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Abstract. We study applications of discrete valuations to ideals in analyti-
cally irreducible domains, in particular applications to zero divisors modulo
powers of ideals. We prove a uniform version of Izumi’s theorem and calcu-
late several examples illustrating it, such as for rational singularities. The
paper contains a new criterion of analytic irreducibility, a new criterion of
one-fiberedness, and a valuative criterion for when the normal cone of an
ideal in an integrally closed domain is reduced.

Valuations of fields and field extensions play an important role in the study of algebras
and algebraic varieties. The valuations of a function field of transcendence degree one,
for instance, completely determine a smooth projective curve, giving a model of the
function field. In higher dimensions the picture is much more complicated. We present
here some higher dimensional ideal- and ring-theoretic properties determined by discrete
valuations centered on local domains. Most of the results in this paper are in the spirit
of Rees valuations and are about the information that discrete valuations contain about
powers of ideals.

Section 1 explores relations among valuations, bounding one with respect to finitely
and even infinitely many others either locally or globally. An example is Izumi’s theorem
(cf. [Iz]), which was given in an algebraic setting first by Rees [Rz], and is given in a
somewhat more general version in this paper in Theorem 1.3. Rees’ proof was based on
Lipman’s theory of intersection multiplicities [Li], and our proof uses Cutkosky’s [C2]
results on condition (E) of Heinzer and Lantz.

Section 2 treats zero divisors modulo powers of an ideal via valuations: if a product
of two elements lies in a high power of an ideal, in what power does at least one of the
elements have to be? Good results of this form only hold in analytically unramified
rings, which gives a new criterion of analytic irreducibility. Section 2 also contains a
new criterion of one-fiberedness.
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In order to bring the difficult proofs of Izumi’s theorem down to earth, and in order
to understand the bounding relations among valuations and zero divisors modulo high
powers of an ideal better, we explicitly calculate several examples. Section 3 is thus
devoted to examples. We develop some ad hoc techniques for calculating the graded
ring associated to a discrete valuation. Our examples of Section 3 show that in general
the results of Section 2 are sharp, but that in some specific cases they can be improved
significantly.

One way of looking at zero divisors modulo high powers of an ideal is via examining
the zero divisors in the normal cone of the ideal more carefully. We study the reduced-
ness property of normal cones in Section 4, and give a valuative criterion for it. This
criterion enables a short and very canonical proof of the fact that reduced normal cones
of prime ideals in regular rings containing fields are domains (cf. Huneke, Simis and
Vasconcelos [HSV]).

With the exception of Proposition 1.8, throughout this paper we use the term “valua-
tion” to stand for discrete valuations of rank one or the discrete valuation ring associated
to it. All rings in this paper are noetherian.

We thank William Heinzer for helpful comments and explanations, and the referee
for pointing out an error in an earlier version of this paper.

§1. RELATIONS AMONG VALUATIONS

An interesting question in the study of valuations are the relations between two of
them. Nagata’s theorem on the analytic independence of valuations ([Na], (11.11))
implies that for any two valuations v, w on a field K and any integer n there exists an
z € K\ {0} with v(z) = n, w(z) = 0. This changes dramatically in case there is some
additional structure around. We prove in this section a strengthened form of Izumi’s
theorem, bounding linearly one valuation by valuations of a restricted kind. Izumi [Iz]
originally proved this for integral analytic local algebras, and later Rees [Ra] proved it
in an algebraic setting. We present here another proof, and in a more general context.
At the end of the section we prove a result about pointwise relations among finitely
many valuations.

Let (R, m) be an excellent local domain with field of fractions K. A valuation v of
K is called an m-valuation if v(z) > 0 for all z € R\ {0}, v(z) > 0 for z € m \ {0}, and
the transcendence degree of the residue field k(v) of v over the residue field k£ of R is
exactly the dimension of R minus 1. In this case the valuation ring V' of v is essentially
of finite type over R.

A valuation v is called a Rees valuation of an ideal I if its valuation ring is the local-
ization of the normalization S of R[It] (resp. R[It,t"']) at a minimal prime overideal
over IS (resp. t71S). Every Rees valuation which is positive on m is an m-valuation,
and, moreover, every m-valuation is a Rees valuation of an m-primary ideal (by [Res,
Appendix]).
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Throughout we let @, as usual, denote the integral closure of an ideal a.

Lemma 1.1. Let (R, m) be an analytzcally wrreducible domain. Then every m-valuation
on R extends naturally to an mR- valuation, where R is the m-adic completion of R.

Proof: By assumption Ris an integral domain. Let w be the Rees—valuation of some

m-primary ideal I. As ﬁ/ R is faithfully flat and I is m-primary, we have I nRR=T1"R.
Hence

I"R/I-I"R =~ T"R/I-T"R ~ T7/I-T" foralln € N.
This implies that

R[It]/I - R[It] = R[IRY)/I - R[IRt],

therefore there exists a unique minimal prime ideal ‘:f? over I - ﬁ[I j%t] restricting to the
minimal prime ideal P over I - m, where ‘P corresponds to the valuation w. The
prime ‘jf? corresponds to a valuation w, which is then the natural extension of w. This
proves the lemma.

For a valuation w on R set
I,(w):={z € R:x=0or w(z)>n}.
Note that I,,(w) is an integrally closed ideal of R, and in case w is positive on m,
(1.2) m" C I (w).

In fact, w(m) > 0, hence m - W C my,, where W denotes the valuation ring of w, and
therefore also m™ - W C my;,, implying

m?"Cm” - WNRCmjy NR=1,(w).

In the following we will prove that for each m-valuation v there exists an integer [
such that for all integers n,
I, (v) Cm™

Theorem 1.3. (Izumi’s theorem, cf. [Ro]) Let (R, m) be an analytically irreducible
excellent domain and let v be an m-valuation. Then there exists a constant ¢ = c¢(v) > 0
such that for any m-valuation w on R, and for any x € R\ {0},

v(z) < c(v) - w(x).

This result is a strengthening of Rees’ version of Izumi’s theorem (cf. [Ry]) which,
however, can be deduced directly from it. We give here a new proof, using induction on
d = dim(R). We start with a reduction:
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Lemma 1.4. Let (R, m) be an analytically irreducible domain, and v a valuation on
the fraction field of R. Suppose that one of the conditions below is satisfied:

(1) For every m-valuation w there exists a constant c(v,w) such that for any x €

R\ {0},

v(z) < c(v,w) - w(z).

(2) For every Rees valuation w of m, there exists a constant c¢(v,w) such that for
any z € R\ {0},
v(z) < e(v,w) - w(x).
(3) There exists a constant | such that for alln € N, I, (v) C m™.

Then there exists a constant ¢ = c(v) > 0 such that for any other m-valuation w on R,
and for any z € R\ {0} we have

v(z) < e(v) - w(x).

Proof: Suppose that the third condition is satisfied. Then by (1.2), for every valuation
w positive on m, I, (v) C I,(w), whence for all z € R\ {0}, v(z) < (20 — 1) - w(z).
Thus we may take c(v) = 21 — 1.

Now assume that the first or the second condition is satisfied. Let vq,...,v; be the
Rees valuations of m. By assumption there exists a constant [ such that

l
vz(m)

v(z) < vi(z) forallz e R\{0}and allie€ {1,...,t}.

Thus for all x € R\ {0} with v(z) > [ - n we have
vi(z) > vi(m)-n  forallie{1,... t}

implying that I;,,(v) C m™. Thus we may apply the result for the third condition. This
finishes the proof of the lemma.

So to prove Theorem 1.3, it suffices to prove that for any m-valuation w, there exists
a constant ¢(v,w) such that for all nonzero z € R, v(z) < c¢(v,w)w(z), or that there
exists a constant [ such that for every n € N, I;,,(v) C m”. This is what we do next:

Proof of Izumi’s Theorem 1.3: As (R, m) is analytically irreducible, the integral closure
R of R is local again with maximal ideal - say - m, and any m-valuation is an m-valuation
as well. Thus we may assume that R is normal.

In case d = 1 there is only one m-valuation (as R is a discrete valuation ring in this
case), and there is nothing to show.

Assume now that d = 2. By Lemma 1.1 we may pass to completion: if we can
find c(v) for R, the same c(v) will hold also in R. Thus we may assume that R is a
two-dimensional complete local domain, and as in the first paragraph, that it is also
integrally closed.
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Set Y := Spec(R) and recall the following fact (cf. [Li], remark on p. 208): if f :
X — Y is proper and birational, if J C R is an ideal and if 7 C Ox is a sheaf of ideals
such that J C J - Ox (the integral closure of J - Ox), then

(1.5) ['(X,J)CJ.

As R is complete, we may apply Cutkosky’s [C2, Theorem 2]: there exists an ideal
I C R such that, if 7 : X; — Y is the normalized blow—up of I, then the center of v on
X7 is an essential divisor and is equal to the reduced closed fiber E = 7= !(m) of . (If
I is m-primary, the last condition says that I is one-fibered. In general however I will
not be m-primary.) Let J C Ox, be the sheaf of ideals of the reduced closed fiber E
of m. As X7 is normal and F is the center of v on X, we have

(1.6) Iy(w) = T(X, J™).

As E = 77 }(m) we have /m - Ox, = J, hence J' C m - Oy, for some | € N, so also
JMm C m"Ox, for all n € N. Thus we get by (1.5):

I'(X,J7"™")Cm® forallneN,

and thus by (1.6)
Iip,(v) Cm™  foralln eN,

proving the case d = 2 with the help of Lemma 1.4.

Now let d > 2. Essentially this is Rees’ version of Izumi’s theorem, and the next step
of our proof is inspired by the inductive step in Rees’ proof [Rg]. For this we may assume
that R has an infinite residue class field. Otherwise replace R by R(X) := R[X]|,r[x]
and note that every valuation of R extends trivially to a valuation of R(X).

We first consider two m-valuations v and w. There exists an m-primary ideal I =
(1,--.,zq) such that v(I) = v(x1) =--- = v(xq) and w(I) = w(z1) = --- = w(zq) and
such that v and w are Rees valuations of I. For generic units A1,...,A\g and p1,..., iq
in R* set x = > \jw; and y = > p;x;, and define

S = R(T)/(«T — y)

(i.e. S is the local ring of the generic point of the closed fiber of the blow—up of the
ideal I = (z,y) C R, which we may assume to have height 2, generated by a regular
sequence). Then R — S is a birational extension of excellent noetherian local domains
with dim(S) = dim(R) — 1 and mg = m - S. Furthermore we have that the valuations
v and w are mg-valuations for z and y sufficiently generic (as v(z) = v(y) and w(z) =
w(y). If S is analytically irreducible, then a constant cg(v,w) (working in S) as desired
exists by the inductive assumptions and defines a constant working for R as well.

It remains to show that S is analytically irreducible. Clearly R(T) is analytically
irreducible, and clearly S is excellent, hence in particular analytically unramified. As
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R (hence also R(T")) is normal, we conclude from the local version of Bertini’s theorem,
that S, is normal for p C mg (as R has infinite residue field this follows from [F1],
(3.3) in combination with the techniques of [F1], §4). Let S be the normalization of S.
If S equals S, then S is analytically irreducible. So we assume that S and S are not

equal. Hence the conductor €g of S/S is an mg—primary ideal. Thus if S (resp. §)
denotes the completions of S (resp. S), then 3 is the normalization of S, and therefore
the conductor €z of S is an mg-primary ideal. If we assume that S is not a domain,
then €z = I + I with two ideals Il, I, with I, - I, = (0). We already know that R( )
is a domain. Taking preimages in R( ), we find two ideals Jy, Jz of R( ) such that
R(T)—primary ideal with Jy-Jo C (2T —y). As dlm(R(T)) dim(R) > 3,

this is impossible by the connectedness theorem of Faltings/Brodmann-Rung (cf. [Fal,
[BR)).

Ji+Jyisan m

This completes the proof of Izumi’s theorem.

This theorem (or rather its proof for dimension 2) raises the following question (cf.
“condition E” of Heinzer and Lantz [HL)):

Question 1.7. Let (R,m) be a complete normal local domain and let v be an m-
valuation. Does there exist a normal scheme X together with a projective birational
map 7 : X — Spec(R) such that the reduced closed fiber 7= ({m}) is an essential prime
divisor of X and the center of v on X7

Cutkosky [C2] proved this for dimension 2, thus answering the original question of
Heinzer and Lantz, and we are asking if there exists a higher-dimensional analogue.
Cutkosky’s arguments do not generalize in an obvious way to the higher-dimensional
situation.

Though our version of Izumi’s theorem shows that there are close relations between
any two m-valuations, there are still certain ways to distinguish valuations by the values
they take on m, as the following proposition shows. However, in this proposition we use
the more general definition of valuation, namely, we allow Q-valued valuations, that is
the valuations which take on rational values. A valuation v is said to dominate another
valuation w if for all non-zero z, v(z) > w(x).

Proposition 1.8. Let vq,...,v,. be distinct mutually non-dominating Q-valued valua-
tions on an integral domain R. Then there exist x and y in R and distinct integers i
and j in {1,...,r} such that

vi(x) < wvg(x) for all k # 1,
vi(y) <wvi(y) forallk #j.

Proof: The case r = 2 is true by the non-dominating assumption. Now let r > 2.
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By induction there exists an element x such that (after reindexing)

v1(z) < v3(x),va(), ..., v ().

If also v1(x) < wa(z), then vi(x) < vg(z) for all k # 1, and z is one of the elements
x that we searched for. Similarly, if vy(z) < vi(x), then va(x) < vg(x) for all k # 2,
and again z is one of the two elements needed. Thus it remains to consider the case
v1(z) = vo(x). By the non-dominating assumption there exists an element z in R such
that v1(2) < v2(z). Then for all sufficiently large integers n (say n > v1(z) — vg(2)),
v1(z"2) < vg(x"z) for all k # 1. Now after renaming 2"z by z, we have € R such
that vi(z) < vg(z) for all k # 1.

Thus we have found an element x such that, after reindexing,

vi(z) < vg(z) forall k> 1.

By induction on r applied to the valuations vy,ws,...,v,_1 there exist elements
Y,z € R and distinct integers 4,5 € {1,...,r — 1} such that

vi(y) < wvk(y) forall ke {1,2,...,r—1}\{i},
vj(2) <wvk(z) forall ke {l,2,...,r—1}\{j}.

Either ¢ or j is different from 1, so by possibly switching the names of ¢ and j, y and z,
we may assume that ¢ # 1. Then after possibly reindexing the valuations va, ..., v,_1
we can take that ¢ = 2, so that

’U2(y) < Ul(y)’ U3(y)7 - ’UT‘—l(y)'

If va(y) < vr(y) or v:(y) < va(y), we are done as in the first part. So we may assume
that va(y) = v-(y). By non-domination there is an element z such that ve(z) < v,(2).
Again proceed as in the first part to finish the proof of the proposition.

In the rest of the paper we present several applications of these relations between
valuations.

§2. ZERO DIVISORS MODULO POWERS OF AN IDEAL

In this section we give new criteria for analytic irreducibility (Proposition 2.2) and
one-fiberedness (Proposition 2.8), and we use Rees valuations and their interactions
to examine the following question, which came up in the second author’s study of
equivalence of adic and symbolic topologies:

Question 2.1. Let (R, m) be a noetherian local ring. Do there exist integers a and
b such that for all integers n and all elements z and y in R such that zy € me*+?,
necessarily either x or y lies in m™?
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If R is analytically irreducible, i.e., if the completion of R is an integral domain,
the answer is yes [S, Theorem 3.4]. In fact, the analytically irreducible assumption is
necessary as otherwise there is no such k:

Proposition 2.2. (Criterion of analytic irreducibility) Let (R, m) be a local ring which
18 not analytically irreducible. Then for all positive integers a and b, there exist elements
z and y in R and an integer n € N, such that xy € m®*t? but neither x nor y lies in
m”.

Proof: Let R be the m-adic completion of R. By assumption R is not a domain, hence
there exist nonzero elements x and y in R such that zy = 0. By Krull’s intersection
theorem there is a large n € N such that z and y are not in m™R. There exists a Cauchy
sequence {z;} in R which converges to z in R, and a Cauchy sequence {y1} in R which
converges to y. Hence for all large enough [/, z; and y; are not elements of m™. But by
continuity of multiplication z;y; converges to zy = 0, so that for large [, z;y; € mon+b.

Thus a and b exist if and only if the ring is analytically irreducible. The question
remains as to what are the lowest possible values of a and b. For simplicity we consider
for that only the complete analytically irreducible rings, i.e., complete local domains:

Question 2.3. Let (R, m) be a complete local domain. Find the smallest possible
integers a and b such that for all integers n and for all elements x and y in R such that
zy € m® b necessarily either z or y lies in m™.

We look at this more generally: let I be an m-primary ideal in a complete local
domain. We want to find the smallest possible integers a and b such that for all integers
n and for all elements = and y in R such that zy € I%"1% necessarily either z or y lies
in I™,

First let (R, m) be a complete local domain of dimension 1 and let R be its normal-
ization. Then R/R is a modulefinite extension, and R is local again with maximal
ideal n. Let € = €g,p, be the conductor of R/R and write € = n/% (as an ideal of R).
Then fg is called the conductor degree of R.

For a rational number g we let |g| denote the largest integer n with n < g.

Proposition 2.4. Let I C R be an ideal, I # 0, write I - R = n! and set c(I) := [%J
Whenever o, 8 € R with o - f € I?"t°()  then either o € I or § € I™.

In particular: if I is any m—primary ideal and if o, 8 € R with o - 3 € I*"+2fr then
either o € I™ or B € I".

Proof: First note that we have for any ideal J C R:
¢-J-RCJ.
If o 8 € 12"+ then

a-Be IQn—i—c(I) ‘R = nl(2n+c(1)).
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As R is a discrete valuation ring, this implies that (without loss of generality)

le

a € nH ] cpnltfe — ¢ L PR C 7,

and the proposition follows.

Example 2.5. Let k be a field and let R = k[[X2, X2"*!]]. Then R = k[[X]] and
fr = 2n. For the ideal I = (X?) we have that ¢(I) = 2n, and this is optimal as one
sees by looking at o = 8 = X?"*1,

Proposition 2.4 answers Question 2.3 in dimension 1 without recourse to Izumi’s
theorem. In the rest of the section we analyze the higher dimensional cases, and for
that we need Izumi’s theorem.

Associated to I we have the Rees valuations vq,...,v,. Renormalize the valuations

by setting w;(z) = 3 E}? Then the integral closure I™ of I" equals

I"={reR:wi(z)>ni=1,...,r}
By Izumi’s theorem (1.3) there exist constants C(i,7) € Q4 with
w;(z) < C(i,j)w;(x) for all nonzero x € R and all j =1,..., R,

(where, for each i, j, we may assume that C(i, j) is chosen as small as possible). Let C
be the maximum of all the C(i,j). We set a = C + 1. To determine b, recall that by
[R1] there exists an integer ! such that for all n € N, I7*! C I™. Then set b = al.

Theorem 2.6. With notation as in the preceeding, let x and y be in R with zy € I°"tP.
Then either x € I"™ ory € I"™.

Proof: Assume that x & I™. Then z ¢ I™+!, so that for some i =1,...,7, w;(z) < n+l.
As oy € 1% w;(y) > an+b—n—1=C-(n+1). Hence by the choice of C, for all
j=1,...,7,wj(y) > n+1, so that y is in the integral closure of I"*! and hence in I™.

Some simplifications in the Theorem are immediate:

Corollary 2.7. Suppose that I is a one-fibered ideal (i.e., I has only one Rees valua-
tion).
(1) If x,y € R with xy € I*"*2 then either x € I™ ory € I™.
(2) If in addition I and all of its powers are integrally closed, then xy € I*™ implies
xelI™ oryelI™.

A partial converse also holds:

Proposition 2.8. (One-fiberedness criterion) Let I be an m-primary ideal in an ana-
lytically irreducible noetherian local domain (R, m). Then I is one-fibered if and only if
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there exists an integer b such that for alln € N and all z,y such that zy € I*"*°, either
x ory liesin I™.

Proof: By the Corollary it suffices to prove the necessity, i.e., that I is one-fibered with
the given assumptions. Assume that vy, ... ,v, are the Rees valuations of I, with r > 2.
Let w;(x) = v;(x)/v;(I) be the normalization of v;. Then w; is a Q-valued function. By
Lemma 1.8 there exist elements z and y in m such that (after reindexing):

0 < wy(z) <wg(x) forall k+#1,
0 < wa(y) < wi(y) forall k # 2.

As the w; take on positive rational values on m, by raising x and y to powers we may
assume that wi(z) = we(y) = C. Thus there exists a positive rational number ¢ such
that

wi(z) +q < wg(z) forall k #1,
wa(y) +q < wg(y) for all k # 2.

If for some n € N, ™ € I"°*1 then nC = nw;(z) = wi(z") > nC + 1, which is a
contradiction. Thus for all n € N, z™ is not in I"¢*1, and similarly y™ is not in I"¢+1
Now let n be such that |ng| > 2+ b+ [, where [ is such that for all integers m, the
integral closure of I™*! lies in I™. Then w(z"y™) = n(wi(z) + wi(y)) > 2nC + ng,
similarly we(z™y™) > 2nC + nq, and for all i > 3, w;(z"y™) > 2nC + nq. Hence z™y"
lies in the integral closure of I'127C+nal hence in I12*C+na—tl  But by the choice of n
then z"y" lies in I2(C+D+b_ but neither z” nor y™ lies in 1"C+1,

This gives a converse of the first part of Theorem 2.6. We do not know whether the
second part also has a converse:

Question 2.9. Let I be an m-primary ideal in an analytically irreducible noetherian
local domain (R, m). Suppose that for all n € N and all z, y such that zy € I?", either
z or y lies in I™. Or even suppose that for all z € R such that 22 € I?*, necessarily z
lies in I™. Is I then normal?

Recall that an ideal is called normal if all the powers of I are integrally closed ideals.

Under the conditions in the Question, if all large powers of I are integrally closed,
then all the powers of I are integrally closed. For let k£ be a positive integer and let x
be in the integral closure of I*. Then for all large enough n, I*2" is integrally closed,
so that 22" € I*2". But under the assumption in the Question, then 2"~ € 12"~

n—2 n—2
22 eIk T,z eIk

In any case, we have not yet answered whether the a and b from Theorem 2.6 are
the smallest possible integers to answer Question 2.3. In particular, perhaps setting
a = max{C(%,7) : 4,5} + 1 might be too generous in general. In fact, it is too generous
in general, but sharp in some cases. We produce examples for this, and also examples
that show that for any constant Cy, setting a = min{C(4,7) : 4,5} + Cp is too small.
As calculating the examples is quite involved, we dedicate a separate section to them,
which comes next.
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3. EXAMPLES

From a computational point of view, the constants in Izumi’s theorem and in the
results of Section 2 in general cannot be computed effectively as there is as yet no
effective algorithm for calculating integral closures, and, moreover, there is no effective
way to calculate the various C(i, j). However, there are many cases where C(7,j) and
a,b can be computed, and this is what we do in this section. Most importantly, the
first example below shows that setting a = max{C(i,5) : 4,5} + 1 is too generous, and
the second class of examples shows that for any constant Cp, setting a = min{C(%, j) :
i,7} 4 Cy is too small. The last two examples in this section are of rational singularities,
suggested by Mike O’Sullivan, and have sharp values for a and b as given in Theorem 2.6.

The calculations involve the Jacobian criterion, construction of Rees valuations, and
many ad hoc procedures. We include most of the details.

Example 3.1. We show that a = max{C(i,j) : 4,5} + 1 is too generous, but that
a =min{C(%,7) : 1,5} is not large enough.

Let F be a field of characteristic different from 2 and 3, let x,y, z be variables over
F,and R= My’zg])] Let m be the maximal ideal, namely m = (z,y, 2)R.

(zy?—2

First we prove that for all n € N, if the product of two elements is in m®”, then one
or the other element is in m™. For this, let C = &Eﬁft?)] The associated graded ring of
C with respect to its maximal ideal m¢ is an integral domain, which means that m¢ is
one-fibered and normal. Thus by Corollary 2.7, whenever the product of two elements
in C lies in mZ" then one of the two elements lies in m%. Now let ¢ : A — C be the

algebra homomorphism determined by

o: x—ud
y = v?
z = t3.

This is a well-defined injection. If o, 3 are elements in R such that a8 € m%”, then
p(a)p(B) € mE™. Thus by above say p(a) € m¥*, and hence « lies in =1 (m¥*) C m™,
as was to be proved.

Next we calculate the C(i, ), for which we have to determine all the Rees valuations
of m. Let S = R[mt,t1], where ¢ is a new indeterminate. The associated graded ring
grm (R) is isomorphic to S/t~1S, which is isomorphic to % From this we can
read off the two minimal primes over t=1S: B, = (xt,t~!) and P, = (yt,¢t~1). The
Rees valuations of m correspond to the height one prime ideals in the integral closure of
S localized at the complement of P, UB,. There is only one such prime ideal lying over

, and it is equal to B,. After localization at ,, the equation (zt)(yt)? = (2t)%¢t
B4 1 1 Y
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gives us the following values for the corresponding Rees valuation vy:

U1(t_1) =1,

v1(yt) = 0,v1(2t) =0,

v1(y) = vi(yt) + o1 (t7) = 1L,01(2) = vi(2t) + (7Y =1,
vy (wt) = Yoy (2t) + 601 (t71) — 201 (yt) = 6,

v1(z) = v (2t) +01(t7H) =T.

As (yt)? = 6t~ for some § € Sy, it follows that there is only one other Rees valuation
ve. By normalizing this valuation we may assume that vy(¢7!) = 1, and then we
calculate (calculations as above) that

va(z) = 1,va(y) = 4,v2(2) = 1.

Note that C(1,2) > Z;—gg = 7 and that C(2,1) > Zi—g; = 4. Then C, the maximum of
all the C(1,7), is at least 7. By the first part, a < 6, so that max{C(i,j) : i,7} +1 > 8

is too generous.

We finally prove that min{C(i,j) : 4,5} is not large enough to be a. First of all,
one can show with some extra work, mostly depending on having a canonical monomial
basis of R over F', that C(2,1) is indeed 4. Thus we are claiming that a = 4 is not
large enough! For suppose, by contradiction, that for some integer b € N, whenever
aff € m*™+b then either o or 3 lies in m™. Let ¢ be an even integer larger than 4 + b.
Then

xcyc — a:%(ng)% — xgz%—c e m5c g m4(c+1)+b’

yet neither z¢ nor y¢ lies in m¢*1.

The next very involved example shows that for any constant Cy, setting a to be
min{C(i,7) : 4,7} + Co is not large enough.

Example 3.2. Let F' be a perfect field of characteristic different from 2, and let k£ be
a positive integer larger than 4. If the characteristic of F' is not zero, we require that k

and the characteristic of F' be relatively prime. Let x,y, z, w be variables over F', and

_ _Fllzy,zw]]
R = (zyz—wk—z1) "

Let m be the maximal ideal of R, namely m = (z,y, z, w)R.

The calculations of this example take the next four pages. They are very illustrative
of the workings of Izumi’s theorem, so we present all steps explicitly.

By the Jacobian criterion one can verify that R is a normal domain. (Strictly
Flz,y,z,w]
(zyz—wk—z7)
ring is excellent and analytically irreducible, its completion R is also normal.) Let

S = R|mt,t~1]. Then the associated graded ring of R, S/t~1S = W, is re-

duced, so that m is a normal ideal. Also, from S/t~1S we can read off the three Rees
valuations v1,v2 and v3 corresponding to m. The first Rees valuation v; corresponds to
the minimal prime B, = (71, 2t)S over 1S, hence vy (yt) = v1(zt) = 0. The equality

speaking, the Jacobian criterion proves that is normal, but then as this
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(xt)((yt)(zt) — (th)st_l) = (wt)*t=(*=3) then gives that v (t~1) = 1, vy(xt) = k — 3.
Hence
vi(z) =k —2, v1(y) = v1(2) = v1(w) = 1.

Similarly, corresponding to the minimal prime B, = (t~1,yt)S over t~'S we have
va(y) = 2, v2(z) = v2(2) = v2(w) =1,
and, corresponding to the minimal prime B5 = (t71, 2t)S over t~1S we have

v3(2) =2, v3(z) = v3(y) = v3(w) = 1.

Say that k is a large odd integer. With notation of section 2, we prove first that a
has to be strictly larger than % For suppose that a = %, and let b be an arbitrary
non-negative integer. Then for any integer c larger than % + g,

a:QC(yz _ .7)3)0 — LL‘C(.%'yZ _ $4)c — xc(,wk)c e mc(k—i—l) C m(20+1)(%)+b’

2c+1

yet neither z2¢ nor (yz — x3)¢ lie in m2¢*1. Thus necessarily a > %

Next we prove that C(3,2) is 2 for all k. Then it will follow that in general, a =
min{C(i,j)+ a little} does not work — as for & sufficiently large, 2 is a lot smaller than

5 -

Certainly C(3,2) > Zig g = 2 but the other inequality is harder. We need some

notation.

Let (R,m) be a complete local integral domain, m = (z1,...,%,), and v a val-
uation on the quotient field of R centered on m. For each non-unit f € R, write
f = > rya{*---z¥ with each r, either zero or a unit in R. For each non-negative
integer n let [f], = D> ryxi*---z¥%, where the sum is over all those terms such that
v(z]" ---zy") = n. Then f = [flo+[f]1+[fla+---. This expansion of f depends on the
given system of generators of m, and even after having fixed 1, ..., z, this presentation
is not unique. We always assume that for the smallest n for which if [f],, is nonzero,
[f]n cannot be written as [g]n+1 + [g]nt2 + - -+ for any g € R. Thus for each f we may
define L(f) to be the smallest integer n for which [f], is nonzero. We define L(0) = oc.

We emphasize that whereas L(f) is well-defined, [f]z(s) is in general not uniquely
determined!

Note that for every nonzero element f of R, v(f) > L(f).

Lemma 3.3. Ifv(f) = L(f) and v(g) = L(g) then v(fg) = L(fg).
Proof: We may assume that fg # 0. Then
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In our example, we will use the generators x,y, z, w of the maximal ideal, r, will
always lie in F'; and v will be the valuation vz. For example, if f = zyz, then L(f) =4
but [f]4 may be either zyz or 2*. Thus up to addition of an element g(= w*) such that
v(g) > L(f), zyz and z* are the same. We will exploit this relation between the various
representations of f.

We will need the special element o = yz — z3. Note that L(a) = 3, [a]3 = «, and
that
v(a) = v(za) —v(z) = v(w®) —v(z) =k - 1.

The crucial step in our calculations is rewriting elements of R as multiples of «
whenever possible:

Lemma 3.4. For any f in R, either v(f) = L(f) or f = ag + h for some g,h € R
with L(g) > L(f) — 3 and L(h) > L(f).

Proof: Tt suffices to prove that either v([f]z(s)) = L(f) or that we may take [f];r) = ag
for some g € R with L(g) > L(f) — 3. Thus by replacing f by [f]r(y) we assume that
f = [flo(s)- Let L be L(f). Suppose that v(f) is not L. Then necessarily v(f) > L.
This means that f € t=E+D Sy . Write f = 3" rapeaz®y®2°w? where a,b, ¢, d are non-
negative, and a + b+ 2¢ + d = L. By rewriting 2* as xyz — w® our definition of L(f)
guarantees that L(f) is unchanged, so without loss of generality all a are 3 or smaller.
We next rewrite f = > TabeaZ®yPzw? € t_(L“)ngs by using the equalities
(at)* — (wt)it= =4,

t )

(21)(y1)

r=(zt)t Ly = (yt)t L w= (wt)t™z= (2t)t7 =

to get
(zt)* — (wt)Ft— (k=4

S sttt () ot i,

Thus as k£ > 4,

Zra,bcd(mt)a(yt)b <%) (wt)d € t_ISgps.

By Lemma 3.3 and the fact that «a, yz is a regular sequence, neither the assumption
nor the conclusion is changed if we multiply f by a power of y or a power of 2z, so we
may without loss of generality assume that 0 < ¢ < b for every 4-tuple (a, b, c,d). The
display above is then

Z rabcd(xt)“+30(yt)b_c(wt)d € t_lngs NnSs.

As a+3c > 0 and ¢ is a unit in Sy, the expression above also lies in ¢~ Sy . Similarly,
as b — ¢ > 0, the expression also lies in

t71Sp, Nt Sy, Nt 1Sp, NS =t7'8.
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Thus
> rapeazt Tyt ew? € ¢ (ratdetbmctd g n p = ¢=(FD g N R = m!+L,

Each of the summands lies in m%, but their sum is in m®*1. But there is no such

non-trivial relation among x, ¥y and w alone. Thus for each A, B and D,

E Tabed = 07

where the sum is over all those (a, b, ¢, d) such that a +3c = A, b—c= B and d = D.
In other words,

§ TA—3¢,B+c,c,D = 0.
c

Recall that all the allowed indices satisfy A+ B+ D = L, 0 < A — 3¢ < 3, so that the
only non-trivial parts of f are when A is a positive multiple of 3 and c is allowed to
have two values, ¢ = A/3 and ¢ = A/3 — 1. Thus f is the sum of F-multiples of

$0y3+g2§wD _ :v?’yB”L%_lz%_le = (yz — wg)(y3+g—1zg—1wp)’
so that f is a multiple of yz — 23 = «, with the multiplier having L-value at least

B+§_1+2(§_1)+D:A+B+D—3=L(f)—3-

This proved the lemma. The proof also shows that for all f € Flly, z,w]], v(f) =
L(f). Furthermore it shows that for every positive integer N, every nonzero f in R can
be written in the form

f=go+ag+a’g+ags+--+aVgn, (*)

where for all i < N, either g; is zero or else v(g;) = L(g;). Moreover, as in the proof we
may assume that for all nonzero g;, L(g;) > L(f) — 3i.

Lemma 3.5. Write f as in (%), with N > v(f). Then

v(f) = min{v(a‘g;)]i < N}.

Proof: If v(f) < v(a) = k — 1 then necessarily v(f) = v(go), and the lemma is proved.
If instead v(f) > v(a), we proceed by induction on v(f). If v(f — go) < v(f), then by
induction on v(f),

v(a(gr+ags + a’gs + -+ oV gn))
v(@) +v(g1 + age + g + -+ o lgy)
v(a) + min{v(a®"1g;)|0 < i < N}
min{v(a‘g;)|0 < i < N}.

v(f — 9o0)
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Thus the lemma is proved if v(f) = v(go) or if v(f) = v(f — go). So it remains to deal
with the case v(f) > v(go),v(f — go). Here necessarily v(go) = v(f — go). This case is
harder because in (x), the L- and v-values of individual terms may differ. So we next
remove this obstacle, and we accomplish this by multiplying () through by z:

eV f = aNgo + eV Tk gy + 2V 2w gy + 2V Bwkgs + -+ WV gy

By Lemma 3.3, for each i < N, L(zN"twi*g;,) = v(zN~'w'*g;). Let | be the min-
imum of these values. (As N > vo(f) > L(f) and k > 2, [ is actually equal to
min{L(zN ~*w*g;)|i < N}.) Set

N—
§ = Z-T 1, —(N—i+ik)-

and note that we may take s = Y [z ~“w*g;);. Let I; =1 — (N — i + k). There exist
some 7 such that [g;];, is nonzero and necessarily for all these i also I; = L(g;).

If s =0, then
0=s=2z") olgi,
i

so that 0 = ), a*[gi],, whence we can rewrite f as in () with a strictly larger value of
I. But | cannot increase indefinitely as | < L(zNgo) = N +v(go) < N +v(f) < 2v(f).

Thus we may assume that s is nonzero. Hence L(s) = I. If v(s) = L(s), then as
v(zNf —s) > L(zN f —s) > I, we have

N +u(f) = U(:I:Nf) = min{’u(me —s),v(s)} =wv(s) =1 < N +ov(f),

contradiction. So necessarily L(s) < v(s). Then by Lemma 3.4, s = ah for some
h with L(h) > [ — 3. We multiply s = ah through by z to get s = wFh. As
L(w*h) > k+L(h) >k+1-3>1+1,

0= [.’L’S I+1 = N+1 Z o gz]l

Thus 3" of[g;];, = 0, and again we rewrite f as in (*) to increase the value of I. This
proves the lemma.

Finally:
Proposition 3.6. C(3,2) = 2.

Proof: Note that for any non-negative a, b, c, d,

202 (2% 2°w?) = 2(a + 20+ c+ d) > a+ b+ 2c + d = vs(zy 2 w?).
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Thus for all f, 2vs(f) > L(f). Now write f in the form (*). Then

20y (f) > 2min{va(a’y;) : i > 0}

= 2min{vy(a’) + va(g;) : i > 0}
= 2min{vs(a’) + va(g;) : i > 0}
> min{vz(at) + 2vy(g;) : 5 > 0}
> min{vz(a’) + L(g;) : i > 0}
= min{vs(a®) +v(g;) : 5 > 0}

= min{vs(a’g;) : i > 0}

= v3(f).

This finishes the calculations for the second example, namely Example 3.2. These
calculations raise two questions:

Question 3.7. Suppose I C R is a two—fibered ideal with Rees valuations v; and wvs.
Is it then possible to take ¢ = min{C(1,2),C(2,1)} + 1?7 This is to some extent the
intermediate case between the previous two examples.

Question 3.8. Given an m-valuation v, when do there exist finitely many elements
r; € R such that for any other m-valuation w, C(v, w) = max{ U(T’)}‘?

The answer to this question is yes whenever the graded valuation algebra gr,(R) =

Di>o07, ’((2}) is noetherian. For in that case gr,(R) is finitely generated as an algebra

over R, and we set r; to be the preimages of these algebra generators. We do not know
whether the converse holds, i.e., whether the r;, if they exist, also generate gr,(R).

The ring gr, (R) is noetherian if and only if the ring @1;(v) is noetherian (the proof
is straightforward using that R is complete). Noetherianness of &1I;(v) was studied by
Muhly and Sakuma [MS], Géhner [G], and by Cutkosky [C1, C2]. Cutkosky proved in
[C1, page 427] that for a two-dimensional complete local normal domain with an alge-
braically closed residue field of characteristic 0, &I;(v) is noetherian for all m-valuations
v if and only if the ring has a rational singularity. Thus whenever a good two-dimensional
ring has a rational singularity, each gr,(R) is finitely generated, guaranteeing the exis-
tence of the r;, but in general gr, (R) is not noetherian.

Finally, on the positive, calculable note, we calculate some least possible ¢ and b
for rational singularities, suggested by Mike O’Sullivan. Izumi also calculated in the
appendix of [Iz] some related constants for some of these rational singularity rings.

Example 3.9. Let F' be a field, z,y, z variables over F', k an integer strictly bigger
than 1, and R = % Let m = (z,y, 2)R, the maximal ideal in R. As R is a
rational singularity ring, the ring R and the ideal m and all of its powers are integrally
closed. This means that the constant [ from the set-up of Theorem 2.6 equals 0. Let

S be the extended Rees ring R[xt,yt, zt,t"1], where ¢ is a new indeterminate. Then
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Flzt,yt,zt]
(zt)(yt)
Rees valuations: vi(z) = k — 1, v1(y) = 1, vi(2) = 1, and va(z) = 1, va(y) = k — 1,
va(z) = 1. Note that if ¥ = 2, the two Rees valuations are identical, so that in that case
m is one-fibered. For higher £ the ideal m is two-fibered. As the two valuations are
compatible with the natural grading on R, we see that C = k—1. Thus by Theorem 2.6,
whenever the product of two elements in R lies in m*”, then one or the other element

has to lie in m™.

S/t718, the associated graded ring of m, is isomorphic to . So we have two

This a = k,b = 0 is the best possible as zy = z*¥ € m*, but neither 2 nor y lies in m2.

Example 3.10. Let R be a rational singularity of type D,,, n > 4, or of type Eg, E7,
Es. In any of these cases, R equals F|[z,y, 2]]/(2% — f(x,y)), where the lowest term of
f(z,y) has degree 3. As R has a rational singularity, the maximal ideal m and all of
its powers are integrally closed so that again [ = 0. Also, the associated graded ring of
R is Flz,y, 2]/(2%) so that m is one-fibered. Thus if o, 3 are elements of R such that
afl € m?" then either o or 3 lies in m™.

In this example again the bound is the best possible: 2"~ 2z, 4" 22 are in m”~! but not
in m™, yet their product lies in m?7~1,

§¢4. ON THE NORMAL CONE OF A REDUCED IDEAL

Valuations associated to an ideal are also useful in the study of general (not necessar-
ily m—primary) ideals. Here we give a valuative criterion for the normal cone of an ideal
in an integrally closed domain to be reduced. This criterion then provides another proof
that for a prime ideal in a regular ring containing a field, the normal cone is reduced if
and only if it is a domain. See Huneke, Simis and Vasconcelos [HSV] for a more general
version.

Theorem 4.1. Let (R, m) be an integrally closed local domain, and let I C R be an
ideal. Then the following are equivalent:
(1) The graded ring S = R/TST/I2@12/I3®I3/I4®- - - is reduced, where the line
over an ideal denotes its integral closure.
(2) For each Rees—valuation v of I, v(I)=1.

Similarly, the following two statements are equivalent:

(1) The associated graded ring gri(R) is reduced.
(2) I C R is a normal ideal (i.e. R[It] is a normal domain) and for each Rees-
valuation v of I we have v(I) = 1.

Proof: Each Rees valuation v of I corresponds to a prime ideal P in the normal ring
T=Relel 2@ .-+, this prime ideal being minimal over IT or equivalently over
I®I?®I3®---, and thus necessarily having height one. If S = is reduced,
then

__Tr
Ieol2epI3®---

PToy = (T@ﬁ@ﬁ@---)ﬂn = (I@IT@H_%B---)T% = ITy,
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as Ty is a discrete valuation ring, so that v(I) = 1. Thus (1) implies (2) in the first set
of statements.

If instead gry(R) is reduced, certainly all the powers of I are integrally closed so that
R[It] is a normal ring and equal to T. Thus also in the second set of statements, (1)
implies (2).

Conversely, assuming (2) let = be nilpotent in S (resp. in gry(R)). Thus there exist
integers k > 1 and [ such that z € I'\ I*+1 (resp. = € I'\ I**1) and such that zF € TkI+1
(resp. z* € I¥+1). Then for each Rees valuation v of I, kv(z) = v(z*) > (kl+1)v(I) =
kl+ 1, so that v(z) > [+ £. As v(z) is an integer, necessarily v(z) > [+ 1. But then
lies in the integral closure THT of T+, contradicting the assumption for the first set of
statements. For the second set of statements, (2) contains the extra assumption that I
is normal, hence = actually lies in I'*1, again contradicting the hypothesis.

We need another result before we can apply this valuative criterion:

Proposition 4.2. Let (R, m) be a reqular local ring containing a field, let I C R be
an ideal and let x € I with x ¢ m2. Denoting by ~— residue classes mod x, we have a
(non—canonical) isomorphism of graded rings

gr1(R) = gr(R)[T]
identifying x + I? with the indeterminate T'.

Proof: We may replace R by its zR-adic completion without changing gr;(R). Let
k C R be a perfect subfield. As R is regular again, it is formally smooth over k by
[Mat], (28.M). Thus by [Ha], chapt. I (1.2) the canonical surjection R — R has a
section, inducing an isomorphism of rings

R = R|[z]]
(as R is zR—adically complete). Via this isomorphism we have
I =1-R[[z]]+ z - R[[z]]
as ¢ € I, and from this the proposition follows easily.

This result enables the use of induction in proving that reduced normal cones of
primes in regular rings containing fields are domains:

Corollary [HSV] 4.3. Let R be a reqular ring containing a field, and let I C R be
an ideal of R such that gri(R) is reduced. Then there is a one—to—one correspondence
between the minimal prime divisors of I and the minimal prime ideals of gr;(R). In
particular, if I C R is a prime ideal and grr(R) is reduced, then gri(R) is already a
domain.

Proof: As R/I C gry(R), I is a radical ideal. Note that for each minimal prime divisor
p of I, gry, (Ry) is a domain as R, is a regular local ring and IR, is its maximal ideal,
hence

P = ker(grr(R) — grr, (Ry))
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is the unique minimal prime of gry(R) whose intersection with gr;(R)y = R/I corre-
sponds to the minimal prime divisor p of I. We have to show that these are all the
minimal primes of gry(R).

Let 9Q € Min(gry(R)), and let q := Q N R/I. We may replace R by its localization
in q (resp. its preimage in R) and we may assume that ¢ = m is the maximal ideal of
R/I. We have to show that I = m.

First suppose that I is not contained in m2. Then by the Proposition there exists
an element z € I\ m? which induces an isomorphism gr;(R) & gr7(R)[T] of rings.
Necessarily the image of z in grr(R) is not a zero-divisor and gr7(R) is reduced. As R =
R/zR is regular, we can use induction. Let B be a minimal prime ideal in gry(R) which
is contained in £. By the isomorphism from the Proposition, and since all minimal
prime ideals in polynomial rings are extended (cf. [Mat], (9.B)), P = grz(R) N Q. By
induction there exists a minimal prime ideal p over I such that p is the contraction of
PB. Hence this minimal prime ideal p over I is also the contraction of £, thus proving
that p = q = m is a minimal prime over I.

Now assume that I C m2. As £ is a minimal prime of gry(R), it corresponds to a
minimal prime divisor of IR[It] in R[It], hence by Theorem (4.1) to a Rees—valuation
v of I with v(I) = 1. On the other hand, v is positive on m (as Q N R/I = m), and
therefore

v(I) > v(m?) = 2v(m) > 2,

a contradiction.

Remark 4.4. We also have a short direct proof, without using valuations, of why this
corollary holds for regular rings even when the ring does not contain a field. The proof
in [HSV] of a more general result is quite a bit longer and more technical, that is why
we present this shorter proof.

As in the proof of the corollary, it suffices to show that every minimal prime ideal
9 of gry(R) contracts to a minimal prime over I in R. As in the proof, after localizing
R if necessary, without loss of generality £Q contracts to the maximal ideal m of R.
As gry(R) is reduced, there exists an element s* € gry(R) \ Q such that s*Q = 0. In
particular, s*m = 0 in gry(R). Without loss of generality s* is a homogeneous element,
say of degree n. Let s be an element of I™ C R whose image in gry(R) is s*. Then
s*m = 0 implies that sm C I”T1. Define

gmlnm+r? Pami+ P Pomts o
I I? I3 I4
an ideal in gr;(R). Then s*Q = 0 in gr7(R), as for any nonzero element z* € (I7 N
m/+L 4 [3+1) /1341 C gr/(R), its preimage z in I N mI*1\ [/+1 in R satisfies
(sz)"+j+2 — gy .ghtitl, ntj+l

c (In-l-j N mn+j+1) . g+l (Ij)n-l-j+1
- (In+1)"+j+1 . (Ij)n+j+1

— [(n+i+1)(n+i+1)
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But (n+j +2)(degs* +degz*) = (n+j+2)(n+j) < (n+j+1)(n+j+1), which
forces s*z* to be nilpotent in the reduced ring gry(R), hence zero. Thus s*Q = 0, and,
as s* ¢ 9, it follows that Q C 9.

Now write I = (x1,...,2;) + I N m?2, where z1,... ,x; is part of a regular system of
parameters of R. Then

Q -

gri(R) R I I?
—® 2 AT 3 39
m INnm*+1 INnm3+1

where the ith part is an R/m-vector space, whose natural basis is any minimal set of
generators of (z1,...,x;)". Thus g”T(R) is a polynomial ring in [ variables over R/m. In

particular, Nisa prime ideal inside £, so that by the minimality of Q, Q = Q. But

then
| = dim (grgR)> — dim (g”(R)) — dim R,

Q

the last equality as gry(R) is equidimensional. But [ = dim R forces I to be equal to m,
contradicting the choice of Q.

This proves the one-to-one correspondence in the Remark.

Proposition (4.2) raises the following two questions:

Question 4.5. Let (R, m) be a regular local ring, let I C R be an ideal and assume
that I ¢ m2. Does there exist an z € I\ m? such that, if — denotes residue classes
mod z, there is an isomorphism of graded rings

grr(R) = grz(R)[X],

under which z + I2 maps to X?

Question 4.6. Let R be a local ring which is homomorphic image of a regular local
ring P, say P/I = R. Is the conormal module I/1? of R a stable invariant of R?

Remark 4.7. A positive answer to question 4.5 gives a positive answer to question 4.6.
For this one may assume that R is complete and that the regular ring mapping onto R
is complete as well (using faithfully flat descent). Then any two complete regular local
rings mapping onto R can be dominated by a third one, mapping onto both of them,
and we are in the situation of question 4.5.
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