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Multiplicities of ideals are useful invariants, which in good rings determine the ideal
up to integral closure. Mixed multiplicities are a collection of invariants of several ide-
als, generalizing multiplicities, and capturing some information on the interactions among
ideals. Teissier and Risler [Tei73] were the first to develop mixed multiplicities, in connec-
tion with Milnor numbers of isolated hypersurface singularities: the sequences of Milnor
numbers obtained by intersecting with general i-planes arise as mixed multiplicities of the
ideal generated by the partial derivatives of the defining power series with the ideal cor-
responding to the point (see Theorem 2.5). Rees connected mixed multiplicities to joint
reductions (see Theorem 3.1).

This paper is meant to be an introduction to the topic of multi-graded Hilbert func-
tions, mixed multiplicities, and joint reductions. There is much that is omitted, and a
partial list of known results is given at the end. Familiarity with ordinary multiplicities
and reductions is assumed.

Throughout, R is a Noetherian ring, s is a positive integer, I1, . . . , Is are ideals in R,
and M is a finitely generated R-module. We will denote s-tuples of non-negative integers
as (n1, . . . , ns) or as n. All comparisons among s-tuples are componentwise. We will say
that n is sufficiently large if there exists an s-tuple e such that n ≥ e; of course, “sufficent
largeness” depends on the context. By In we denote In1

1 · · · Ins
s .

1. Preliminaries

The techniques used to handle several ideals at the same time are similar to the
techniques for handling single ideals. We need a multi-ideal form of the Artin–Rees Lemma,
and existence of special, “sufficiently general”, elements with respect to the given ideals.

Theorem 1.1: (Generalization of the Artin–Rees Lemma) Assume that M and N are
R-modules contained in a larger R-module T . Then there exists c such that for all n ≥ c,

In1
1 · · · Ins

s M ∩N = In1−c1
1 · · · Ins−cs

s (Ic1
1 · · · Ics

s M ∩N).

Proof: Let X1, . . . , Xs be variables over R, and let A be R[I1X1, . . . , IsXs], the so-called
the multi-ideal Rees ring, namely the subring of R[X1, . . . , Xs] generated by elements
aiXi, as ai varies over elements of Ii. Let G be the A-submodule T [I1X1, . . . , IsXs] of
T [X1, . . . , Xs]. Set H = ⊕nInXnM ∩N ⊆ G. Then A is an Ns-graded Noetherian ring, G
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is a finitely generated Ns-graded A-module, and H is a graded A-submodule of G. Thus
H is a finitely generated A-module. Let h1, . . . , ht form a homogeneous generating set of
H over A. Define c = max{deg hi|, | i = 1, . . . , t}.

The theorem is of course true if n = c. Now let n ≥ c, with ni > ci for at least one i.
Fix one such i. Let m ∈ In1

1 · · · Ins
s M ∩N . Then mXn1

1 · · ·Xns
s is a homogeneous element

of H, and so it can be expressed as
∑

j mjhj , where each mj is multi-homogeneous in A,
and where for each j = 1, . . . , t, deg mj + deg hj = n. As ni > ci, for each j = 1, . . . , t we
may write mj =

∑
k akjbkj , with each akj homogeneous of degree ei = (0, . . . , 0, 1, 0, . . . , 0)

(1 in the ith place), and each bkj homogeneous of degree deg mj − ei. Hence

m =
∑
k,j

akjbkjhj ∈ IiI
deg mj−eihj ⊆ Ii(Ideg mj−ei+deg hj M ∩N) = Ii(In−eiM ∩N),

which is in IiI
n−c−ei(Ic1

1 · · · Ics
s M ∩N) by induction on |n|. This proves that InM ∩N ⊆

In−c(IcM ∩N). The other inclusion holds trivially.

Lemma 1.2: Assume that R is local with maximal ideal m, that the residue field R/m

of R is infinite, and that I1 is not contained in prime ideals P1, . . . , Pr. Then there exist
an integer c > 0 and a finite union V of proper R/m-vector subspaces of I1/mI1 such that
for each a ∈ I1 whose image in I1/mI1 is not in V , the following holds:
(1) a is not in ∪iPi,
(2) and for all i ≥ 1, n1 ≥ c + i, and n2, . . . , ns,

(In1
1 · · · Ins

s M :M ai) ∩ Ic
1In2

2 · · · Ins
s M = In1−i

1 In2
2 · · · Ins

s M.

(Such a is “sufficiently general”.)

Proof: The proof includes the case r = 0.
If I1 is nilpotent, then necessarily r = 0, and the lemma holds for all a ∈ I1 and for

any c such that Ic
1 = 0.

So we may assume that I1 is not nilpotent. Then I1/I2
1 6= 0. Let A be the Noetherian

N-graded ring

A =
⊕
n≥0

In1
1 · · · Ins

s

In1+1
1 In2

2 · · · Ins
s

,

where I1 has weight 1, and I2, . . . , Is have weight 0. Then

G =
⊕
n≥0

In1
1 · · · Ins

s M

In1+1
1 In2

2 · · · Ins
s M

,

is a finitely generated N-graded A-module. For each prime ideal in A that is associated
to G but does not contain A1, its intersection with I1/I2

1 is necessarily proper, hence by
Nakayama’s Lemma, the image of this intersection in I1/mI1 is a proper subspace. Let
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W1, . . . ,Wt be all the subspaces of I1/mI1 obtained in this way. Similarly, the images P i

of the Pi in I1/mI1 are proper subspaces. Define V to be the union of the Wi and P i in
I1/mI1. Since I1/mI1 is a finite-dimensional vector space over the infinite field R/m, V

is a proper subset. We will prove that any element a ∈ I1 with a + mI1 6∈ V satisfies the
lemma.

Since G is a Noetherian module, we can decompose its zero submodule irredundantly
into primary components 0 = ∩iMi. Each ideal

√
Mj :A G is an associated prime ideal of

G. If A is not an element of
√

Mj :A G, then since Mj is a primary module, Mj :G ai = Mj

for all i ≥ 1. If, however, a lies in of
√

Mj :A G, then by the definition of V ,
√

Mj :A G

contains A1, and hence also ⊕c≥1Ac. In particular, there exists an integer c such that Ac

lies in all such Mj :A G. Hence ⊕Ic
1In2

2 · · · Ins
s M/Ic+1

1 In2
2 · · · Ins

s M lies in all corresponding
Mj . Therefore

(0 :G ai) ∩ Ic
1In2

2 · · · Ins
s M

Ic+1
1 In2

2 · · · Ins
s M

=
⋂

a6∈
√

Mj :AG

(
Mj :G ai

)
∩

⋂
a∈
√

Mj :AG

(
Mj :G ai

)
∩ Ic

1In2
2 · · · Ins

s M

Ic+1
1 In2

2 · · · Ins
s M

⊆
⋂

a6∈
√

Mj :AG

Mj ∩
⋂

a∈
√

Mj :AG

(
Mj :G ai

)
∩

⋂
a∈
√

Mj :AG

Mj

⊆
⋂
j

Mj = 0.

In other words, the lemma holds.

2. Hilbert-Samuel polynomials

From now on, R is a Noetherian local ring with maximal ideal m, and I1, . . . , Is are
m-primary ideals.

It is elementary to prove that for any a ∈ I1,

0 → InM :M a

In1−1
1 In2

2 · · · Ins
s M

→ M

In1−1
1 In2

2 · · · Ins
s M

a−→ M

InM
→ M

InM + aM
→ 0

is a short exact sequence. Thus

λ

(
M

InM

)
−λ

(
M

In1−1
1 In2

2 · · · Ins
s M

)
= λ

(
M

InM + aM

)
−λ

(
InM :M a

In1−1
1 In2

2 · · · Ins
s M

)
. (∗)

For special a ∈ I1, stronger results are obtained:

Lemma 2.1: Let a ∈ I1. Assume that a is not contained in any prime ideal minimal
over ann (M), and that there exists an integer c such that for all n1 ≥ c and all sufficiently
large n2, . . . , ns,

(In1
1 · · · Ins

s M :M a) ∩ Ic
1In2

2 · · · Ins
s M = In1−1

1 In2
2 · · · Ins

s M.
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Then for all sufficiently large n, InM :M a

I
n1−1
1 I

n2
2 ···Ins

s M
∼= 0 :M a, and so

λ

(
M

InM

)
− λ

(
M

In1−1
1 In2

2 · · · Ins
s M

)
= λ

(
M

InM + aM

)
− λ (0 :M a) .

Proof: Necessarily dim M > 0. By the generalization of the Artin–Rees Lemma (Theo-
rem 1.1), there exists e ∈ Ns such that for all n ≥ e,

InM ∩ aM ⊆ aIn−eM.

Thus InM :M a ⊆ In−eM + (0 :M a). As all ideals are m-primary, for all n1 sufficiently
large, In1−e1

1 M ⊆ Ic
1Ie2

2 · · · Ies
s M , so that

InM :M a ⊆ In−eM + (0 :M a) ⊆ Ic
1In2

2 · · · Ins
s M + (0 :M a).

Hence if n is sufficiently large, by the assumption on c,

InM :M a

In1−1
1 In2

2 · · · Ins
s M

∼=
(InM :M a) + Ic

1In2
2 · · · Ins

s M

Ic
1In2

2 · · · Ins
s M

=
(0 :M a) + Ic

1In2
2 · · · Ins

s M

Ic
1In2

2 · · · Ins
s M

∼=
0 :M a

(0 :M a) ∩ Ic
1In2

2 · · · Ins
s M

.

But

(0 :M a) ∩ Ic
1In2

2 · · · Ins
s M ⊆ ∩n1≥1(InM :M a) ∩ Ic

1In2
2 · · · Ins

s M

⊆ ∩n1≥1I
n1−1
1 In2

2 · · · Ins
s M = 0,

so that InM :M a

I
n1−1
1 I

n2
2 ···Ins

s M
∼= (0 :M a). The rest follows from Equation (*).

Theorem 2.2: For all positive integers n1, . . . , ns, M/In1
1 · · · Ins

s M has finite length.
Moreover, there exists a polynomial p ∈ Q[X1, . . . , Xs] such that for all sufficiently large
(n1, . . . , ns),

λ

(
M

In1
1 · · · Ins

s M

)
= p(n1, . . . , ns).

The degree of the polynomial is dim M (where the degree of the constant zero polynomial
is zero).

Proof: The case s = 1 was proved by Samuel in [Sa51]. In general, clearly M/In1
1 · · · Ins

s M

has finite length. The proof of the rest proceeds by induction on dim M . If dim M = 0,
then for all n = (n1, . . . , ns) with |n| sufficiently large, In1

1 · · · Ins
s M = 0. Thus for all n

sufficiently large, M
I

n1
1 ···Ins

s M
= M has finite length, so p is a constant polynomial.
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Now let dim M > 0. First a technicality. Let X be a variable over R, and R′ =
R[X]mR[X]. Then R′ is a faithfully flat extension of R, dim R′ = dim R, and the residue
field of R′ is infinite. For any finitely generated R-module N , dim N = dim (N ⊗R R′).
In particular, if N has finite length, then N ⊗R R′ has finite length. Furthermore, in that
case, λR(N) = λR′(N ⊗R R′). Thus it suffices to prove that there exists a polynomial
p ∈ Q[X1, . . . , Xs] such that for all sufficiently large (n1, . . . , ns),

λ

(
M ⊗R R′

InM ⊗R R′

)
= λ

(
M

InM
⊗R R′

)
= p(n1, . . . , ns).

But InM ⊗R R′ = (In ⊗R R′)(M ⊗R R′) = InR′(M ⊗R R′). Thus by replacing R by
R′, M by M ⊗R R′, and Ii by IiR

′, without loss of generality R has an infinite residue
field. Let P1, . . . , Pr be the minimal prime ideals over annM . As I1 is m-primary and
dim M > 0, necessarily I1 is not contained in any Pi. Thus by Lemma 1.2, there exist
c ∈ N and a ∈ I1 \ ∪iPi such that for all n1 > c, and all n2, . . . , ns ∈ N,

(In1
1 · · · Ins

s M :M a) ∩ Ic
1In2

2 · · · Ins
s M = In1−1

1 In2
2 · · · Ins

s M.

Then by Lemma 2.1, for all sufficiently large n,

λ

(
M

InM

)
− λ

(
M

In1−1
1 In2

2 · · · Ins
s M

)
= λ

(
M

InM + aM

)
− λ (0 :M a) .

As by the choice of a, dim (M/aM) < dim M , by induction there exists a polynomial
q ∈ Q[X1, . . . , Xs] of degree dim (M/aM) = dim M − 1 such that for all n sufficiently
large, λ( M

InM+aM ) = q(n). Then the right side of the equation is a polynomial of degree
exactly dim M − 1. The polynomial p can be built in the standard way by recursion: p

has degree exactly one more than the degree of q, namely p has degree dim M .

The homogeneous part of degree d = dim M of the polynomial p ∈ Q[X1, . . . , Xs] as
in Theorem 2.2 can be written as∑

d1+···+ds=d

1
d1! · · · ds!

e(I [d1]
1 , . . . , I [ds]

s ;M)Xd1
1 · · ·Xd2

s ,

where e(I [d1]
1 , . . . , I

[ds]
s ;M) denotes a rational number. This number is called the mixed

multiplicity of M of type (d1, . . . , ds) with respect to I1, . . . , Is. If s = 1, this is the usual
multiplicity of M with respect to I1.

We prove next that e(I [d1]
1 , . . . , I

[ds]
s ;M) is actually an integer:

Theorem 2.3: Use the set-up as above. Then e(I [d1]
1 , . . . , I

[ds]
s ;M) is an integer. If

dim M = 0, then e(I [0]
1 , . . . , I

[0]
s ;M) = λ(M). If dim M > 0, R/m is an infinite field, and

di > 0, then there exists ai ∈ Ii such that e(I [d1]
1 , . . . , I

[ds]
s ;M) equals

e(I [d1]
1 , . . . , I

[di−1]
i−1 , I

[di−1]
i , I

[di+1]
i+1 , . . . , I [ds]

s ;M/aiM).
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In particular, there exist d1 elements of I1, d2 elements of I2, etc., ds elements of Is,
labelled a1, . . . , ad, such that

e(I [d1]
1 , . . . , I [ds]

s ;M) = λ

(
M

(a1, . . . , ad)M

)
− λ

(
(a1, . . . , ad−1)M :M ad

(a1, . . . , ad−1)M

)
.

Proof: Clearly d = dim M . The theorem is trivial if d = 0. Thus we assume that d > 0.
Let X be an indeterminate over R, and R′ = R[X]mR[X]. As for all n, λ

(
M

InM

)
=

λ
(

M⊗RR′

InM⊗RR′

)
, it follows that e(I [d1]

1 , . . . , I
[ds]
s ;M) = e(I [d1]

1 R′, . . . , I
[ds]
s R′;M⊗R R′). Thus

we may assume that R has an infinite residue field. By possibly first permuting the Ii,
without loss of generality d1 > 0, and then choose a1 ∈ I1 as in Lemma 1.2, such that a1

avoids each prime ideal minimal over annM . Then by Lemma 2.1, for all sufficiently large
n,

λ

(
M

InM

)
− λ

(
M

In1−1
1 In2

2 · · · Ins
s M

)
= λ

(
M

InM + a1M

)
− λ (0 :M a1) ,

and the two sides are polynomials of degree d − 1. If d = 1, then we read off that
e(I [1]

1 , I
[0]
2 , . . . , I

[0]
s ;M) = e(I [0]

1 , I
[0]
2 , . . . , I

[0]
s ;M/a1M)−λ(0 :M a1) = λ(M/a1M)−λ(0 :M

a1). Whenever d > 1, the homogeneous parts of the polynomials of degree d− 1 give that∑
d1+···+ds=d,d1>0

1
d1! · · · ds!

e(I [d1]
1 , . . . , I [ds]

s ;M)d1n
d1−1
1 nd2

2 · · ·nd2
s

=
∑

d1+···+ds=d−1

1
d1! · · · ds!

e(I [d1]
1 , . . . , I [ds]

s ;M/a1M)nd1
1 · · ·nd2

s ,

for all sufficiently large n, so that e(I [d1]
1 , . . . , I

[ds]
s ;M) = e(I [d1−1]

1 , I
[d2]
2 , . . . , I

[ds]
s ;M/a1M).

Then by repeating the construction of a1, there exist d1− 1 elements in I1, d2 elements in
I2, etc., ds elements in Is, labelled consecutively as a2, . . . , ad, such that

e(I [d1−1]
1 , I

[d2]
2 , . . . , I [ds]

s ;M/a1M) = λ

(
M

(a1, . . . , ad)M

)
− λ

(
(a1, . . . , ad−1)M :M ad

(a1, . . . , ad−1)M

)
.

Now combine the last two displays.

It is not immediately clear that all these integers e(I [d1]
1 , I

[d2]
2 , . . . , I

[ds]
s ;M) are positive.

Lemma 2.4: Let d = dim M > 0, and a1, . . . , ad ∈ m such that J = (a1, . . . , ad)+annM

is m-primary. For all i = 1, . . . , s, set Mi = M/(a1, . . . , ai−1)M . If for all i, either ai

is a non-zerodivisor on Mi or (0 :Mi
ai) ∩ mnMi = 0 for n sufficiently large, then the

multiplicity of M with respect to J equals λ
(

M
(a1,...,ad)M

)
− λ

(
(a1,...,ad−1)M :M ad

(a1,...,ad−1)M

)
.

Proof: The choice of ai guarantees that for all n sufficiently large, (0 :Mi
ai) ∩ JnMi = 0.

By Equation (*),

λ(M/JnM)− λ(M/Jn−1M) = λ(M/(JnM + a1M)− λ((JnM :M a1)/Jn−1M).
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There exists a polynomial p ∈ Q[X] of degree d such that for all sufficiently large n,
p(n) = λ(M/JnM). Also, there exists a polynomial q ∈ Q[X] of degree d− 1 such that for
all sufficiently large n, q(n) = λ(M/(JnM + a1M)). Set r(X) = q(X)− p(X) + p(X − 1).
By the display above, r is a polynomial in Q[X] of degree at most d − 1 such that for
sufficiently large n, λ((JnM :M a1)/Jn−1M) = r(n).

If d = 1, then p(X) = eX + f for some rational numbers (actually integers) e and f .
The leading coefficient, e, is the multiplicity of M with respect to J . Hence the display
says that for n large enough, e = p(n)−p(n−1) = λ(M/a1M)−λ((an

1M :M a1)/an−1
1 M).

But for possibly even larger n,

an
1M :M a1

an−1
1 M

=
an−1
1 M + (0 :M a1)

an−1
1 M

∼=
0 :M a1

(0 :M a1) ∩ an−1
1 M

= 0 :M a1,

which proves the case d = 1.
Now let d > 1, and set I = (a2, . . . , ad). By the Artin–Rees Lemma, there exists an

integer c such that for all n ≥ c, InM :M a1 ⊆ (0 :M a1) + In−cM . Then

λ

(
JnM :M a1

Jn−1M

)
= λ

(
Jn−1M + (InM :M a1)

Jn−1M

)
≤ λ

(
Jn−1M + (0 :M a1) + In−cM

Jn−1M

)
≤ λ

(
Jn−1M + (0 :M a1)

Jn−1M

)
+ λ

(
Jn−1M + In−cM

Jn−1M

)
.

As Jn−1M+In−cM
Jn−1M is a module over R/(Jc−1+annM), its length is bounded by µ(M)µ(In−c)

times the length of R/(Jc−1 + annM), which is a polynomial of degree at most d− 2. By
the assumption on a1,

Jn−1M+(0:M a1)
Jn−1M is isomorphic to (0 :M a1) for large n. Thus r(X) is

a polynomial of degree at most d− 2, and in Equation (*), the reading of the polynomial
in degree d− 1 yields that the multiplicity of M with respect to J equals the multiplicity
of M/a1M with respect to I. Then by induction on d, the multiplicity of J on M equals
λ

(
M

(a1,...,ad)M

)
− λ

(
(a1,...,ad−1)M :M ad

(a1,...,ad−1)M

)
.

Now we combine Theorem 2.3 and Lemma 2.4:

Theorem 2.5: (Teissier-Risler [Tei73], Rees [Re84]) With the set-up as above, the
number e(I [d1]

1 , . . . , I
[ds]
s ;M) is a positive integer. Whenever R/m is an infinite field, this

number equals the mutliplicity of an ideal J in R, where J is generated by d1 sufficiently
general elements of I1, d2 sufficiently general elements of I2, etc., ds sufficiently general
elements of Is.

Proof: Set d = dim M . Then d = d1 + · · ·+ ds. The theorem is trivial if d = 0. Thus we
assume that d > 0.

Let X be an indeterminate over R, and S = R[X]mR[X]. Then for any R-module N of
finite length, NS is an S-module of the same length, so in particular e(I [d1]

1 , . . . , I
[ds]
s ;M) =
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e((I1S)[d1], . . . , (IsS)[ds];M ⊗R S). The ring S has an infinite residue field. By Theo-
rem 2.3, there exist d1 (sufficiently general) elements in I1S, etc., ds elements in IsS,
call them a1, . . . , ad, such that e((I1S)[d1], . . . , (IsS)[ds];M⊗R S) equals λ

(
MS

(a1,...,ad)MS

)
−

λ
(

(a1,...,ad−1)MS:MSad

(a1,...,ad−1)MS

)
. Set Mi = MS/(a1, . . . , ai−1)MS. The construction in the proof

of Theorem 2.3 requires that each ai avoid the minimal primes over ann (Mi) and satisfy
the property that for some c all ni ≥ c and all n1, . . . , ni−1, ni+1, . . . , ns,

(In1
1 · · · Ins

s Mi :Mi ai) ∩ In1
1 · · · Ini−1

i−1 Ic
i I

ni+1
i+1 · · · Ins

s Mi = In1
1 · · · Ini−1

i−1 Ini−1
i I

ni+1
i+1 · · · Ins

s Mi.

By the generalized Artin–Rees Lemma (Theorem 1.1), for all n sufficiently large, the
module In1

1 · · · Ins
s Mi :Mi

ai is contained in In1
1 · · · Ini−1

i−1 Ic
i I

ni+1
i+1 · · · Ins

s Mi. Thus for all
sufficiently large n,

(0 :Mi
ai) ∩ InMi = 0.

Thus a1, . . . , ad satisfy the conditions of Lemma 2.4, which proves the theorem.

An important ingredient in the proof above is the passage from R to a faithfully flat
extension S = R[X]mR[X] with an infinite residue field that preserves lengths.

This technique is also the main tool in the proofs of the following (and the proofs are
left to the reader):
(1) It is clear that whenever I1, . . . , Is, J1, . . . , Js are m-primary ideals such that for all
i = 1, . . . , s, Ji ⊆ Ii, then λ(M/JnM) ≥ λ(M/InM). But even more: whenever d1 +
· · · + ds = dim M , then e(J [d1]

1 , . . . , J
[ds]
s ;M) ≥ e(I [d1]

1 , . . . , I
[ds]
s ;M). (Hint: It is enough

to prove this in the case J2 = I2, . . ., Js = Is.)
(2) For any positive integers l1, . . . , ls,

e((I l1
1 )[d1], . . . , (I ls

s )[ds];M) = ld1
1 · · · lds

s e(I [d1]
1 , . . . , I [ds]

s ;M).

(3) (Associativity formula for mixed multiplicities)

e(I [d1]
1 , . . . , I [ds]

s ;M) =
∑
P

λRP
(MP )e(I [d1]

1 , . . . , I [ds]
s ;M/PM),

where P varies over the prime ideals in R containing ann (M) for which dim (R/P ) =
dim M .
(4) Mixed multiplicities behave well on short exact sequences. Explicitly, if 0 → N →
M → K → 0 is a short exact sequence of R-modules, then

(i) If dim M = dim N = dim K,

e(I [d1]
1 , . . . , I [ds]

s ;M) = e(I [d1]
1 , . . . , I [ds]

s ;N) + e(I [d1]
1 , . . . , I [ds]

s ;K);
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(ii) If dim M = dim N > dim K, e(I [d1]
1 , . . . , I

[ds]
s ;M) = e(I [d1]

1 , . . . , I
[ds]
s ;N);

(iii) If dim M = dim K > dim N , e(I [d1]
1 , . . . , I

[ds]
s ;M) = e(I [d1]

1 , . . . , I
[ds]
s ;K).

(5) Let (R,m) ⊆ (R′,m′) be a module-finite extension of local domains of dimension d.
Then

e((I1R
′)[d1], . . . , (IsR

′)[ds];R′) =
e(I [d1]

1 , . . . , I
[ds]
s ;R)rkR(S)

[R′/m′ : R/m]
.

3. Joint reductions

There is interaction between mixed multiplicities also via the concept of joint reduc-
tions. Joint reductions were first defined by Rees in [Re84]. We set-up some notation. Let
d be a positive integer. Then a d-tuple (a1, . . . , ad) of elements of R is said to be a joint
reduction of the d-tuple (J1, . . . , Jd) with respect to M , if for each i = 1, . . . , d, ai ∈ Ji,
and J =

∑d
i=1 aiJ1 · · · Ji−1Ji+1 · · · Jd is a reduction of the ideal I = J1 · · · Js with respect

to M . In other words, there exists an integer l such that JI lM = I l+1M . If each Ji is one
of the Ij , and if each Ij appears dj times, then we say that (a1, . . . , ad) is a joint reduction
of I1, . . . , Is of type (d1, . . . , ds) with respect to M .

The reader can rework the proof of Theorem 2.5 to see that when the residue field
is infinite, there exists a joint reduction (a1, . . . , ad) of I1, . . . , Is of type (d1, . . . , ds) with
respect to M such that e(I [d1]

1 , . . . , I
[ds]
s ;M) equals the multiplicity of M with respect to

(a1, . . . , ad). The case d = 1 is the case of ordinary reductions, and the rest is proved by
induction on d.

Theorem 3.1: Let d = dim M . If (a1, . . . , ad) is a joint reduction of I1, . . . , Is of type
(d1, . . . , ds) with respect to M , then e(I [d1]

1 , . . . , I
[ds]
s ;M) equals the multiplicity of M with

respect to (a1, . . . , ad).

Proof: Necessarily (a1, . . . , ad) + annM is m-primary.
The theorem is clear if d = 0. Now assume that d = 1. Then by assumption there

exists an integer l such that a1(I1 · · · Is)lM = (I1 · · · Is)l+1M . Thus a1R is a reduction of
I1 with respect to M ′ = (I2 · · · Is)lM . There exists an integer c such that for all n ≥ c, In

1 ∈
(an−c

1 R + ann (M ′)). Then for all n ≥ 1, λ(M ′/an
1M ′) ≥ λ(M ′/In

1 M ′) ≥ λ(M ′/an−c
1 M ′).

Each of the three quantities eventually equals a polynomial in n of degree 1, the first
and the third polynomials have the same leading coefficient, namely the multiplicity of
a1R on M , so necessarily the middle polynomial has the same leading coefficient. But
λ(M ′/In

1 M ′) = λ(M/In
1 M ′)−λ(M/M ′) = λ(M/InM)−λ(M/M ′), λ(M/M ′) is a constant,

so the leading coefficient of the polynomial λ(M/InM) equals the leading coefficient of the
three polynomials above, which proves the case d = 1.

Now let d > 1. By the associativity formula for multiplicities and mixed multiplicities,
without loss of generality annM = 0 is a prime ideal, and M = R. For simplicity of
notation we may assume that d1 > 0. A step of Lemma 2.4 proves that the multiplicity
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of (a1, . . . , ad) on R is the multiplicity of (a2, . . . , ad) on R/a1R, and that the mixed
multiplicity e(I [d1]

1 , . . . , I
[ds]
s ;R) equals e(I [d1−1]

1 , I
[d2]
2 , . . . , I

[ds]
s ;R/a1R).

By passage to R/a1R, (a2, . . . , ad) is a joint reduction of I2, . . . , Is of type (d1 −
1, d2, . . . , ds) with respect to Ic

1(R/a1R) for some integer c. By induction on dimension,
e(I [d1−1]

1 , I
[d2]
2 , . . . , I

[ds]
s ; Ic

1(R/a1R)) equals the multiplicity of Ic
1(R/a1R) with respect to

(a2, . . . , ad). But the short exact sequence 0 → Ic
1+a1R
a1R → R

a1R → R
Ic
1
→ 0 shows that

dim R/a1Rdim (Ic
1(R/a1R)) = dim R − 1 > dim R/Ic

1 = 0, so that by Property (4),
e(I [d1−1]

1 , I
[d2]
2 , . . . , I

[ds]
s ; Ic

1(R/a1R)) = e(I [d1−1]
1 , I

[d2]
2 , . . . , I

[ds]
s ;R/a1R), and the multiplic-

ity of Ic
1(R/a1R) with respect to (a2, . . . , ad) is the same as the multiplicity of Ic

1(R/a1R)
with respect to (a2, . . . , ad). Now combine all the equalities.

The converse holds sometimes. Namely, let a1, . . . , ad be d1 elements of I1, etc., ds

elements of Is, such that e(I [d1]
1 , . . . , I

[ds]
s ;R) equals the multiplicity of R with respect to

(a1, . . . , ad). Then if R is formally equidimensional, (a1, . . . , ad) is a joint reduction of the
d-tuple (I1, . . . , I1, I2, . . . , I2, . . . , Is, . . . , Is) with respect to R, where each Ii is listed di

times. (The proof of this is in [Sw93], and it requires techniques from [B69].)

4. Other topics

We finish with listing a few other topics related to mixed multiplicities which an
interested reader may wish to read. Teissier [Tei78], Rees and Sharp [ReSh78] proved
various Minkowski-type inequalities. Katz and Verma [KaVe89] generalized mixed mul-
tiplicities to ideals not all of which are zero-dimensional. Verma [Ve88, Ve92] connected
mixed multiplicities to multiplicities of multi-graded Rees algebras. Cohen–Macaulayness
of multi-ideal Rees algebras was studied by Verma [Ve88], [Ve90], [Ve91]; Tang [Ta99];
Herrmann, Hyry, Ribbe [HHR93]; and Herrmann, Hyry, Ribbe, Tang [HHRT97]. Trung
[Tr01] generalized mixed multiplicities to bigraded algebras, using filter-regular sequences.
Trung and Verma [TrVe06] interpreted mixed multiplicities of monomial ideals in terms of
mixed volumes of polytopes.
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