Multi-graded Hilbert functions, mixed multiplicities

Irena Swanson*

Multiplicities of ideals are useful invariants, which in good rings determine the ideal
up to integral closure. Mixed multiplicities are a collection of invariants of several ide-
als, generalizing multiplicities, and capturing some information on the interactions among
ideals. Teissier and Risler [Tei73] were the first to develop mixed multiplicities, in connec-
tion with Milnor numbers of isolated hypersurface singularities: the sequences of Milnor
numbers obtained by intersecting with general i-planes arise as mixed multiplicities of the
ideal generated by the partial derivatives of the defining power series with the ideal cor-
responding to the point (see Theorem 2.5). Rees connected mixed multiplicities to joint
reductions (see Theorem 3.1).

This paper is meant to be an introduction to the topic of multi-graded Hilbert func-
tions, mixed multiplicities, and joint reductions. There is much that is omitted, and a
partial list of known results is given at the end. Familiarity with ordinary multiplicities
and reductions is assumed.

Throughout, R is a Noetherian ring, s is a positive integer, I1,..., Is are ideals in R,
and M is a finitely generated R-module. We will denote s-tuples of non-negative integers
as (n1,...,ns) or as n. All comparisons among s-tuples are componentwise. We will say
that n is sufficiently large if there exists an s-tuple e such that n > e; of course, “sufficent
largeness” depends on the context. By I™ we denote I} - - I7s.

1. Preliminaries

The techniques used to handle several ideals at the same time are similar to the
techniques for handling single ideals. We need a multi-ideal form of the Artin—Rees Lemma,
and existence of special, “sufficiently general”, elements with respect to the given ideals.

Theorem 1.1:  (Generalization of the Artin—-Rees Lemma) Assume that M and N are
R-modules contained in a larger R-module T'. Then there exists ¢ such that for all n > c,

I{Ll __'I;LSMON:IILl—Cl ”,I;ls—cs(llm "'IgsMﬂN).

Proof: Let X1,...,Xs be variables over R, and let A be R[[1X,...,I;X;], the so-called
the multi-ideal Rees ring, namely the subring of R[Xj,..., X,] generated by elements
a; X;, as a; varies over elements of ;. Let G be the A-submodule T[1 Xq,...,IsX;] of
T[X1,...,Xs]. Set H=®,I"X*MNN C G. Then A is an N°-graded Noetherian ring, G
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is a finitely generated N®-graded A-module, and H is a graded A-submodule of G. Thus
H is a finitely generated A-module. Let hq,...,h; form a homogeneous generating set of
H over A. Define ¢ = max{degh;|,|i =1,...,t}.

The theorem is of course true if n = ¢. Now let n > ¢, with n; > ¢; for at least one 1.
Fix one such i. Let m € I7* --- I?*M N N. Then mX7" --- XI'* is a homogeneous element
of H, and so it can be expressed as » | j m;h;, where each m; is multi-homogeneous in A,
and where for each j =1,...,¢, degm; +degh; =n. As n; > ¢;, for each j =1,...,t we
may write m; = >, ax;jby;, with each az; homogeneous of degree e; = (0,...,0,1,0,...,0)
(1 in the ith place), and each by; homogeneous of degree degm; — e;. Hence

m = akbrih; € LIY®™ ™ h; C L(I98 ™~ it b Ar A N) = (1" M N N),
k.5

which is in I;I* ¢ (I{* --- IS M N N) by induction on |n|. This proves that "M NN C
I S(I°M N N). The other inclusion holds trivially. U

Lemma 1.2: Assume that R is local with mazimal ideal m, that the residue field R/m
of R is infinite, and that I; is not contained in prime ideals Py, ..., P.. Then there exist
an integer ¢ > 0 and a finite union V' of proper R/m-vector subspaces of I /mIy such that
for each a € Iy whose image in Iy /mly is not in V, the following holds:
(1) a is not in U, P;,
(2) and for alli > 1, ny > c+1, and na, ..., ng,

(I I M oipy @) NICTY? - I M = I 132 - I M.,
(Such a is “sufficiently general”.)

Proof: The proof includes the case r = 0.

If I is nilpotent, then necessarily » = 0, and the lemma holds for all @ € I; and for
any c such that I7 = 0.

So we may assume that I is not nilpotent. Then I3 /I? # 0. Let A be the Noetherian
N-graded ring

Ay 2
A=
ni1+1 rng ns’
N R IR

where I; has weight 1, and I, ..., I have weight 0. Then

nte- 1M
G = @ In1+1I’n2 . I’nsM
n>0

is a finitely generated N-graded A-module. For each prime ideal in A that is associated
to G but does not contain Ay, its intersection with I;/I? is necessarily proper, hence by
Nakayama’s Lemma, the image of this intersection in I3 /ml; is a proper subspace. Let

2



W1,...,W; be all the subspaces of I /mI; obtained in this way. Similarly, the images P;
of the P; in I; /mlI; are proper subspaces. Define V' to be the union of the W; and P, in
I /mI;. Since I;/ml; is a finite-dimensional vector space over the infinite field R/m, V
is a proper subset. We will prove that any element a € I; with a + mI; ¢ V satisfies the
lemma.

Since G is a Noetherian module, we can decompose its zero submodule irredundantly
into primary components 0 = N; M;. Each ideal \/W is an associated prime ideal of
G. If A is not an element of \/W , then since M; is a primary module, M, :¢ a’ = M;
for all 7 > 1. If, however, a lies in of \/W, then by the definition of V, \/W
contains A, and hence also @©.>1A.. In particular, there exists an integer c such that A,
lies in all such M; :a4 G. Hence @I{I5? --- [T M/I{T1IS? .. [P M lies in all corresponding
M;. Therefore
K2 .- 1M

0:qa)n
( G ) Ilc-l-lI;m...]gSM

- N Ohed)n () (ed)n o
ag~/M;:2G aex/M;AC L2 ®

<

c (N Mn (| (Mjwd)n () M
aQwMj:AG aE\/Mj:AG aE\/Mj:AG
(M, =o.
J
In other words, the lemma holds. U

2. Hilbert-Samuel polynomials

From now on, R is a Noetherian local ring with maximal ideal m, and I,..., s are
m-primary ideals.
It is elementary to prove that for any a € I,
I"M :pra M a M M
- ni—1gyn n - ni—1n n - n — Tn -
LR I M m—rn2.. I M ~M  I=M +aM

is a short exact sequence. Thus

M M M 1M
M) (i) = () = () ©
"M IR (I (Y IM +aM [t e M

For special a € I, stronger results are obtained:

0

Lemma 2.1: Let a € I;. Assume that a is not contained in any prime ideal minimal
over ann (M), and that there exists an integer ¢ such that for all nqy > ¢ and all sufficiently
large no, ..., ng,

(I IPoM iy a) N IEIR? - I M = I g2 e I M
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LEM:Ma
iers M

M M M
4 (13M> - (11"1_1[32 .. -IgsM) =4 (m) ~ A0 a).

Proof: Necessarily dim M > 0. By the generalization of the Artin—Rees Lemma (Theo-
rem 1.1), there exists e € N* such that for all n > e,

=0:p a, and so

Then for all sufficiently large n,

I*M N aM C al <M.

Thus I*M :pr a € I* <M + (0 :ps a). As all ideals are m-primary, for all n; sufficiently
large, I7* 7'M C I{I5?--- 1% M, so that

I"M :ppa CIP M+ (0:pp a) CITIS? - - I M+ (0 :p a).

Hence if n is sufficiently large, by the assumption on c,

IM :pa (M iy a) + ISIP? - I M
A R (Y - g2 - I M
(0 :ar @) + IEIR? - I M
102 I M
0:pa
" (0 a)NICIDE I M

But
(0 1ag @) NIEI? -+ I™ M C My (I2M ipg @) N IEIR2 - I M
C My I HS2 - I M =0,
so that Inl_llﬂlj,\i:M?nSM >~ (0 :ps a). The rest follows from Equation (*). 0
T

Theorem 2.2:  For all positive integers nq,...,ns, M/I]" --- 17 M has finite length.
Moreover, there exists a polynomial p € Q[X71,..., Xs] such that for all sufficiently large

(n1,...,ns),
M
A =——— | = e, M)
<I{L1 I;LSM) p(nh y I )

The degree of the polynomial is dim M (where the degree of the constant zero polynomial

is zero).

Proof: The case s = 1 was proved by Samuel in [Sa51]. In general, clearly M/I{* --- I M
has finite length. The proof of the rest proceeds by induction on dim M. If dim M = 0,
then for all n = (nq,...,ns) with |n| sufficiently large, I;"* ---I7*M = 0. Thus for all n

sufficiently large = M has finite length, so p is a constant polynomial.

M
9 IILl~~~I?SM



Now let dim M > 0. First a technicality. Let X be a variable over R, and R’ =
R[X]mprx)- Then R’ is a faithfully flat extension of R, dim R’ = dim R, and the residue
field of R’ is infinite. For any finitely generated R-module N, dim N = dim (N ®p R’).
In particular, if N has finite length, then N ® g R’ has finite length. Furthermore, in that
case, Ag(N) = Ag/(N ®g R’). Thus it suffices to prove that there exists a polynomial
p € Q[Xq,..., X,] such that for all sufficiently large (nq,...,ns),

M ®r R’ M )
M ag—— )| =2 o+ R | = ceey M)

But I"M ®pr R' = (I ®@r R')(M ®r R') = I"R'(M ®r R'). Thus by replacing R by
R', M by M ®r R, and I; by I; R’, without loss of generality R has an infinite residue
field. Let Pp,..., P, be the minimal prime ideals over ann M. As I; is m-primary and
dim M > 0, necessarily I; is not contained in any P;. Thus by Lemma 1.2, there exist
ce€ Nand a € I \ U; P; such that for all ny > ¢, and all ngy,...,ng € N,

(I?l"'IsnleM a)ﬂ[f[;z"'I;LSMZI?l_lI;z"'I?SM'

Then by Lemma 2.1, for all sufficiently large n,

M M M
A —— ) = A=) =X (0 a).
(727) (7 ) = (wrram) 200

As by the choice of a, dim (M/aM) < dim M, by induction there exists a polynomial
qg € Q[Xy,...,X,] of degree dim (M/aM) = dim M — 1 such that for all n sufficiently
M
large, )\(m
exactly dim M — 1. The polynomial p can be built in the standard way by recursion: p

) = q(n). Then the right side of the equation is a polynomial of degree

has degree exactly one more than the degree of ¢, namely p has degree dim M. {

The homogeneous part of degree d = dim M of the polynomial p € Q[X1,..., X;] as
in Theorem 2.2 can be written as

1
S @™, T M X X
dqi!---dg!
di+--+ds=d
where e(] {dl], e ,Iéds]; M) denotes a rational number. This number is called the mized

multiplicity of M of type (d,...,ds) with respect to Iy,...,Is. If s =1, this is the usual
multiplicity of M with respect to I;.

We prove next that e(I{dl], - ,IS[dS]; M) is actually an integer:
Theorem 2.3: Use the set-up as above. Then e(I{dl},...,Is[ds];M) 1s an integer. If
dim M =0, then e(I{O], IO M) =XM). If dim M > 0, R/m is an infinite field, and
d; > 0, then there exists a; € I; such that e([{dl], e ,IS[dS]; M) equals

el i) qldm ) pldend ) aya, ).
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In particular, there exist di elements of Iy, do elements of I, etc., ds elements of I,
labelled aq, ..., aq, such that

[d1] (d.]. B ( M )_ ((al,...,adl)M M ad>
e(I1 . Tlds) ) = A A .
(I ) (a1,...,aq)M (a1y...,aq9-1)M

Proof: Clearly d = dim M. The theorem is trivial if d = 0. Thus we assume that d > 0.

Let X be an indeterminate over R, and R’ = R[X]|mp[x]. As for all n, A (I%\/[) =

A (%), it follows that e(I&dl], . ,Igds]; M) = e(I{dl]R’, .. ,IgdS]R'; M ®pgrR'). Thus
we may assume that R has an infinite residue field. By possibly first permuting the I,
without loss of generality d; > 0, and then choose a; € I; as in Lemma 1.2, such that a;

avoids each prime ideal minimal over ann M. Then by Lemma 2.1, for all sufficiently large

M M M
A - A =AM 57— —A(0: ,
(PM) (11“—1132 - ~-I§sM) <_ﬂM + alM) O a)

and the two sides are polynomials of degree d — 1. If d = 1, then we read off that
e( 10 1Oy = (210 1 1O My M) — A0 s a1) = MM Jay M) — A0 :a
ay). Whenever d > 1, the homogeneous parts of the polynomials of degree d — 1 give that

n,

1
Z m6(1£d1]7.,.,I‘Lds];M)dlnflflng2 ngz
di4+~+ds=d,d1>0 1- s-

1
- Z me(l{dﬁ’,,.,Is[ds];M/alM)nclh ,“ncszQ?
di+-+ds=d—1 1:° " Ug-

for all sufficiently large n, so that e(I1™, ... 1%V ary = ezt =Y 112 1l%) vrjag ).

Y

Then by repeating the construction of aq, there exist d; — 1 elements in I, ds elements in

I, etc., ds elements in I, labelled consecutively as as, ..., a4, such that
[di—1] 7[d2] [ds]. . ( M ) _ ((a1,...,ad_1)M M ad)
(= g2l pldd ap g M) = A A .
( 1 2 / ! ) (al,...,ad)M (al,...,ad_l)M
Now combine the last two displays. U
It is not immediately clear that all these integers e(] {dl] , Iédz}, | £d5]; M) are positive.

Lemma 2.4: Letd = dim M >0, and aq,...,aq € m such that J = (ay,...,aq)+ ann M
is m-primary. For alli = 1,...,s, set M; = M/(a1,...,a;—1)M. If for all i, either a;
is a non-zerodivisor on M; or (0 :p, a;) N WM™ M; = 0 for n sufficiently large, then the

multiplicity of M with respect to J equals X (ﬁ) - A <(a1(’('l'1"?fl;ji)_]\1/l):ﬂﬂf[ad>.

Proof: The choice of a; guarantees that for all n sufficiently large, (0 :ps, a;) N J"M; = 0.
By Equation (*),

ANM/J"M) = XM/ J" M) = X(M/(J"M + a1 M) — X(J"M :p; a1)/J" " M).
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There exists a polynomial p € Q[X] of degree d such that for all sufficiently large n,
p(n) = A(M/J"M). Also, there exists a polynomial ¢ € Q[X] of degree d — 1 such that for
all sufficiently large n, ¢(n) = AM(M/(J"M + a1 M)). Set r(X) = ¢(X) —p(X) +p(X —1).
By the display above, r is a polynomial in Q[X] of degree at most d — 1 such that for
sufficiently large n, A((J"M :pr a1)/J" "1 M) = r(n).

If d =1, then p(X) = eX + f for some rational numbers (actually integers) e and f.
The leading coefficient, e, is the multiplicity of M with respect to J. Hence the display
says that for n large enough, e = p(n) —p(n—1) = A\(M /a1 M) — X((a? M :pr a1)/a? ' M).
But for possibly even larger n,

atM :praq _a’f_lM—l—(O:M ai) 0:3 a1

= = =0:p a1,
ay~tM al~tM (0:p7 a1) Na ™M M

which proves the case d = 1.
Now let d > 1, and set I = (ag,...,aq). By the Artin—Rees Lemma, there exists an
integer ¢ such that for all n > ¢, I"M :p; a3 € (0 :p7 a1) + 1" °M. Then

\ (J”M 3" al) N (J”1M+ (I"M al)) ) (J”1M+ (0 ay) +I”CM>

Jn—lM Jn—lM Jn—lM
J UM 4+ (0 :p ay) JIM 4 IeM
<A A .
— < Jn—lM + Jn—lM

As ‘WZM,# is a module over R/(J¢~t+ann M), its length is bounded by (M )pu(1™~°)

times the length of R/(J¢~1 4+ ann M), which is a polynomial of degree at most d — 2. By

J I M4(0:pra1)
J 1M

a polynomial of degree at most d — 2, and in Equation (*), the reading of the polynomial

is isomorphic to (0 :ps a1) for large n. Thus r(X) is

the assumption on aq,

in degree d — 1 yields that the multiplicity of M with respect to J equals the multiplicity
of M/a; M with respect to I. Then by induction on d, the multiplicity of J on M equals

M (a1yeees ag—1)M:pa
A ((al,...,ad)M> —A ( l(al,..fi,ad_l)ll\\g d)' D

Now we combine Theorem 2.3 and Lemma 2.4:

Theorem 2.5:  (Teissier-Risler [Tei73], Rees [Re84]) With the set-up as above, the
number e(Il[dl], . ,IgdS]; M) is a positive integer. Whenever R/m is an infinite field, this
number equals the mutliplicity of an ideal J in R, where J is generated by dy sufficiently
general elements of Iy, do sufficiently general elements of I, etc., ds sufficiently general

elements of I.

Proof: Set d =dim M. Then d =d; + --- + ds. The theorem is trivial if d = 0. Thus we
assume that d > 0.
Let X be an indeterminate over R, and S = R[X|yr(x]. Then for any R-module N of

finite length, N.S is an S-module of the same length, so in particular e(I{dl}, cee I£ds]; M) =
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e((IS)) .. (I,9)1%]; M ®g S). The ring S has an infinite residue field. By Theo-
rem 2.3, there exist d; (sufficiently general) elements in [1.S, etc., ds elements in IS,

call them a1, . .., aq, such that e((I;S)!%], ... (I,9)l%]; M ®Rr S) equals A (%) —

A <(a1’('6;'1’(ff”._;d)iv1[i;fssad>. Set M; = MS/(ay,...,a;—1)MS. The construction in the proof

of Theorem 2.3 requires that each a; avoid the minimal primes over ann (M;) and satisfy

the property that for some c all n; > ¢ and all ny,...,n;_1,n;41,...,ng,

(I oMy tag, ) VIR P T o I My = I I I I I M
By the generalized Artin—Rees Lemma (Theorem 1.1), for all n sufficiently large, the
module I7*---I?*M; :pr, a; is contained in I3 -- -IZI_iIl[fI?f{l -+« I M;. Thus for all
sufficiently large n,

(0 “M; ai) ﬂlﬂMZ = 0.

Thus aq, ..., aq satisfy the conditions of Lemma 2.4, which proves the theorem. {

An important ingredient in the proof above is the passage from R to a faithfully flat
extension S = R[X|ng(x] With an infinite residue field that preserves lengths.

This technique is also the main tool in the proofs of the following (and the proofs are
left to the reader):
(1) It is clear that whenever Iy,..., I, J1,...,Js are m-primary ideals such that for all
i=1,...,s J; C I, then \(M/J*M) > N(M/I*M). But even more: whenever d; +
o4 dg = dim M, then e(JI"), . M M) > ek Tl ). (Hin: Tt is enough
to prove this in the case Jy = I, ..., Js = I;.)
(2) For any positive integers Iy, ..., [,

(Il ()l py =i adee(n) L Tl ).
(3) (Associativity formula for mixed multiplicities)

(™, 1 M) =3 Agp (Mp)e(r™, . 1) M/ PM),
P

where P varies over the prime ideals in R containing ann (M) for which dim (R/P) =
dim M.
(4) Mixed multiplicities behave well on short exact sequences. Explicitly, if 0 — N —
M — K — 0 is a short exact sequence of R-modules, then

(i) If dim M =dim N = dim K,

e(DM L My = e, T N e 1) K,
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(ii) If dim M = dim N > dim K, e(I1", ... 1% ar) = el 1) N,

(iii) If dim M = dim K > dim N, e(II™, ... 1l% p) = e(21 0 1) K.
(5) Let (R,m) C (R',m’) be a module-finite extension of local domains of dimension d.
Then
e %) Ryrkp(9)

e((R)™, o (LRSS R = =

3. Joint reductions

There is interaction between mixed multiplicities also via the concept of joint reduc-
tions. Joint reductions were first defined by Rees in [Re84]. We set-up some notation. Let
d be a positive integer. Then a d-tuple (aq,...,aq) of elements of R is said to be a joint
reduction of the d-tuple (Ji,...,Jg) with respect to M, if for each i = 1,...,d, a; € J;,
and J = Z?Zl a;Jy -+ Ji_1Jiv1 -+ - Jg is a reduction of the ideal I = J; - - - Jg with respect
to M. In other words, there exists an integer [ such that JI'M = I'T'M. If each .J; is one
of the I;, and if each I; appears d; times, then we say that (a,...,aq) is a joint reduction
of I, ..., I of type (dy,...,ds) with respect to M.

The reader can rework the proof of Theorem 2.5 to see that when the residue field
is infinite, there exists a joint reduction (ai,...,aq) of I, ..., Is of type (di,...,ds) with
respect to M such that e(I{dl]
(ay,...,aq). The case d = 1 is the case of ordinary reductions, and the rest is proved by

N | S[dS]; M) equals the multiplicity of M with respect to

induction on d.

Theorem 3.1: Let d = dim M. If (ay,...,aq) is a joint reduction of I1,...,Is of type
(di,...,ds) with respect to M, then e(I{dl], . ,Is[ds]; M) equals the multiplicity of M with
respect to (ai,...,aq).

Proof: Necessarily (aq,...,aq) + ann M is m-primary.

The theorem is clear if d = 0. Now assume that d = 1. Then by assumption there
exists an integer [ such that ai(Iy -+ Is)'M = (I --- I;)"™* M. Thus a1 R is a reduction of
I, with respect to M’ = (I --- I,)' M. There exists an integer ¢ such that for alln > ¢, IT €
(a7 “R+ann (M')). Then for all n > 1, N(M'/aTM') > X(M'/ITM") > X(M' /a7~ “M'").
Each of the three quantities eventually equals a polynomial in n of degree 1, the first
and the third polynomials have the same leading coefficient, namely the multiplicity of
a1 R on M, so necessarily the middle polynomial has the same leading coefficient. But
AM'JIPM")y = N MJIFM )= ANM/M") = X(M/I*M)—XX(M/M"), \(M/M'") is a constant,
so the leading coefficient of the polynomial A(M/I™M) equals the leading coefficient of the
three polynomials above, which proves the case d = 1.

Now let d > 1. By the associativity formula for multiplicities and mixed multiplicities,
without loss of generality ann M = 0 is a prime ideal, and M = R. For simplicity of
notation we may assume that d; > 0. A step of Lemma 2.4 proves that the multiplicity
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of (ai,...,aq) on R is the multiplicity of (asg,...,aq) on R/aiR, and that the mixed
multiplicity e(Z}, ... 1l%); R) equals e(7[" ™Y, 1} 1l%l. R/ay R).
By passage to R/a1R, (as,...,aq) is a joint reduction of Ip,...,Is of type (d; —

1,dg,...,ds) with respect to If(R/a;R) for some integer ¢. By induction on dimension,

e(I{dl_l},Ing], o T If(R/a1R)) equals the multiplicity of I{(R/ajR) with respect to

(az,...,aq). But the short exact sequence 0 — 11;—1(;%1% — aliR — I—I’Z — 0 shows that
1

dim R/a; Rdim (I{(R/a1R)) = dim R — 1 > dim R/I{ = 0, so that by Property (4),
e(7l =1 pitl o fldl re(Rja R)) = e(1 Y 12 1% Rjai R), and the multiplic-
ity of I{(R/a1 R) with respect to (as,...,aq) is the same as the multiplicity of I{(R/a1R)
with respect to (ag,...,aq). Now combine all the equalities. g

The converse holds sometimes. Namely, let aq,...,aq be d; elements of I, etc., ds
elements of I, such that e(I %dl], | £ds]; R) equals the multiplicity of R with respect to
(a1,...,aq). Then if R is formally equidimensional, (a1, ...,aq) is a joint reduction of the
d-tuple (I1,...,I1,1s,... . Is, ... I, ... I;) with respect to R, where each I; is listed d;
times. (The proof of this is in [Sw93], and it requires techniques from [B69].)

4. Other topics

We finish with listing a few other topics related to mixed multiplicities which an
interested reader may wish to read. Teissier [Tei78], Rees and Sharp [ReSh78] proved
various Minkowski-type inequalities. Katz and Verma [KaVe89] generalized mixed mul-
tiplicities to ideals not all of which are zero-dimensional. Verma [Ve88, Ve92] connected
mixed multiplicities to multiplicities of multi-graded Rees algebras. Cohen-Macaulayness
of multi-ideal Rees algebras was studied by Verma [Ve88], [Ve90], [Ve9l]; Tang [Ta99];
Herrmann, Hyry, Ribbe [HHR93|; and Herrmann, Hyry, Ribbe, Tang [HHRT97]. Trung
[Tr01] generalized mixed multiplicities to bigraded algebras, using filter-regular sequences.
Trung and Verma [TrVe06] interpreted mixed multiplicities of monomial ideals in terms of
mixed volumes of polytopes.
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