we restrict ourselves to the class of
m-primary ideals, then we may take Iy = dim(R) — 1 by [LiT].

iii) If (R, m) is a positively graded regular local ring (in the sense of [SW], §3), and if
we restrict ourselves to the class of homogeneous ideals, then the theorem holds in this
context as well, and we may take [ = 0 as follows from [SW], (5.1).

In the case of a complete local ring the theorem can be improved slightly:

2.5 Theorem. Suppose that in the situation of the theorem (R,m) is a complete local
domain. Then there exists a constant | = l(R) with the following property: If I C R is
an ideal and z € R is an element with §(z) € I"*! for all § € Dery(R) then there exists
ace C(R/k) withz—ce I™.

Proof. If §(z) € I"*! for all k—derivations § then the residue class Z € R/m in not a
transcendental element over £ in view of (1.7). Thus by (1.6) there exists a ¢ € C(R/k)
with z — ¢ € m. Now we may apply the theorem.
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Some of the techniques applied here carry over to positive characteristics as well. In
this case some partial results are available for regular local rings. For many applications
of tight closure techniques an affirmative answer to the following question would be
sufficient:

2.6 Question. Let (R, m) be a complete regular local ring with perfect residue class field
k, which it contains. Let I C R be an ideal and let z € R be an element with d(z) € I
for all § € Derg(R). Does there exist a c € C(R/k) with z —c€ T ?
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APPENDIX: ZEROS OF DIFFERENTIALS ALONG IDEALS

IRENA SWANSON*

This appendix was motivated by Fedder, Huneke and Hiibl’s analysis of zeros of differ-
entials along one-fibered ideals, that is, ideals with only one Rees valuation (see [FHH]).
Both this appendix and R. Hiibl’s paper remove the one-fibered assumption, but the
two approaches are different. The key result here, as in [FHH], is the existence of certain
ideals containing a high power of a given ideal (see Theorem A1), which then implies
the existence of derivations with a controlled degree of nilpotency along an ideal (Theo-
rem A2). However, the “control” function in Theorem A2 obtained in this way is linear
(of arbitrary slope) and depending on the ideal, whereas R. Hiibl’s approach bypassing
any analog of Theorem A1l produces a linear “control” function of slope one which is
independent of the ideal. Examples below show that Theorem A1l cannot be improved
to produce a “control” function independent of the ideal. However, Theorem A1 has
other corollaries and uses (see below).

Theorem A1l. (Compare with [FHH, Theorem 1.4].) Let (R, m) be a d-dimensional
complete local domain, let I be an m-primary ideal in R and suppose that R has an
infinite residue field. Then there exist positive integers | and k satisfying the following:
If f € m and f & I™ then there exist g2,...,94 € I such that
Ihnt - (f7927 s 7gd)'

Proof. When d = 1, the integral closure of R is local so that by [FHH, Lemma 1.3] and
[FHH, Theorem 1.4] there exists an integer /, independent of f, such that I"*! C (f).
Now let d > 1. As in the proof of [FHH, Theorem 1.4] we may replace I by its

minimal reduction to be able to assume that I = (x1,...,z4).
Let vy,...,v; be all the Rees valuations of I. By (E), page 409, in [R1], there exists
a positive integer C such that for any 7,5 € {1,...,t} and any nonzero element z of R,

vi(z) < Cvj(z). Under the assumption that I has more than one Rees valuation, C has
to be 2 or larger. By [R2] there exists an integer D, depending only on I, such that for
all n > D, the integral closure I™ is contained in I"~P. By assumption f ¢ I". Thus
f & I™tD and so for at least one ¢ € {1,...,t}, say i = 1, v1(f) < (n+ D)v1(I). Hence
for all i € {1,...,t},

vi(f) < Cvi(f) < C(n+ D)vi(I) < C*(n + D)v;(I).

Let S = R[7%,...,7¢] and let T' be the integral closure of S. Each valuation v;
corresponds uniquely to a prime ideal 3, in 7" which is minimal over I7". The assumption

*partially supported by the National Science Foundation
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that v;(f) < C?(n+D)v;(I) implies that f ¢ I¢"("+D)Ty . As Ty, is a one-dimensional
normal analytically unramified domain, by the case d = 1 in [FHH, Theorem 1.4] there
exists an integer E;, only depending on I, such that ]C2(n+D)+EiTgpi C (f)Ts,. Let
E = max{E\,...,E;}. Then for all 4, 9" "+D)+ETy C (f)Typ..

Let Q1,...,9, be all the prime ideals in S minimal over 1S. Then by construction,
as S C T is module-finite, for all 1 = 1,... , s,

Ic2(n+D)+ESQ,- C m (f)quj NSq, C m7
PB,;NS=0;

the last ideal being the integral closure of (f)Sgq,.

Now we apply Proposition 5.5 from Huneke’s [Hn]: for each ¢ = 1,...,s, there
exists an integer F;, depending only on Sq, and therefore on I, such that for all ideals
J in Sq, and all integers n, the integral closure of J" is contained in J* i, Let
F = max{Fy,...,Fs}. Then for all 3,

\ F+1
JF+L(C (n+D)+E)SQi C ((f)SQZ) C(f)Sq,-

Thus there exists an element g of S which does not lie in any £; such that

JEFE+FD(C (n+D)+E)Sq C (f)S,.
Now one proceeds as in the proof of [FHH, Theorem 1.4]. For completeness I write all
out.
Let Y3, ... ,Y; be indeterminates, u; = z1Y; —x; € R[Ya,...,Yy]. Let p be the kernel
of the epimorphism
) Tq

R[YQ,...,Yd]—>R{—,..., ], Y; —
I I

Li
Z1
Lift ¢ € S to an element ¢(Y') € R[Y2,...,Y;]. Then we get that
[ RV, Yalgry € ((F) + ) RIYa, -, Yilgry.
By [FHH, Lemma 1.5] there exists an integer G such that ISp C (us,...,uq). Hence
[FHDCODI+EFCRIY, . Valaory € ((Fruas -+ - »ua)) R[Ya, - -, Yalgrr)-

As q(Y) € R[Ys, ..., Yy \ mR[Ys,...,Yy] and since R/m is infinite, we can specialize
Y2,...,Y; to elements of R such that the resulting ¢(Y) is a unit of R. Then we

immediately get

2
I(F+1)(C (n+D)+E)+G g (f7 g2, .- 7gd)’

where the g; are the specializations of the u; and hence the g; are elements of I. Now
set k=(F+1)C? 1= (F+1)(C?’D+E)+G. n

A corollary is a weaker version of R. Hiibl’s main theorem:
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Theorem A2. (Compare with [FHH, Theorem 1.6].) Let (R, m) be a d-dimensional
complete local domain containing the rationals, and let I be an ideal in R. Then there
exist positive integers | and k depending only on I such that if f € m and f & I™ then

there exists a derivation § € Der (R) such that §(f) ¢ I**!. Hence also 6(f) ¢ I(++0m,

The proof follows exactly the lines of [FHH, Theorem 1.6], but using Theorem 1 from
this note, rather than [FHH, Theorem 1.4]. ]

Theorem A2 is weaker than R. Hiibl’s theorem because, for one thing, k£ and ! from
Theorem A1l depend on the ideal. In fact, in most rings there are no k& and ! which
would make Theorem A1 work for all ideals:

Ezample. Let R = F[[z,y]], where F is a field and =z and y are indeterminates over
it. Suppose that there exist integers k¥ and [ such that for all (z,y)-primary ideals I,
whenever f ¢ I™ then there exists g € I such that I*"*! C (f,g). In particular, let
I = (xFt1H1 gy, yF+142) Then f = y*+t!+1 ¢ I. By assumption, there exists an element
g = ar®tH 4 Bry + yyFt+2 such that I¥t! C (f,g). In particular, (zy)**! lies in
(f,9)- Write

(wy)k+l — T'yk+l+1 + 3(axk+l+1 +,8xy+7yk+l+2)

for some 7,5 € R. As f, g form a regular sequence, necessarily s = soy**! for some s
in R. Hence
¥ = ry + so(az™ M 4 Bry + 4yFHE?),

which means that ¥+ € (2¥T1+1 4)), contradiction.

Now we return some more to Theorem A1l. Note that in the case of a one-fibered
ideal, in the proof of Theorem Al we may take C' to be 1 and F' to be 0 so that k = 1.
It is open whether k£ in Theorem A1l can always be taken to be 1.

Remark. The reason why the proof of Theorem Al cannot allow £ = 1 in general is
that it actually proves more. It clearly proves that

If f € m and f & I" then there exist ga,...,gq € I such that I*"*+t C
(f,92,---,94) and for all Rees valuations v of I, v(I**+1) > v(f).

For ideals which are not one-fibered, it is too much to expect that k& with the addi-
tional assumption on the Rees valuations as above be 1:

Proposition. Let I be an ideal in a d-dimensional Noetherian analytically unramified
local ring (R, m) and | a positive integer satisfying the following property:

If f € m and f & I™ then there exist go,...,95 € I such that I"t! C
(f,92,---,94) and for all Rees valuations v of I, v(I"T!) > v(f).

Then I is one-fibered.

Proof. If I is not one-fibered, then there exist two distinct Rees valuations v; and vy of

I and an element f € m such that Zig)) < Zig; Then for all integers n > 1, frv1()

is not in 1™ N+ as vy (f701D) = noy (Do (f) < (i (f) + Doy (I) = vy (I (OF1),
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By assumption then, for each n > 1, there exist go,..., g4 in I such that I+ ¢
(fnm(f)’gz’ cen ,gd) and ’U2(Im}1(f)+1+l) > ’Uz(fm}l(I))' Thus

(nu1(f) + 14 Dva(I) = va(IM DT > 5 (171D = nuy (1w (f),

and so for all n > 1,
)+ ()
vi(I) T owa(l)

Now v1(f),v1(I),v2(f),v2(I) and [ are all independent of n, so in the limit as n gets

larger we get that f}ig’g > Zzg)) which contradicts the assumption Z’)igg < :’;Eg -

In particular, consider the case when R is a one-dimensional Noetherian analytically
unramified local ring, [ is an integer and I is an ideal satisfying the property that
whenever f ¢ I™ then I"*' C (f). Then the proposition above implies that I is one-
fibered. This was already observed by Sally (see [FHH, page 323]).

It is well known that in reasonable rings a fixed power of a given ideal lies in each of its
reductions. In particular, if we choose f as part of a minimal reduction of an m-primary
ideal I, we can find go, ... , g4 such that that fixed power of I lies in (f, g2,...,94). But
Theorem Al implies even more:

Corollary. Let (R,m) be a d-dimensional complete local domain with infinite residue
field and let I be an m-primary ideal. Then there exists an integer | such that for any
element f € T\ I?, there erist g, ... ,gq € I such that I' lies in (f,ga,... ,g4)- [

Acknowledgement: I thank William Heinzer for all the suggestions which helped
improve the clarity of this presentation.
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