Primary decomposition of the Mayr-Meyer ideal

Unedited collection of facts
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In “Primary decomposition of the Mayr-Meyer ideal” [S], partial primary decompo-
sitions were determined for the Mayr-Meyer ideals J(n,d) for all n > 2, d > 1. While
working on the primary decompositions of J(n,d) I tried various approaches, and many of
them did not (and should not) make it into the final version of [S].

In this paper I put together all the different facts and approaches for anybody who
is interested. I add the disclaimer that after these approaches were abandoned, I stopped
editing them — there may be flaws here. Throughout I assume that the reader is familiar
with [S].

I thank Craig Huneke for all the conversations, computations, and enthusiasm regard-
ing this material.
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Lemma 0.1: Let x,y be elements of a ring R and I an ideal. Suppose that there are
integers k and | such that for allm and n, I : x™y™ C I : z*y'. Then

I=(I:2"")n(I+("yh). ]



Trying to get primary decomposition via Lemma 0.1
1. Primary components of J not containing a power of s

We'll prove in this section that N?_p; = J : s = J : s3.

Lemma 1.1: For allr=20,1,...,n—1,
s2CyCy ---Cr_1D, C J.
Furthermore, for allr =0,1,...,n—1, and all iy,...,i,. € {1,2,3,4},
§2CyC1 - Cr +J = (sfcorcrsy - Cri,) +J
sfco4clzl ceCpi)
$%C02€C14; ** Cri, ) +
) +

2
5 C03C14y ° * * Cri,

(
= (
= (s”
= (
and when r = 0,
SCO + J = (fc()l) + J = (fCO4) + J = (SCOQ) + J = (8603) + J

Proof: The case r = 0 is straightforward due to ho1, hoz2, hos, h13, h14 and hy5 (for example,
82(601 — Cogbgl) < (h(n,S(fC()l — SCOQ)bgl) - J)

Now let r > 0. Then D, = (¢4 — ¢p1, Cr3 — Cr2, Cra — ¢r1). By above it suffices to prove

only that s2CoCy -+ C. + J C (sfcorciiy -+ - ¢4, ) + J. By induction, s?CoC; - - C._1 D, is
contained in

sfeorcrr - Cr—l,l(cr?) — Cr2,Cr2 — Crl) +sfcorcrr - Cr—2,1cr—1,4(cr4 - C'rl) +J.
First note that
sfcorcrr - Cr72,16r7174(cr4 - C'rl) € sfeorcir - C'r72,1cr71,2(c7’3 - Crz) +J,
and that sfcpici1 -+ ¢r—1,1(¢r3 — ¢r2) is contained in J due to h,41,5. Finally,
sfcorcrr - Crfl,l(CTZ - Crl) € sfeorcin - Cr72,1(cr71,4 - Crfl,l)c'rl +J

modulo h,13, and that is contained, by induction on r, in J. ]

Lemma 1.2: s2CoE C J and sfcos (bo1 — boa, by — by, by — bly) C J.

Proof: By Lemma 1.1,

sCoE C feor (s — fb3y,bor — boa, by — bls, by — bl) + J
C feor (bor — boa, by — biis, by — bla) + .



Thus as Scp1 € (fC()l, h()l), SQCoE Q f2601 (b01 - b04,b32 - b(c)l:)),bgl - b82) + J, and as
fco1 € (sco2, h13), it remains to prove the second part of the lemma. But sfco2 (bor — bos)
equals f(scoabor — Scosbos) modulo his, and that is in J. Also, sfcoe (ng —bg3) €
(sfcozbgz - sfcogbg3) +J = (52002 — 32003) + J = J, and finally sfcgs (bgl — ng) €
(fZC()lbgl — SfCOQbSQ) +J = (SfC()l — 82002) +J=J. u

Lemma 1.3: Forallr=2,...,n,
820001 cee CT,1 Q 8f60401 cee Crfl + J Q Sf00401 cee Crflbg_l’g + J.
Also, s2Cy C (sfcoably) + J.

Proof: When r = 1, s2Cy is contained in (82602) + J by Lemma 1.1, which, modulo hgs is
contained in (sfcoabds) + J, as desired.

Now let » > 2. By Lemma 1.1 it suffices to prove the second inclusion.

When r = 2, By Lemma 1.1, sfcgsC; is contained in (s%cpac12) + J, whence modulo
hog in (sfcozac12bdy) +J, and then modulo hyg in (sfcoaciobfy)+J, and then by Lemma 1.1
in (f200401bil2) + J.

Now let » > 2. By induction on r, sfcgsC1 -+ Cr_1 C sfcosCt - - - C’,n_lb‘f_z’2 +J. By
Lemma 1.1, the latter is contained in (sfcgicqy - - cT_4,1cr_3’4c7q_27207~_172b7‘f,272) + J, and
modulo h,_; g, this equals (sfcorc11 - - - c,,_4,1cr_3,4c»,~_2,gcr_172bff_172bf_2’3) +J, whence is
in sfcpsCy - - Cr,lbff_L2 + J, as desired. [

Lemma 1.4: Forallr=2,....n—1, and all 2,5 =1,...,4,
s2°CoCy -+ Cr(byj — bry) C J,
sfcoaCh -+ Crbr_12(brj — byy) C J.
Also,
830001(1713' —b1i) C J,
5% feoaC1boz(br; — b)) C J.

Proof: By Lemma 1.3, s2CyC ---Cy C sfcoaCh - - - C’rbfﬂl_m +J, so it suffices to prove the
second inclusion. But

br—l,Z(brj - bm) € (brj (br—1,2 - bribT—l,?))a bri(br—l,Z - brjbr—l,?))) + J7

whence by Lemma 1.1 and by using h, ¢4; and h,¢4; we are done. The last part follows
similarly. [

Remark 1.5: A calculation by Macaulay? shows that s® is needed in the lemma above.
For this reason, we need s® also below (yet s* works below if r > 2):
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Lemma 1.6: Forallr=2,...,.n—1,and alli=1,....,4,

830001 ce Cr(l — b”) - J.

Proof: By Lemma 1.3, s2CoCy ---C, C sfcpsCh - --C’rbﬁ_L2 + J, so it suffices to prove
that sfcgsCq - - C’beﬂl_m(l — by;) is contained in J. But

Sf00401 cee Crbg_l’Q(l — bm)
g 5f60401 e Crbg:iz (bm’(br—l,?) - bT‘—l,Z)v br—1,2 - bTibT—1,3) + Jv

where sfcosCt - - C’be:i2 (byr—1.2 — briby_1.3) is contained in J by Lemma 1.1 and modulo
hr,6—|—i- AISO,

s%fcsCy -+ - Cr(bp—13—br_1,2) C % fesCy -+ - Crbr—22(br—13—br_12) +J

by Lemma 1.3, and the latter ideal is contained in J by Lemma 1.4. ]

Lemma 1.7: s3C,C,F C J.

Proof: Recall that F' = (bog — bllbog, b14 — bll, b13 — b117 blg — bll, 1-— bcllQ) By applying
Lemma 1.4,
s°CoCh (b1 — b11, b1z — b1y, b1z — b11) C J,

and by Lemma 1.1,
s2CoC1 (bog — b11boz) C s*coaciy (bo2 — bi1boz) + J C sfcoabiaciy (boz — biibos) +J = J.
Finally,
820001 (1 — b<112) g 32002012 (1 - bcliQ) + J (by Lemma 1.1)
C sfc02c12b5’2 (1 — bfz) + J (modulo hg2)
C sfeozciz (bgz - bilngBa bilz(bg:a - bg2)) +J
Q SfCOQClgb(liQ(bgg — ng) -+ J (IIlOdU.lO hlg)

CJ (by Lemma 1.2). ]

Thus it follows from all these lemmas, that

Proposition 1.8: Assume that n > 2. Then s* ((\;_yp:) C J. Thus

J = <ﬁpi> (T +(s%),

i=0
so that in order to find a (possibly redundant) primary decomposition of J, it suffices to
find a primary decomposition of J + (s3).



Proof: Lemmas , 1.1, 1.2, 1.6, and 1.7 show that ﬂ?:o p; is contained in J : s*°. Thus
as J C Nizgpis J + s = (Ni_ypi) : s°°. But s is a non-zerodivisor modulo (", p;, so
that J : s = (., pi, and that equals J : s3 by lemmas , 1.1, 1.2, 1.6, and 1.7. The rest
follows from Lemma 0.1. [

Now let L be an ideal in J : Cy such that no cyp; appears in any minimal generator
of L. For example,

Ly = (5(3 - fbgl)a fls— fbgz)bgga fls— fbg3)b32,5(3 - fbgz)>5(3 - fbgs), s(s — fbg4)7
feri(boz — b1ibo3)bls, sc1;(bo2 — biibos)|i = 1,...,4).

Then set 3

Proposition 1.9: Forn > 2,

J = (ﬂ pz‘) N <J+ (S,fbggbgza)g +L1) ;

=0
so that in order to find a (possibly redundant) primary decomposition of J, it suffices to
find a primary decomposition of J, = J + (3, fb32b6l3)3 + L.

Proof: First note that ((/_,p;) () J1 is contained in
3
(cot1, coz, €03, coa) N J1 = J + (co1, Coz, €03, Coa) ﬂ <(S, Fbiabis)” + L1>

3
= J + (co1, coz, 03, Co4) - ((S, fbggbgg,) + L1> ,

and this is contained in J + (cg1, o2, Co3, Co4) (8)3. Now the proposition follows from the
previous one. ]

2. Primary components of J; = J + (s, fbg2bg3)3 + L1 not containing cg;

Lemma 2.1: Forallr=1,...,n—1, and all iy,...,i. € {1,2,3,4},

fcglCl tee Or + J = (fcglch-l cee C”'r> + J.
Furthermore, for allr=1,... ,n—1,
fc(z)lcl e C’I‘—IDT g J.

Proof: When r =1,

(fC(2)1614) +J



fecor(cor — coa)cia + feor(coacia — corc13) + feorcorcis) +J

scoa(coacia — corc13), fcgycas) + J

fcaiez) + J,

corc13(feor — scoz) + sco1co2(c1s — c12) — corcia(feor — sco2) + f001C12) +J
fegiciz) + J,

feor(corci2 — coacir) + feor(coa — cor)enn + fegienn) +J

= (fcic11) + J,

which proves the first part of the lemma for » = 1. Now let » > 1. Then

= (
= (
= (
= (
= (
= (

fcglCl o CrlqCpa +J = fcglcu o+ Cp_91Cr—1,4Crq +J (by induction)
= 5C01€02C11 * * * Cr—2,1Cr—1,4Cra + J (modulo hy3)
= 8C01C02C11 * " Cr—2,1Cr—1,1Cr3 + J (modulo hr+1,4)
= fcgic11 - Cr_a1Cr—11¢r3 +J (modulo hy3)
= fcg,Cr---Crycr3 + J,
fc3 O Cr_1cpz+J = fciicir - ¢r—1,16¢r3+J (by induction)
= 5€01€02C11 * - Cr—1,1Cr3 +J (modulo h;3)
= 5C01C02€C11 ** Cr—1,1Cr2 +J (modulo hy 41 5)
= fcac11 - Cr116r2 +J (modulo hy3)
= fc§1Cr - Cr_1epn + J,
fcglCl o Cr_q1Crg +J = fc%lcn --¢cr_1,1¢02 +J  (by induction)
= 5Cp1C02€11  * - Cr—1,1Cr2 + J (modulo hi3)
= 5€01€02C11 * * * Cr—2,1Cr—1,4Cr1 + J (modulo hr+1,3)
= fcglcll - Cr_21Cr—1,4¢r1 +J (modulo hy3)
= fc3,Cr---Crycp + J.
As each equality above of the form (a) 4+ J = (b) + J, with a and b elements of the ring,
actually means that a —b € J, the last statement of the lemma follows by induction. [

Furthermore,

Lemma 2.2: fco1 Dy C J.

Proof:
fco1Do = feo (coa — co1, co3 — co2, Co1 — Cozbgl)
C feor (cos — coz, co1 — co2b§y) + J
= (scoa(cos — co2), feor(cor — coably)) + J
= feor(cor — coabfy) +J
= (fca, — scorcon) + J
=J. [ ]



Lemma 2.3: Forallr=1,...,n—1, and all i1,...,i, € {1,2,3,4},
feorco2bisCr -+ Cp C (feorconbiscrs, -+ i, ) + J,
fegab5Ch -+~ Cp C (fegobigseniy - i) + .
Also, modulo J,
fC()lcQngB = sc(Q)ng3 = scogcogbgB = f001c03bg3 = SCp1Co3 = fcgl,
fcmcogng = sco1co2 = fcoy.
Proof: The last congruences are clear. They imply that by Lemma 2.1, f 0010026836'1 - C

is contained in ( fcglclil e cm-T) + J, whence again by the congruences it is contained in
( fc()lcogbggclil e Cm-r) + J. The second part follows similarly. ]

Lemma 2.4: Forallr=1,...,n,
fcg1Cr - Cry C feorcoaCl -+ Cro1bighls -+ b5 gb_y 5 + J.

Proof: The case 7 = 1 holds as fcg; € (sco2) +J C (feoabds) +J. When 7 > 1, by
induction,

fcgiC1 -+ Cr_y C feorcoaCy -+ Cr 1 bilably - - bg,&gbg,lg + J.
Let B = by bl 3 5. Then by Lemma 2.3, fc§,Cy - -+ Cr_q is contained in

d d
(f001002011 e 'C»r—4,1Cr—3,4Cr—2,20r—1,2bongr_2,2) +J.

When r = 2, we are done by using hy3. Otherwise, for r > 2, it follows by Lemma 2.3 that
fCOlCOQCll tee CT_47107«_374CT_27267«_1725%336?_2,2 is contained in

d
C (scorcoserr - 'Cr—4,1Cr—3,4Cr—2,20r—1,2Bbr,2,2) +J
d d
C (scorcozcrr -+ 'CT74,1C'r73,4c7‘72,20r71,2Bbr_2,3br_1’2) +J (modulo h,_18)

C (feorco2Ch -+ CroblsBbe_y 5b%_1 5) +J (by Lemma 2.3). m

Lemma 2.5: Forallr=1,....n—1, and all i,5 =1,...,4,
fea Oy Cr(bry — bri) € J.

Proof: When r = 1, by Lemma 2.4, fc3,C1(byj — by;) is contained in fc3;coaC1bdy (b1, —
bh‘) + J. As
bo2(b1j — b1:) € (b15(boz2 — b1:bo3), bri(boz — bijbos)) + J,

it suffices to prove that for all i = 1,...,4, fc& ,co2C1(boa — b1;bo3) is contained in J. But
by Lemma 21, fcglcogcl(bog — blibog) & fcglCogcli(bog — blib()g) + J, which is in J modulo
hi,64i-



Now let » > 1. By Lemma 2.4, fc(z)lCl - Cr C fepre02Cr -+ - C’be)%bff,m + J. As
br—l,Q(brj - bm) € (brj (br—1,2 - bribr—l,B)a bri(br—1,2 - b'r’jbr—l,B)) + J>

it follows that by Lemma 2.3, and by using h;, ¢4, hr 645 and hi3 we are done. ]

Lemma 2.6: Forallr=2,...,.n—1,and alli=1,....,4,
fcglC'l cee Cr(l — b”) Q J
Proof: By Lemma 2.4, fc3101 O, C fc%lcOQC’l e Crbggbr_l,g +J, so it suffices to prove
that fcglcogcl s Crb6l3b7~_172<1 - bm) is contained in J. But
fcd1c02Ch - Cpbilsbr_1 2(1 — byy)
C fc§1c02Ch -+ Crbly (byi(br—1.3 — br_12),br—1,2 — bpibr_13) + J.
Note that by Lemma 23, by using hr,6+ia fc(%lcogcl ce Crbgs (bT,LQ — bm'brfl,g) is in J.

Also, fcg,cp2Ch - C’rbgi,,bm(br_l’g, — by_1,2) is contained in J by Lemma 2.5. [
Thus
Corollary 2.7: Forallr =2,....n—1, fc3,Cy---C.B, C J. [
Now define
Hy = (f°,s = fb41) + fE+ fDo + fC1F
n—2
+ Y fC1--Ci(Diy1+ Bi) + fC1Ca- - C 1By 1.
i=0

It is easy to see that Hy contains Jy, that Hy = (s, f)Ni; (p; + (f?)), that each p;+(f?)
is the intersection of the ideals P, + (f?), where the P, vary over the minimal primes over
pi, and that each P, + (f3) is primary to P;, + (f). In particular, co; is a non-zerodivisor
modulo H;. Furthermore,

Proposition 2.8: With the assumption that n > 2, Jy 1 ¢ = Hy = J1 ¢ cgl. Thus
Ty = J + (s, foobds)’ + Ly = Hy 0 (1 + (c))) and

J = < ﬂ pi) N (J1+(cg1)) s

i=—1
so that in order to find a (possibly redundant) primary decomposition of J; and of J, it
suffices to find a primary decomposition of Ji + (c3;)-

Proof: It suffices to prove that ¢y Hy C J + (s, fbg2b83)3 + L;. By Lemmas 2.1 and 2.2,
and by Corollary 2.7, it only remains to prove that

1 ((F%5 = f031) + FE+ FOIF) € T+ (5. fahis) + L.
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Clearly co1(s — fbd,) is in J, and 3, f3 € (s3c3,) + J. Furthermore, by using Lemma 2.5
for » = 1, it now remains to prove that

3
feiy (bor — bos, bily — b, b3y — bly) + C1 (bo2 — bi1bos, by — 1)) C J + (s, fblabls)” + L.
This follows from:

fcgi(bor — bos) € scorcoz(bor — boa) + J
C sco1(cozbor — co3bos) +J = J,
fcg1(bGa — bGs) € scorcoz(bgy — biz) +J
C sco1(coably — cosbds) +J
C feorbgy (coably — cosbls) + J
C sco1bly (co2 — co3) + J = J,
Feg1(bG; — bGy) € scorcoa (bl — bGy) +J
C feorcoabia (b3 — bGo) +J
C sc01¢02005(1 — 1) + J = J,
fcg1C1 (boz — bi1bos) € J (by Lemma 2.3),
fcgi1C1 (by — 1) € feorcoabisCh (b, — 1) +J (by Lemma 2.4)
C feorcoabiacrz (bfy — 1) +J (by Lemma 2.1)
C feorcozci2 (bgz - bfzbgm blljz(bgs - 682)) +J
C feoicoaciabls (bl — bly) +J  (modulo hig)
C scha(bhs — i) +J
= sco2(cosbls — coobly) +J
= feor(cosbis — coabfly) + 7

= 5001(603 — 602) +J=J ]

Let Lo by any ideal contained in J; : s such that s and f do not appear in any minimal
generator of Ly. For example,

d d ,
Ly = (co2 — cos, co1 — co2by, coa — co3biy, c15(boz — biiboz)|i = 1,...,4) .

Also, let L), be any ideal in contained in Jj : (s, f) such that s and f do not appear in any
minimal generator of L}. For example,

L/2 = (Cli(b02 — blibog)bgg‘i = 1, e ,4) .
Then define

d d d d \3 /
Jo = J1 + (co1, coa, co2blla, cosbls) Lo + (co1, coa, co2bdy, cosbis)” + L.



Proposition 2.9:  Then with notation as in Proposition 2.8, J; = H1 N Ja, so that in
order to find a (possibly redundant) primary decomposition of J1 and of J, it suffices to
find a primary decomposition of Jo as

() o

1=—1

Proof: As J; C H; and H; equals the intersection of (s, f) with an ideal properly containing
po M-+ Np,, it suffices to prove that

3
Hin ((001,004,002552,003533) Lo + (co1, cos, co2blly, cosbls)” + L'2> C Ji.
But Hy C (s, f), so that the intersection is contained in
3
(s, f) ((00170047002532,003533) L + (co1, coa, cozbly, cosbis)” + L'2> .

As sLy € J, (s, f)LY C Jy and f(co1 — coa), fcor — sco2 € J, the ideal above is contained
in Ji + (fcdy, (s — fbdy)cd,). But

(s — fbg1)cg4 = cg4(scos — fCO4bg1> €J+ fcg4(bg4 - bgl) =J+ fcg1(bg4 - bg1)a

so that HyNJs is contained in J; 4+ Hy N (cgl), which equals J; by the previous proposition.
[

3. Sixteen embedded components of J and J;
We’ll show that for every subset A C {1,2,3,4},
P_5 A = (s, co1, o4, bo2, bos, co2bo1r — cozboa) + (c1i|i € A) + (boz — b1ibos, bii — bijli,j € A)
is an associated prime of J and Js, with its embedded component being
P54 = (8,01, Cos, bila, bils, co2bor — cosboa) + (c14i & A) + (boz — brsbos, bii — bujli, j € A).

It is clear that these ideals are prime, respectively primary, and that there are sixteen of
each kind. By a proof similar to the one getting the intersection g4 (see [S]),

d_pd
p—5 = ﬂp—m = (8 co1, o, b2, b3, Cozbor — cozboa)
A

+ (c1i(bo2 — b13bo3), cric1j(bii — bij)|i, 5 =1,...,4).
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Now observe that

Jo i (cozco3(co2 — c03))™ = Ja & coacoz(coz — co3)
= (s, co1, Coa, bila, bls, f(cozbor — cozboa), fe1i(boz — biibos))
= (s, f, co1, Coa, b, bil3) N (s, cor, coa, boz, boz, co2bor — cozboa)
N (8, €01, Co4, 5327 683, co2bo1 — co3bo4, Cli(bOQ - bubos), C1iC1j (bu - blj))
= (s, f,co1, Coa, b, bs) N p—3 N p_s.

None of the components is redundant, which proves that .J, has the specified embedded
components p_s A. Furthermore,

J : (cozco3(co2 — co3))™ = J : coaco3(co2 — co3)
= (s, feo1, feoa, [biy, b5, f(cozbor — cosboa), feri(boz — biibos))
( ) (8, €01, Co4, b()g, bog, f(002501 - 003504)7 fcli(bOZ - blibOS))
= (s, f) N (s, co1, Coa, bo2, boz, cozbor — co3bos)
N (s, o1, Coas bila, bils, coabor — cozboas c1i(boz — b1sbos), c1ic1j(b1; — bij))
=p-1MNp_3Np_s,

and here also the embedded components p_5 5 are not redundant.
Thus so far we have obtained that

J = < ﬂ pi) Np_3Np_5NJs,

1=—1

where p_5 is the intersection of 16 embedded components and

J3 = Jy + (co2c03(co2 — co3)
d d d d \3 /
= J1 + (co1, coa, co2bla, co3bis) Lo + (cot, coa, co2bdy, cosbls)” + Lb + (co2cos(co2 — co3))

3 3
= J + (8, fblabis)” + L1 + (co1, cos, cozbla, cozbls) Lo + (cot, coa, cozbile, cosbls)
+ L5 + (co2¢03(co2 — co3))

3 3
=J+ (s fbgzbgg) + (co1, Coa, co2bly, co3bls)” + (coacos(coz — co3))

+ (s(s = f061), f(5 = fb02)bGs, £ (5 — fbGa)bh2, s(s — fbG2), s(s = fbs), s(s — fbiy))
(S Co1, Co4, Cozboz, bis) (c15(bo2 — bribos)|i = 1,...,4)

d d
Co1, Co4, Co2bla, Co3bls) (coz — o3, co1 — Co2blly, coa — co3blly) -

It remains to find a primary decomposition of Js.

4. Primary components of J; not containing cy2(co2 — co3)

11



Set H2 = f (bSQ, Cogbg3, b01b(c)l3, 002b01 — 603604, C1; (b()g — blibog) |Z = 1, ce ,4) For each
subset A C {1,2,3,4}, define

an = (c1ili € A) + (boz — b1ibos, b1; — bijli, 7 € A) + (blly, bils, cobor — cozboa)

each of which is a primary ideal containing H,. By a computation similar to the one for

q—4 (see [9)]),

ﬂCJA = (c1i(boz — b1ibos), cric1;(bri — biy), by, bis, cozbor — cosboali, 3 =1,...,4) .
A

Then the following intersection of primary ideals, namely (), (ga + (co1, o4, 5))) Np—3 N
p—a M (cot1, o4, 8, f), equals

= (co1, Co4, 8, bila, b, co2bo1 — co3bos, c15(bo2 — b1:bos)|i) N p—a N (cot, coas s, f)
= ((co1, Coa, 8, bia, co2bor — cozboas c1i(boz — biibos)|i) + (bis) N p—4) N (cot, Coas S, f)
= ((co1, coa, 8, by, co2bor — cozboa, c1i(boz — bisbos)|i) + (bis)p—a) N (cor, coa, 5, f)
= (co1, coa, 8, b, co3bils, bo1bis, cobor — cozboa, c1i(boz — b1sbos)|i) N (o1, coa, 5, f)
= (co1, co4, 5, [b3a, fcosbls, fbo1bGs, f(cozbor — cosboa), feri(boz — bribos)|i)
= Hy + (co1,Co4, S)

In particular, this proves that co2(co2 — co3) is not a zero-divisor modulo Hs + (co1, co4, S).-

Proposition 4.1: If co3 — co2 € L (recall the definition of L from Proposition 2.9), then
(J + (S» fb82683)3 + (co1,co4) L + (con, 004)3> : (co2(co2 — co3))™
= Hj + (co1, Cos, 5)
— <J + (s, fbg2bg3)3 + (co1,c04) L + (001,(:04)3) : co2(co2 — co3)-

Proof: Note that
co2(co2 — co3) (co1, o4, 8) C J + (co1,c04)L,

so it suffices to prove that 002(002 — C()3)H2 Q J + ( fb 2b03) (001, 004)L + (001, 604)3.
The only element that requires some work is fbg;bgs:

Fbo1bG3co2(coz — co3) = fblizco2(borcoz — boacos) + fbicoacos(boa — bo1)
€ J + (fbscoacos(boa — bot1))
€ J + (scozco3(bos — bo1))
C J + (sco3(cozbos — co2bor))
C J + (feosbis(cosbos — co2bor)) = J. =
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Thus by taking into account all the components of Hy + (co1, cos, s) we have reduced
to the following:

3
J = m pi | N (J + (s, fbiabls)” + (cot,con) L + (co1,coa)” + (coz(coz — 003))) ;
i#—2

so that in order to find a possibly redundant primary decomposition of J it suffices to find
a primary decomposition of

Js = J+ (s, fbg 2503) + (o1, coa) L + (o1, c0a)” + (coz(coz — o3)) -

Now,
Js : (coa — c03)™° = J3 : (co2 — co3)? = (8, co1, Co2; Coa, [bis, fboa)-

For this it suffices to verify that
(coz — c03)2(8, co1, Co2, Coa, [, fboa) C Ja.

The only elements requiring a bit of work are:

(coz — c03)* fbis € J 4 (coa — co3)(fbiscon — scoz) C J + (coa — co3)(fbiscon — sco2) C Js,
(co2 — c03)* fboa = feoa(coz — co3)(boa — bo1) + f(coz — co3)(cozbor — cozboa) € Js,

which verifies the claim. The primary decomposition of (s, co1, coz, coa, fbls, fbos) is

(8, o1, €02, Coa, f) N (8, o1, Co2, Coa, b, boa),

where the former ideal properly contains p_1, the P_j-primary component of .J, and the
latter ideal is p_o, primary to the prime ideal P_5. Thus so far we have found all the
minimal components of J and many redundant ones:

1=—4

where J; = J + ( 10§ 2b03) + (co1, coa)L + (cor, 004)3 + (coz2, co3) (co2 — co3). So it suffices
to find a primary decomposition of Jy.

Now observe that Jy : cSSb5s = (s, f, o2 — Co3, Cogs CB4bd1) = Ju : c3ob3d, and for this it
suffices to prove that c3,b34 (s, f, coz — co3, Coy, c24b%;) is in J, but that is straightforward.
As this colon ideal contains the intersection of the minimal components of .J, in order to
find a primary decomposition of J it now suffices to find a primary decomposition of

3
+ (s, fbiabls)” + (o1, con) L + (cot, coa)” + (coa, co3) (coz — coz) + (cob39) .
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Sections 2, 3, 4 repeated more greadily

5. Primary components of J not containing a power of s

Lemma 5.1: For2 <r <n,
r—1

plﬂp2ﬂ"'mpr:E+D0+CIF+ZCICQ"'CZ'(DH—1+Bi)+CIC2"'Cr~
i=0

Proof: When r = 2,

p1Nps=(Ci+E+Dy)N(Co+E+F+ Do+ Dy + By)
=E+Dy+CiN(Cy+E+F+ Do+ Dy + By)
=E+Dy+D+CiN(Co+ E+F+ Dy+ By)
=FE+Do+ Dy +Cy-(Co+ E+F + Do+ By)
=E+Dy+ D1+ CiF+Cy-(Co+ By),

which starts the induction. Now by induction assumption for some r > 2 and r < n — 1,

r—1
P10 Npry = <E+DO+CIF+ZCICZ"'Ci(Di+1+Bi)+Cl"'C7") N Pry1
i=0
r—1
:E+D0+ClF+chc2“‘Ci(Di+l+B'L')+Cl"'crmpr+1-
i=0

But by multihomogeneity, the last intersection equals

CiCo(Co+E+F+B,)+ > (D[] Cx

i=1 ki
Combining the last two displays proves the lemma. [
Now it follows easily with a similar proof that

Lemma 5.2: Forn > 2,

n—1
prNp2N---Npy :E+DO+01F+20102"'CZ'(D1'+1+Bi);

i=0

and poNp1N---Np,=Dog+Co-(p1N---Npy). n

We'll prove in the rest of this section that NI'_gp; = J : s = J : s5.
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Lemma 5.3: Forallr=20,1,...,n—1,
s2CyCy ---Cr_1D,. C J.
Furthermore, for allr=0,1,...,n—1, and all iy,...,i, € {1,2,3,4},
$2CyCL---Cr+ J = (sfcorcriy - cri) +J
= (sfcoaCriy * - Cri, )+ J
= (s%coaC1iy -+ - Cri, ) +
= ( )+

2
5 Co3C14q * * * Cri,

and when r = 0,
SC() +J = (fC()l) +J = (fC()4) +J = (SCOQ) +J = (8003) + J.

Proof: The case r = 0 is straightforward due to ho1, hoz2, hoa, h13, h14 and hys (for example,
s%(co1 — co2bly) € (ho1, s(fcor — sco2)bdy) C J).

Now let r > 0. Then D, = (¢r4 — ¢r1, Cr3 — Cr2, Cr2 — ¢r1). By above it suffices to prove
only that s2CoC1 -+ Cy. + J C (sfcoiciiy -+ ¢4, ) + J. By induction, s2CoCj -+ - C_1 D, is
contained in

sfeorcr - Cr71,1(0r3 — Cr2,Cr2 — C'rl) + sfcorcrr - Cr72,1cr71,4(c'r4 - Crl) + J.
First note that
sfcorcrr - Cr—2,1Cr—1,4(Cr4 - Crl) € sfeorcir - Cr—2,1Cr—1,2(Cr3 - Crz) +J,
and that sfcpici1 -+ ¢r—1,1(¢rg — ¢r2) is contained in J due to h,1 5. Finally,
sfcorern - 'Cr—1,1(Cr2 - Cr1) € sfcorcrn - Cr—2,1(Cr—1,4 - Cr—1,1)Cr1 +J

modulo h,13, and that is contained, by induction on r, in J. ]

Lemma 5.4: 82COE Q J and SfC()Q (b01 - b04, ng - bg3, bgl - ng) g J.
Proof: By Lemma 5.3,
sCoE C feor (s — fb3y,bor — boa, by — bls, by — bl) + J
C feor (bor — boa, by — bls, by — b)) + J.

Thus as sco1 € (fcor,ho1), s2CoE C f2cor (bor — boa, by — b3, by — biy) + J, and as
feo1 € (sco2, h13), it remains to prove the second part of the lemma. But sfcga (b1 — bos)
equals f(scoabpr — scosbos) modulo hys, and that is in J. Also, sfcoe (bg2 —bg?)) €
(SfCQngQ — SfC()gng) +J = (82002 —s 003) + J = J, and finally sfcgo (bg1 — ng) €
(fQC()lbgl — SfC02b(C)lz) +J = (SfCOl — S 602) +J=J. ]

Lemma 5.5: Forallr=2,...,n
820001 T Cr—l - SfC()4Cl te Cr—l +J - Sf60401 cee Cr_lbg,1’2 + J.
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Also, s2Co C (sfcoably) + J.

Proof: When r = 1, s2Cy is contained in (32602) + J by Lemma 5.3, which, modulo hgs is
contained in (sfcoabds) + J, as desired.

Now let » > 2. By Lemma 5.3 it suffices to prove the second inclusion.

When r = 2, By Lemma 5.3, sfcosC} is contained in (s%cgaci2) + J, whence modulo
hoz in (sfcozc12bdy) +J, and then modulo hyg in (sfcoaciabdy)+J, and then by Lemma 5.3
in (f2co4C1b%y) + J.

Now let r > 2. By induction on r, sfcgsCt---Cr_1 C sfcpsCy - - - C’T_lbff_lz +J. By
Lemma 5.3, the latter is contained in (sfcoiciq - cr_4’1cr_374cr_2,gcr_172bf_272) + J, and
modulo h,_; g, this equals (sfcoici - - c,«_471cr_3,4c7«_272674_172b7‘f_172bf_273) +J, whence is
in sfcosCy -+ Cr_lbf_L2 + J, as desired. ]

Lemma 5.6: Forallr=2,....n—1, and all 1,5 =1,...,4,
§°CoCy + -+ Cr(brj — byy) C J,
sfcoaCy -+ Crbp_1,2(byj — by;) C J.
Also,
s2CoCy(by; — b1y) C J,
82f00401b02(b1j —b1;) C J.

Proof: By Lemma 5.5, s2CoC4 - - C, C sfcosChy - C’,«bff_m +J, so it suffices to prove the
second inclusion. But

br—l,Z(brj - bm) € (brj (b'r’—l,Z - bribr—1,3)a b'r’i(b'r’—l,Q - b'r’jbr—l,B)) + ']7
whence by Lemma 5.3 and by using h, ¢4; and h,¢4; we are done. The last part follows

similarly. [

Remark 5.7: A calculation by Macaulay? shows that s® is needed in the lemma above.
For this reason, we need s> also below:

Lemma 5.8: Forallr=2,...,.n—1,and alli=1,....,4,

530001 cre CT(I — b”) Q J.

Proof: By Lemma 5.5, s2CoC---C, C sfcoaCh - --C’,ﬁb,‘LLQ + J, so it suffices to prove
that s2 fcosC1 - - C’bef_l’z(l — by;) is contained in J. But

8fCo4Cl s Crbg_l’z(l — bm)
C 5fcoaCr -+ Crb¥1 o (bri(br—1,3 — br—1,2),br—1,2 — byibr_1,3) + J,
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where sfcosC1 - - - Crbf:ig (br—1,2 — briby_1 3) is contained in J by Lemma 5.3 and modulo
hr,6—|—i~ AISO,

s°fcoaCr -+ Cr(br—1,3 — by_1,2) C 8% fcoaCt - Crby_oa(br—1,3 — br—12) + J

by Lemma 5.5, and the latter ideal is contained in J by Lemma 5.6. ]

2

Remark 5.9: Note that in the lemma above, s* works if r > 2.

Lemma 5.10: Foralli = 1, e ,4, 820001 (bog — blibog, bclll — 1, b14 — bll) g J. Ifn = 2,
s2CoCy (b1z — bio) C J. In general, s3CoC1F C J.

Proof: Recall that F' = (b02 — bllbog, b14 — 511, b13 — b11, 612 — b11, 1-— bcll2> By applying
Lemma 5.6,
s°CoC1 (bra — bi1, b1z — bir, bia — b1y) C J.

When n = 2, by Lemma 5.3, s2CoCy (biz — b12) C J by using hoy. For arbitrary n,
s2CoC1 (byg — by1) C J by Lemma 5.3 by using hog. Also by Lemma 5.3,

sCoC1 (boa — b1ibos) C s*coacii (bo2 — bisbos) + J C sfcoablacii (boz — bisbos) + J = J,
and finally,

s°CoC1 (1 —bf;) C s®coac1i (1 —b%;) +J (by Lemma 5.3)
C sfcoaciibly (1 —bf;) +J (modulo hgo)
C sfeoacri (b — bY;bGs, b (bs — bG2)) +J
C sfcoacribd; (bds — bdy) +J  (modulo hyg)
CJ (by Lemma 5.4). ]

Thus it follows from all these lemmas and especially Lemma 5.2, that

Proposition 5.11:  Assume that n > 2. Then s* (;_ypi) C J. Thus

J= (ﬁm) T+ (%),

i=0
so that in order to find a (possibly redundant) primary decomposition of J, it suffices to
find a primary decomposition of J + (s3).

Proof: Lemmas 5.2, 5.3, 5.4, 5.8, and 5.10 show that ﬂ?:o p; is contained in J : s°°. Thus
as J C Nizgpis J + s = (Ni_gpi) : s°°. But s is a non-zerodivisor modulo (', p;, so
that J : s = ﬂ:’zo p;, and that equals J : s by lemmas 5.2, 5.3, 5.4, 5.8, and 5.10. The
rest follows from Lemma 0.1. [
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Now let L be an ideal in J : Cy such that no cy; appears in any minimal generator
of L. For example,

L1 = (s, fbls, fbos) (c15(boz — b1ibos)|i = 1,...,4) + (s(s — fb), s(s — fbly))
+ (s — £bly) (s, b5, fbos) + (s — fbis) (s, fbs)

(Note that we could enlarge L; by adding also fbgy (s —f bg3), but this addition seems to
add a redundant primary component in the next step.) Then set

3
Ji = J+ (s, fbiabls, fbisboa)” + Li.

Proposition 5.12: Forn > 2,

= 3

J= (ﬂ p,;> N (J + (5, Fblybls, Fblbos)” + L1> ,
i=0

so that in order to find a (possibly redundant) primary decomposition of J, it suffices to

find a primary decomposition of J; = J + (s, fbdy bl fbg2b04)3 + L.

Proof: First note that ((),_,p;) () J1 is contained in
3
(o1, coz, €03, coa) N J1 = J + (co1, coz, €3, Coa) m ((S, fb32b8s, fbiabos)” + L1)

3
= J + (co1, €2, €03, Coa) - ((S,fbgzbg:a,fbgzbm) + Ll) :

and this is contained in J + (co1, co2, Co3, Coa) (5)3. Now the proposition follows from the
previous one. [

6. Primary components of J; = J + (s, fbl,bis, fbg2bo4)3 + L; not containing cg;

Lemma 6.1: Forallr=1,...,n—1, and all i,...,i, € {1,2,3,4},
fgiC1-Cr 4+ J = (fcgicriy - crin) + J.

Furthermore, for allr=1,...,n—1,

fe2 G- Cr1 D, C .
Proof: When r =1,
(fC(2)1614) +J
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fecor(cor — coa)cia + feor(coacia — corc13) + feorcorcis) +J

scoa(coacia — corc13), fcgycas) + J

fcaiez) + J,

corc13(feor — scoz) + sco1co2(c1s — c12) — corcia(feor — sco2) + f001C12) +J
fegiciz) + J,

feor(corci2 — coacir) + feor(coa — cor)enn + fegienn) +J

= (fcic11) + J,

which proves the first part of the lemma for » = 1. Now let » > 1. Then

= (
= (
= (
= (
= (
= (

fcglCl o CrlqCpa +J = fcglcu o+ Cp_91Cr—1,4Crq +J (by induction)
= 5C01€02C11 * * * Cr—2,1Cr—1,4Cra + J (modulo hy3)
= 8C01C02C11 * " Cr—2,1Cr—1,1Cr3 + J (modulo hr+1,4)
= fcgic11 - Cr_a1Cr—11¢r3 +J (modulo hy3)
= fcg,Cr---Crycr3 + J,
fc3 O Cr_1cpz+J = fciicir - ¢r—1,16¢r3+J (by induction)
= 5€01€02C11 * - Cr—1,1Cr3 +J (modulo h;3)
= 5C01C02€C11 ** Cr—1,1Cr2 +J (modulo hy 41 5)
= fcac11 - Cr116r2 +J (modulo hy3)
= fc§1Cr - Cr_1epn + J,
fcglCl o Cr_q1Crg +J = fc%lcn --¢cr_1,1¢02 +J  (by induction)
= 5Cp1C02€11  * - Cr—1,1Cr2 + J (modulo hi3)
= 5€01€02C11 * * * Cr—2,1Cr—1,4Cr1 + J (modulo hr+1,3)
= fcglcll - Cr_21Cr—1,4¢r1 +J (modulo hy3)
= fc3,Cr---Crycp + J.
As each equality above of the form (a) 4+ J = (b) + J, with a and b elements of the ring,
actually means that a —b € J, the last statement of the lemma follows by induction. [

Furthermore,

Lemma 6.2: fco1 Dy C J.
Proof:
fco1Do = feo (coa — co1, co3 — co2, Co1 — Cozbgl)
C feor (cos — coz, co1 — co2blly ) +J
= (sco2(cos — co2), feor(cor — coabldy)) + J
= fC01 (601 — Cogbgl) + J
= (fca, — scorcon) + J
=J. n
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Lemma 6.3: Forallr=1,...,n—1, and all i,...,i, € {1,2,3,4},
feorco2bisCr -+ Cp C (feorconbiscrs, -+ i, ) + J,
fegab5Ch -+~ Cp C (fegobigseniy - i) + .
Also, modulo J,
fC()lcQngB = sc(Q)ng3 = scogcogbgB = f001c03bg3 = SCp1Co3 = fcgl,
fcmcogng = sco1co2 = fcoy.
Proof: The last congruences are clear. They imply that by Lemma 6.1, f 0010026836'1 - C

is contained in ( fcglclil e cm-T) + J, whence again by the congruences it is contained in
( fc()lcogbggclil e Cm-r) + J. The second part follows similarly. ]

Lemma 6.4: Forallr=1,...,n,
fcg1Cr - Cry C feorcoaCl -+ Cro1bighls -+ b5 gb_y 5 + J.

Proof: The case 7 = 1 holds as fcg; € (sco2) +J C (feoabds) +J. When 7 > 1, by
induction,

fei O+ Criy C fegregaCy - Croqblghls bl _g 3b?_ 5 + J.
Let B = by bl 3 5. Then by Lemma 6.3, fc§;Cy - -+ Cr_y is contained in

d d
(f001002011 e 'C»r—4,1Cr—3,4Cr—2,20r—1,2bongr_2,2) +J.

When r = 2, we are done by using hy3. Otherwise, for r > 2, it follows by Lemma 6.3 that
fCOlCOQCll tee CT_47107«_374CT_27267«_1725%336?_2,2 is contained in

d
C (scorcoserr - 'Cr—4,1Cr—3,4Cr—2,20r—1,2Bbr,2,2) +J
d d
C (scorcozcrr -+ 'CT74,1C'r73,4c7‘72,20r71,2Bbr_2,3br_1’2) +J (modulo h,_18)

C (feorcoaCh -+ Cr1blsBbY_y 501 5) +J (by Lemma 6.3).  m

Lemma 6.5: Forallr=1,....n—1, and all i,5j =1,...,4,
fe31C1-+- Cr(brj — b)) C .

Proof: When r = 1, by Lemma 6.4, fc3,C1(by; — by;) is contained in fc3;coaC1bdy (b1 —
bh‘) + J. As

bo2(b1j — b1:) € (b1j(bo2 — b1:bo3), b1i(boz — b1jboe3)) + J,
it suffices to prove that for all i = 1,...,4, fc& ,co2C1(boa — b1;bo3) is contained in J. But
by Lemma 6.1, fcglcogcl(bog — blibog) & fcglcogcli(bog — blibgg) + J, which is in J modulo
h164i-
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Now let » > 1. By Lemma 6.4, fc(z)lCl - Cr C fepre02Cr -+ - C’be)%bff,m + J. As
br—l,Z(brj - bm) € (brj (br—1,2 - bribr—l,?))a bri(br—1,2 - brjbr—l,?))) + J7

it follows that by Lemma 6.3, and by using h; 6+, hr6+; and hi3 we are done. [ ]

Lemma 6.6: Forallr=2,...,.n—1,and alli=1,...,4,

fcglCl cee Cr(l — bm) g J.
Proof: By Lemma 6.4, fc%lc’l O, C fc%lcogCl e Crbg?)br_l,g +J, so it suffices to prove
that fC%ICOQCl cee Crbgng,LQ(l — bm) is contained in J. But

feaico2Cy -+ Cpbiabr12(1 — byy)
C fe2icoaCh -+ Crbls (bri(br—13 — br_12),br—1.9 — byibr_13) + J.

Note that by Lemma 6.3, by using hy g4, fc3;c02C1 -+ Crbds (br_1.2 — bpibr_13) is in J.

Also, fc3co2Ch - C’rbggbri(br_l,g — by_1,2) is contained in J by Lemma 6.5. [
Thus

Corollary 6.7: Forallr=2,...,n—1, fc3,Cy---C.B, C J. [
Now define

Hy = (f*s— fb3,) + fE+ fDo + fCL F

n—2
+ Z fC1---Ci (Dig1+ Bi) + fC1Cy- - Crym1 By 1.
i=0

It is easy to see that Hy contains Jy, that Hy = (s, f)N; (p; + (/?)), that each p;+(f?)
is the intersection of the ideals P, + (), where the P;, vary over the minimal primes over
pi, and that each P, + (f3) is primary to P;, + (f). In particular, co1 is a non-zerodivisor
modulo H;. Furthermore,

Proposition 6.8: With the assumption that n > 2, J; : ¢cg; = Hy = J1 ¢ cgl. Thus
Ji=J+ (s, fbiybls, fb32b04)3 + Ly = Hy N (J1 + (¢}y)) and

J = ( ﬂ pi) N (J1+(cdy))

i=—1
so that in order to find a (possibly redundant) primary decomposition of J; and of J, it
suffices to find a primary decomposition of Ji + (c3;)-

Proof: Tt suffices to prove that ¢3; H; C J;. By Lemmas 6.1 and 6.2, and by Corollary 6.7,
it only remains to prove that

iy ((F3,5 — fb3) + fE+ fO1F) C Jy.
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Clearly co1(s — fbd,) is in J, and 3, f3 € (s3c3,) + J. Furthermore, by using Lemma 6.5
for » = 1, it now remains to prove that

fc(z)l ((b()l — bo4,bg2 — bgg,bgl — bgz) + Cl (bog — b11b03,bil2 — 1)) Q Jl.
This follows from:

fcgi(bor — bos) € scorcoz(bor — boa) + J
C sco1(cozbor — co3bos) + J = J,
Fegi(bga — bi3) € scorcoa (b — bis) + J
C sco1(co2bla — cosbis) + J
C feo1bly (cozbly — cosbis) + J
C sco1bl (co2 — co3) + J = J,
Feg1 (b5, — bGa) € scorcoz(bgy — bG) +J
C feorcoably (b — bGa) +J
C 8001002bg2(1 -)+J=J
fcg1C1 (boz — bi1bos) € J (by Lemma 6.3),
fca, 0y (b§l2 — 1) € feoicoabd,Cy (bfz — 1) +J (by Lemma 6.4)
C feorcozblscio (b‘li2 — 1) +J (by Lemma 6.1)
C feorcozcra (bo — biabhs, bia(bGs — bG2)) +J
C feorcozciabis(bls — bly) +J  (modulo hyg)
C 555 (bGs — bGo) +J
= sco2(cosbls — coobly) +J
= feor(cosbis — coabfly) + 7

= 5001(003 — 002) +J=J |

Let Lo by any ideal contained in J; : s such that s and f do not appear in any minimal
generator of L. For example,

d d ,
Ly = (co2 — cos, co1 — co2biy, coa — co3biy, c15(boz — biiboz)|i = 1,...,4) .

Also, let L), be any ideal in contained in Jj : (s, f) such that s and f do not appear in any
minimal generator of L}. For example,

LY = (cog, b5, boa) (c1i(boz — b1ibos)|i = 1,...,4) + Co (co2bor — co3boa, co1 — Cos) -
Then define

d d d d \3 /
Jo = J1 + (co1, coa, co2blla, cosbls) Lo + (cot, coa, co2bdy, cosbis)” + L.
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Proposition 6.9:  With notation as in Proposition 6.8, J, = H1 N Js, so that

J:(ﬁ pi>ﬂJ2.

i=—1
Hence in order to find a (possibly redundant) primary decomposition of Jy and of J, it
suffices to find a primary decomposition of Ja.
Proof: By Lemma 0.1 and as H; equals the intersection of p_; = (s, f) with an ideal

properly containing pg N --- N py,, it suffices to prove that J; = Hy N Jy. As J; C Hy, it
suffices to prove that

3
Hin ((001,004,0021932,6031783) Lo + (co1, cos, co2blly, cosbls)” + ng) C Ji.

But H; C (s, f), so the intersection is contained in
3
(s, f) ((00170047002552,003583) L + (co1, coa, cozblly, cosbils)” + le) :

As sLy € J, (s, )Ly C Ji, fcor — coa), feor — scop € J, and (s, f) = (s — fbf, f), the
ideal above is contained in Ji + (fcdy, (s — fbd;)cd,). But

(s — fb31)chs = chu(scoa — feoably) € J + feiu(biy — biy) = J + feii (bl — bG),

so that H1NJo C J1 + Hi N (cgl), which equals J; by the previous proposition. [ ]

7. Sixteen embedded components of J and Js
We’ll show that for every subset A C {1,2,3,4},

P_55 = (8, o1, Co4, bo2, bo3, cozbor — cozbos) + (c1ili € A) + (b1i — b1jli,j € A)
is an associated prime of J and Js, with its embedded component being
p—sa = (8, o1, Cos, bz, bls, cozbor — cosbosa) + (crili & A) + (boz — bribos, bi; — bijli, j € A).
It is clear that these ideals are prime, respectively primary, and that there are sixteen of

each kind. Note that the height of P_5¢y is 10, and if A # {}, the height of P_55 equals
9. By a calculation similar as for g4,

d 1d
p—5 = ﬂp—m = (S, Co1, Co4, 5027 5037 coz2bo1 — C023{’04)
A

+ (c1i(bo2 — b13bo3), cric1j(bii — bij)|i, 5 =1,...,4).
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Now observe that

Ja : (co2(co2 — €03))™ = Jo & coz(co2 — co3)
= (s, co1, Coa, bz, co3bils, cozbor — cosbou, c1i(boz — bribos), bo1bis))
= (8, co1, Co4, boz, bo3, co2bo1 — co3bo4)
N (8, €01, €035 €04, bo1, bgz, Cli(bOQ - blibOS); Clibcliz‘; Cliclj(bli - blj))
M (S, €01, €04, b327 683, co2bo1 — co3bo4, Cli(bOZ - blibO3)7 Cliclj(bli - blj))
=p-3MNp_aNp_s.

None of the components is redundant, which proves that Js has the specified embedded
components p_s5. Furthermore,

J : (coz(co2 — co3))™ =
= (s, feor, feoa, [biy, feosbls, f(co2bor — cozboa), feri(boz — biibos), fbo1bis)
= (57 f) N (8, €01, Co4, bog, 003503, co2bo1 — co3bo4, 011(502 - 511503), bmbgg)
= (s, f) N (s, co1, cos, boz, bo3, co2bor — co3bos)
N (s, co1, €03 Cod, bot, bia, c1i(boz — b1sbos), c13b;, cricaj(bri — bij))
N (s, cot, Coas bila, bits, coabor — cozboas c1i(boz — bisbos), c1ic1j(b1; — bij))
=p-1Np-3Np_sNp_s,

and here also the embedded components p_55 are not redundant.
Thus so far we have obtained that

n
J = ( N Pz’) Np-3Np-aNp_sNJs,
i=—1

where p_5 is the intersection of 16 embedded components and

J3 = Ja + (co2(co2 — co3)

(
3
= J1 + (co1, coas Co2bly, co3bls) Lz + (co1, Coa, co2bly, cosbis)” + L + (coz(coz — cos))

= J + (s, fb,b3s, fbgzbo4)3 (cot, coas Cozbgza 003533)3 + (co2(co2 — co3))
+ (3(5 - fbo1)a s(s — fb04)) ( ) ( fb037 be4) + (5 - fbgs) (37 fng)
+ (8, co1, Co2, Coa, bilg, boa) (14 (bo2 — b1zbo3)|Z =1,...,4)
+ (coi(co2bor — co3bos), coi(cor — coa)li = 1,. 74)
+ (co1, coas co2bila, co3bis) (co2 — cos, co1 — co2bly, coa — cozbly) -

It remains to find a primary decomposition of J3.
But J3 : (co2 — ¢03)™ = (8, o1, Co2, Coa, b3, boa) = p—2 = J3 : (co2 — co3)?, so that
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Proposition 7.1:

J = ( ﬁ pz-) N (Jg + (002 — 603)2) . [ ]

i=—5
Thus it remains to find a primary decomposition of J3 + (co2 — co3)?.

New approach — not components, associated primes only

8. Finding associated primes, not components

Lemma 8.1: Let I be an ideal in a ring R. Then for any x € R,

b (B e (o ()

and every associated prime of % 18 an associated prime of ?.

Proof: This follows from the short exact sequence

R R R
00— — — —

— —
I:x I I+ (x)

Lemma 8.2: For all Z,j = 1, ceey 4, 5200012(61,- - blj) + 82030117830)17; - blj) - J.

Proof: By Lemma 5.3, s2°CoC% (b1; — bi1;) is contained in s?cozcyicj(b1; —bi;) +J. Modulo
h15 and h()g this is contained in SfCOQCh‘Clj(bli — blj)bg3 + J, but that is J by gOiIlg modulo
h1,6+i and h1,6+j-

Similarly,
s2C2C 034 (by; — b1;) C sfcorcoabis(cribiy — cijbiy) +J
C sfcorcoaboabis H(er — c1j) + J,
and the latter equals J by Lemma 5.3. ]

Recall that C,, = (0).

Proposition 8.3: Temporarily set c,o = 0. For k=0,...,n—1, define
Iy = J + (s*coac12 - Cnr.2b03b13),

2
T = 87Cp2C12 "+ * Cp—k—1,2b03b13.
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(For example Iy = J.) Then

I g — ) Do+ +Dp 1y +Chpy +E+F+DBy_1k, ifn—1>k,
k Tk =Pn—k = Do+ C, + E, ifn—1=k,

and I}, : ), has exactly d* associated primes, each of which is minimal over I, : xj, and
over J.

Proof: Set ¥’ = s*cpac12++* Cp—k—1,2. Lemma 5.3 proves that Do+Dy+---+D,,_y, C I : 2/,
thus as ¢,—k2 € I @ Tk, also Cp_i C I @ x.

By Lemma 5.4, E C I, : o'.

First assume that £ = n — 1. We have proved that Do +C1 + E C I,,_1 : ,_1, and
it remains to prove the other inclusion. So let y € I,,_1 : ,,_1. Then

Tp_1y = 8>cooy € I,_1 CCy+ Dy + E,

whence y € C7 + Dy + E, which proves that Do+ C1 + E =1, _1:xp_1.

Now assume that k < n —1. Remark 5.9 proves that for all » such that 3 <r <n—k,
and for alli =1,...,4, 1 —b,; € I} : 2’. By Lemma 5.10, (b()g — by;bos, b, — 1) ClI:a,
so that for all 4,5 = 1,...,4, by; — b1; € I : 2’bos. Thus F C I : z'bps. Finally,
when n — k —1 > 1, by Lemma 5.3, for all £k = 1,...,4, bis — ba;b13 € I}, : 2’, so that
blg(l — bgl) e I : .lelbog, whence 1 — by; € I}, : .’Blbogblg = 1 : . This proves that I : z
contains the stated ideal.

Now let y € I, : 3. Thus s?cpacia - - - Cn—1—k,2003b13Yy € I, € pr—i, SO Yy € pp—p. This
confirms that Iy : xx does equal the stated ideal. ]

Now with notation as in the Proposition, by Lemma 8.1, to find possible embedded
primes of J, it suffices to search among the associated prime ideals of J : z,,_; and
J + (zn—1). However, the Proposition, together with determination of the minimal primes
not containing sf (see [S]), proves that the associated prime ideals of p; = J : z,,_; are
all minimal over J, so it suffices to search among the associated prime ideals of I,, 1 =
J + (z,—1). By another application of Lemma 8.1, it now suffices to search among the
associated prime ideals of I,y : zp—o and I,_1 + (zn—2) = J + (xp—2) = [,—2. By
the Proposition, it suffices to search among the associated prime ideals of I,,_5 only. By
continuing the applications of Lemma 8.1 and the Proposition, we conclude that in order
to find the embedded primes of J, it suffices to consider the associated prime ideals of the
ideal J + (82002b03b13).

Lemma 8.4: To find the embedded primes of J, it suffices to consider the associated
prime ideals of R/(J + (5%bo3)).

Proof: 'We know that it suffices to consider the associated prime ideals of the ideal I’ =
J + (s%coabozbiz). Set 2’ = s2bgzbis. It is easy to see that I’ : ' = Cp, which is a prime
ideal of height 4 and is minimal over J.

Thus by Lemma 8.1, it suffices to consider the associated prime ideals of I = J +
(S2b03b13). Set x = 821)03.
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We claim that I : ¢ = (b13) + Do + co2(E + C1). By Lemmas 5.3, 5.4, and 5.10,
Do+ co2(E+C1(1—0%,)) is contained in the colon ideal. Hence as b;3 is in the colon ideal,
so is cg2C1, so that one inclusion of the claim follows.

To prove the other inclusion, let y € I : x. Then zy = s%bozy € I C Cy + (b13),
so that y € Cy + (b13). Thus without loss of generality y € Cy, and as Dy C I : =z,
we may assume that y € (cp2). But zy = s%bozy € I C Dy + E + Cy + (by3), so that
y € (Do + E + Ci + (b13)) N (co2), which proves the other inclusion.

Now, I : x decomposes as

((b13, co2) + Do) N ((b13) + Do + E + C1)
((b13) + Co) N ((b13) + Do + E + C1)

= ((b13) + Co) N[ ) ((b13) + Do + E + Cy + (bo1 — bz, boz — Bbos)) ,
a?ﬁ

where o and 3 vary over dth roots of unity and each ideal is prime. Each of these primes
is associated to I : x so that by Lemma 8.1 these primes are candidates for the associated
primes of J. They do not equal any of the minimal primes of .J, and they do not contain s,
so that by Proposition 5.11 they are also not embedded primes of J. Thus by Lemma 8.1
it suffices to look for embedded primes of J among the associated primes of I + (z) =
J + (SQbog). ]

Proposition 8.5: Temporarily set c,o = 0. For k=0,...,n—1, define
I, = J + (5%bos, 8% (coaci2 - + - Cn—k,2)C12b13),
T = 82(602012 ce Cn—k—1,2)C12b13-

(For example Iy = J + (s%bo3).) Then

p1 + (bos) = (s, co1, Coas C02 — Co3,b03, bo1 — boa, by, b8,) +C1,  ifn—1=k,

I, : = { Pr—k + (bo3) = (s, co1, Coas Coz — Co3, bo2, boz, bor — boa, bly)
+D1 + -+ Dn—k—l + Cn—k + Bn—k—l
+(0¢; — 1,b1j — byili,j = 1,...,4), ifn—1>k.

Proof: Lemma 5.3 proves that Do + Dy + -+ + Dy, C I, : 2, thus as ¢,—k2 € Ii : T,
also Cy,_r C I : xp.

By Lemma 5.4, E C I : xy.

First assume that &k = n — 1. We have proved that (s, co1,coa, o2 — o3, bo3, bo1 —
boa, by, b8,) + Cy = (bo3) + Do +C1 + E C I,, 1 : 7,1, and it remains to prove the other
inclusion. So let y € I,_1 : 2,,_1. Then x,, 1y = s?coay € I,,_1 C (8%bo3) + C1 + Doy + E,
whence y € (bos) + C1 + Do + E, which proves this case.

Now assume that k < n — 1. Remark 5.9 proves that for all » € {3,...,n — k — 1}
and all i =1,...,4, 1 —by; € Iy : xx. By Lemma 5.10, (boz — b1;bos, by; — 1) C Iy : x4, s0
that also bgo € I} : xp. For all 4,57 = 1,...,4, by Lemmas 8.2 and 5.6, b,; — b,; € I, : 7
whenever 1 < r < n — k. Actually, by; — by; € I, : s2cgac3,, so that by using ha 6+i, also
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1 — bg; € I : xx. This proves that in the cases n — 1 > k, the stated ideal is contained in
Ik Tk

Now we prove the other inclusion. Let y € Iy : . Thus 32(002012 e Cp—k—1,2)C12b13Y
is contained in Iy C p,_r + (SQbog). By taking advantage of elements of p,_; which are
known to be in Iy : xx, we may subtract their multiples to assume that the following
variables do not appear in y:

S, Cn—k,i» b017 b027 bll; b127 b147 Cr1,Cr3,Cr4, br’i7 r= 07 s, — k— 17 r = 27 cees T — k—1.
Thus after rewriting s modulo s — fbls, 2xy € pn_i + (s%bo3) means that
202 (coacrn -+ - Cn_p_1.2)c12b13Yy € (f263§“, by — by, by — 1),

so that y € (bog, bd,, by — 1), which proves the proposition. [ |

With notation as in the previous lemma, define

Q = (In—1:xn_1)+ (bo2,boa),
= (8, o1, Co4, Co2 — €03, bo1, boz, bos, 504) +

and for K =0,...,n — 2, define

Qka = (5, €01, Coa, o2 — €03, boz, bo3, bor — boa, boa)
+D1+-+Dpp1+Chi+ By
+ (b11 —a, by —byli,j =1,...,4),
= (I : ) + (boa, b11 — @),

where « varies over dth roots of unity. Note that ) is the radical of (bg3) + p1 and that
Qra is the radical of each minimal prime P,,_; o3 over J (as ( varies over dth roots of
unity, see all the minimal primes not containing sf in [S]). The heights of these primes are
easily seen to be as follows:

ht Q = 11,
ht Qo = 7(n — k) — 4, if k = 0.
ht Qe = 7(n — k), if k > 0.

Note that there is a total of 1 4 (n — 1)d primes.
Also define the following prime ideal of height 12 (radical of p; + (bos, b13)):

!
Q' = (s, co1, coa, o2 — €03, bo3, bo1 — o4, boz, boa, b1s) + C1.

Lemma 8.6: The set of embedded primes of J is contained in the set

{Q,Qra, QYU 4ss (R/(J +(s%))).
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Proof: By Lemmas 8.4 and 8.1, we know that the set of embedded primes of .J is contained
in the set of associated primes of J + (s2bp3). By Proposition 8.5, this set is contained in

{Q, Qra} UAss (R/(J + s°(bos, co2c12b13))) -

Set I =J+ (32b03, 82602612b13) and z = 82002b13.

Certainly I : x contains bgz, Dy, C1 and E. If y € I : , then s?coabizy € I C (5%bo3) +
E+ Do+ Cy, so that s?y € I C (s%bg3) + E+ Do+ Co, whence y € I C (boz) + E + Do+ Co,
so that I : = equals (bp3) + E + Do + Cy. The latter ideal is primary to ). Thus by
Lemma 8.1, to find the embedded primes of J it suffices to look among {Q, Qrs} and the
associated primes of I’ = I + (z) = J + (s%bos, s%co2b13).

Set 2’ = s%by3. It is easy to see that I’ : 2’ = (bg3) + Cy. Note that this prime ideal
is not associated to J as it is not minimal and it does not contain s (cf. Proposition 5.11).
Thus it suffices to look among the associated primes of I = I' + (2') = J + (s%bo3, s2b13).

Further, we claim that I” : 52602 = (bog, blg) + DO + FE + Cl. Certainly (603, b13) +
Dy + E + Dy is contained in I" : s2cpy. By Lemma 5.10, C; (1 — b%;) is in the colon ideal,
whence (1 is in it, proving that I” : s?cos contains (bg3, b13) + Do + E + C;. If instead y is
in the colon ideal, scooy € I C s%(bos, b13) + Do + E + C1, so that by similar arguments
as before, y € (bos,b13) + Do + E + Cy. This proves the claim. It is now easy to see
that (bos, b13) + Do + E + C1 is a @'-primary ideal, so that by Lemma 8.1 the embedded
primes of J are contained in the union of {Q, Qka, @’} and the set of associated primes of
I/// == I// + (82002) =J + 82(b03, b13, COQ).

Finally, I"" : s = (bg3, b13) + Cp, which is a prime ideal which by Proposition 5.11 is
not associated to J as it does not contain s. Thus by Lemma 8.1, it remains to find the
associated primes of 1" + (s?) = J + (s?). ]

Lemma 8.7: The set of embedded primes of J is contained in the set

{Q7 Qka, Q/} U ASS (R/(J —+ (82, SfCOQbOQ))) .

Proof: By the previous lemma we have to find the associated primes of J+ (s?). First note
that (J + (s?)) : SfCOQbOngg_l equals the ideal I = (s, bg;, bo1 — boa, bg;l, bos, Co1, Coa, Co2 —
¢co3) + Cy. For one direction, note that

sfcoably = f2eoibf) = sfeo = s°cop € J + (57),
s fcoa(bor — boa) = sf(co2bor — cozboa) € J,
s feonboabis Le1i = sfcoablsciibii = sfcosblscribi; = s2cozeribii € J + (52),

and certainly s, ng_ 1, bos, Co1, Co4, Co2 — Coz are contained in the colon ideal. Conversely, if y
is in the colon ideal, then sfcaboabls 'y € J + (s2) C (%) + E + Dy + C4, and then easily
one proves that y is in I. This proves that (J + (s?)) : SfCQQbOngg_l equals I, which is
Q-primary. Thus it remains to find the associated primes of Iy = (J + (s2, s fcogbogbgg h.

For k =1,...,d, define I} = (J + (s?, sfcogbozbg?)_k), and xp = SfCOQbOngS_k_l. It is
straightforward to see that I : x) equals (s, bgl, bo1 — boa, bg;l, bos, Co1, Coa, Co2 — Co3) + C1,
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which is primary to ). Thus this reduces the proof to finding the associated primes of
Id = (J + (82, SfCOQbOQ). |

Lemma 8.8: The set of embedded primes of J is contained in the set

{Q. Qra, QYU Ass (R/(J + (5%, 5))) -

Proof: By the previous lemma we have to find the associated primes of J+(s2, sfcoabg2). It
is easy to see that (J + (52, sfcoaboz)) : sfbdy = (s) + Cp. This is a prime ideal, associated
to J + (52, sfcoabo2), but as it does not contain fbgabos it follows by Proposition 5.12
that this prime is not associated to J. Thus it remains to find the associated primes of
IO =J + (52, SfCOQbOQ, Sfng)

For k = 0,...,d — 1, define I, = (J + (52, sfcozboz, sfbls ), and xj, = sfbdy "1, Tt
is straightforward to see that Iy : xp equals the prime ideal (s,bg2) + Cy. However, this
prime ideal does not contain bgscy;(bga — b1;bos), so that by Proposition 7.1, (s, bg2) + Co
is not associated to J.

Thus this reduces to finding the associated primes of I;_1 = (J + (s2, sf). [

9. Reduction to J + (s, sf, scoz)

Whereas J : s is practically incalculable, (J+(s2, sf)) : s is calculable. This is the aim
of the first lemma below. By Lemma 8.1, Ass (R/(J + (s%,sf))) C Ass (R/((J + (s2,sf)) :
s))UAss (R/(J+(s))), where J+(s) is a much simpler ideal whose associated primes would
not be too hard to establish (compare with HERE). However, the associated primes of the
ideal (J + (s%,sf)) : s are not so easy to establish. In this section our aim is calculating
these associated primes by calculating various (J + (s2,sf) + I) : z; for various ideals [
and elements x7. In the process, knowing the ideal (J + (s%,sf)) : s is very useful.

Lemma 9.1: Let JJ be the ideal in R generated by all the hyj/s, r > 2. (Note that all
these h,; are multiples of s.) Then (J + (s?,sf)) : s equals

= (s, f,co1 — Co2bly, Co3 — Co2, Con — Co2bly) + JJ
+ o2 (co1 — 02, coa — o333, co1 — Coa, Coabor — co3boa, bo1 by — b04bgg)
+ co2 (c1i(boz — bisbos), c1i(bo1 — b.bo4), cri(cos — bY;c02), cricr;(bri — bi;))
= (s, f, co1 — co2bly, cos — coz, Coa — coably) + JJ
+ cfy (b1 — bla, b3y — bls. bo1 — boa) + coz (borbis — boaby)
+ Co2 (Cli(bOQ — b1ibo3), c1i(bor — bilibo4)7 c1i(coz — biliCOQ), cric1j(bri — blj)) 3

where the indices i and j vary from 1 to 4.

Proof: In the course of this proof we will use several times the easy fact that for any ideals
I and I, and any element z, (I +xI') :x = (I : z)+ I'.
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First observe that
J = s (co1 — co2blly, cos — o2, coa — Co2blly) + JJ + K,
where K is the ideal fK’' + (fco1 — sco2), with

/ d d
K' = (co1 — co2b(y, coa — co3bls, co1 — coa, co2bor — cozboa, cozcri(boz — b1ibos)) -

Let + € K : s. Write zs = k' f + a(fco1 — scp2) for some k' € K’ and a € R. By
modifying x by a multiple of fcp; — scp2, without loss of generality no s appears in a.
From xs = k'f + a(fco1 — scp2) it follows that

a€ (K +(s)): feor = (s) + (K : co1).
We claim that K’ : cp; equals

/ d d d d d
K’ + (bo1bs — boabls, coa — co3bls, co2bls — cosbls, cozbor — cosboa, coac1i(boz — b1ibos)) -

Here is a proof. First of all, clearly K’ : co; = (co1 — co2bds, coa — cozbls) + (K : co2bdy),
where
K" = (002552 - 00356[3, co2bo1 — cozboa, cozcii(boz — blibOB)) .

Then it is easy to see that
K" : co2 = (co2blls — co3bls, co2bo1 — cozboa) : co2 + (c15(bo2 — b1ibos))
= (co2bily — co3bis, co2bor — cozboa, bo1bs — boabl, c1i(boz — b1ibos)) -

By the same proof as in the computation of p_4, the decomposition of I = K" : ¢go is
easily seen to be
I =Ny (I + (Cli|i ¢ A) + (502 — blib03|i c A)) ,

so that K" : coably = I : b, equals

I:bly =0a (I+ (crsli & A) + (boa — bisbos, bi; — bij, bor — bY;boa, cos — bficoali, j € A))
and this intersection is (as the computation of p_y4):

I: bgz =1+ (Cu(boz — b1ibo3), Cliclj(bli - blj), c1i(bo1 — bilibo4)7 cri(co3 — bilico2)|i,j) .

This finishes the verification of K’ : cy;.

Now we go back to the computation of K : s. Recall that z € K : s and sz = k' f +
a(fecor — sco2). As no s appears in a, s € (f, acoz) implies that x € (f) + co2((K' + (s)) :
feo1), as was to be proved. n

From now on, to simplify the notation, we set
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Note that this makes the generator h,7 a special case of all the h,¢4;. Also, the symbol
= stands for congruence modulo J.

Lemma 9.2: Forallr=1,...,.n—1andalli=1,...,4,
27‘
8Co1** Cr—2,1 (Cr—l,l - Cr—1,4bf«li ) cri € J,

when r =0, scg; — fcol'bgi 1s in J, and when r = n,

5€o1 -+ Cn—2,1 (Cn—11 — Cn—1,4) € J.
Or, with the new notation as above, for allr=1,... nand alli=1,...,4,

27‘
S$Co1 "+ Cr—2,1 <Cr—1,1 - Cr—1,4bf¢ ) cri € J.
Proof: The case r = 0 holds by definition. When r = 1, first note that

d _ d 1d _ d 1d _ d
fCO2clib01b02 = fcozcubmbogbu = fCOBClib04bogbli = 800301¢b04bli

d __ d 1d
3602611b04b1i = fCO2clib04b02b1i7

so that

_ d _ d _ d 1d
§Cp1C14 = f00101¢b01 = 8602011501 = fCO2clib01b02
= bbb by ab
f— fCOQC]_/L‘ 04 02 1i y above

_ d pd? _ d 1d® _ d?
= SCOZClib04b1Z‘ = f60461¢b04b1i = 8004611611,

which proves the case r = 1. Now let » > 1. To simplify the notation, set A =
sCo1 - - - ¢r—3,1, where we of course interpret this to be s if » < 3. First observe that

—1
o a2 . .
ACT—Q,lcT—l,chibr—l,l = Acr—2,4cr—1,20ribr—1,1br_1’2 by induction
d21”—1 d21”—1
= ACT_Q,4C7~_1’267aibr_171br71’3bm» modulo hr,6+z’
21‘71

1
_ d? d
= Acr_2,4cr_17gcmbr_1,4br_1v3br modulo h,¢

i
d2'r71
= Acy—2,1Cr-1,3Cribr—1,4by; by induction
r—1

— d?
= AC»,»_Q,lCr_l’QCr,«Z'br,n_174bri modulo hr5,
so that

r—1
- o d2 . .
5C01 " Cr—2,1Cr—1,1Cri = ACp_21Cr_1,1Cri = ACT—2,4CT—1,1CT’ib7"—1,1 by induction
d27’71
= ACT_2,1CT_1’2Crib,’._171 modulo hrg

or—1 dzr—l

—1
_ d a2"
= Acr21¢r 1200071 4 (b7, )

by above
or—1

N d d2r
= ACT_2716r—1,2Cribr71,4 ri
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r—1 r
_ d? d?
= ACT_271Cr_1736mb7n_174bm modulo A5

r—1 r
_ d? d?
= Acr_2,4cr_1,4cribr_174bm- modulo A4

by induction. ]

_ az"
= Ac,_2,16r—1,4Criby;

Lemma 9.3: Fori=2,3,k=0,....n—2and forallr=k+1,...,n,

a2
scgs(corcir -+ ¢r1) = scxs(corcrr -+ ¢r1)bl;  modulo J.
Proof: When k =0 and r = 1, by using Lemma 9.2:

_ _ d? _ d?
S8Cp1Cp3C11 = SCp1Cp2C11 = 8604002011511 = 8001002012‘511 modulo h13, h15

_ d*>pd _ d?1d 1d
= fc()lCOQClibllon = f00100201i611b03b1i

d’yd pd d*1d
fCOlcOSClibllbogbli = 3001003clib11b1i

_ bdzbd _ bd
= 5C04€p3C1101101; = SCp1€03C1107;-

Now for the case k > 0 and r = k + 1, to simplify notation, set A = s(cpi1c11 - Ch—2.1)-
Then

Acg—1,1¢k1Ck3Ck+1,1 = ACk—1,1Ck1CR2Ck+1,1 modulo by 5

= Ack_1,16k4ck20k+1,1sz:+1 by Lemma 9.2

= ACk—1,1Ck1Ck20k+1,ibﬁf;1 modulo hyy2 3, hrtos

= Ack_1’4ck16k26k+1’ibgffl bg;k by Lemma 9.2

= Ack_1,4cklckgck+1,ib%fl+l z;k gf:l,i modulo hk—|—1,6—|—i

= Ack—l,lckQCl@QCl@—&—l,ib%f:l g;k gf:l,i modulo hk+173

= Ack—l,lckQCl@SCl@—&—l,inf:l g;k gfl,i modulo hk+175

= Ack_174cklckgck+1,ibgif;1 g;k gifu modulo A1 3
= Ack—1,10k10k36k+1,ibgf
= Ack—1,16k4ck3ck+1,1bgf1+1 bgfu modulo hgy23, hrtos
= Ack—l,1Ck1Ck3Ck+1,1bzi€1,ia

41 d2k
1 bky1,; by Lemma 9.2

which proves the case r = k + 1. Now for the case r > k 4 1, to simplify notation, set
A= 8(001011 s CT,3,1)C]€1. Then

_ az"
Acy_21¢r—116m1 = Acp_21¢r—1,4¢1by; by Lemma 9.2
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_ d2"
= Acr—Q,lcr—l,lcrz’brl

modulo hr+173, hr+175

k
_ d?" yd? . .
= Acr—2,1Cr—1,1Criby br_1 2 by induction on r

—1
a?
= Acr_g4Cr— 110mbr1 br 12br 1,1

d2

—1
= Acr_2,16r1 2cmbr1 br 126011

by Lemma 9.2

modulo A3

— 2" a2 d2

_ d*" pd
= Acr—24Cr—1,2Cribyy by 3

_ d?" 1 d az"
= Acr—2,16r-1,2¢ribyy by 3by;

_ d?" 1d
= Acr_2,4¢r-1,1Crib}4 br_1,3br

Id k
_ d? 1.d> d?
= Acr—2,16r-1,16ri}4 br_1,3br;

” k
_ a2 1d d?
= Acr—21¢r—1,4¢r1byy br_q 3by;

k
J— d2 d2
= ACT_2,1CT—1,1CT1br—173bri

k
_ d?
= Ac,_2,1¢—1,1¢r1 by

bd2 bd2 -1 d2

1,107 12 modulo hy 64

d2

r—11 by Lemma 9.2

d""

r_1.1 modulo A3

by Lemma 9.2

modulo hr+1,3, hr+1’5

by Lemma 9.2

by induction. [ |

Recall that c,; = 1. We start tabulating the elements of (J + (s2,5f)) : sco1 -+ - 1,
r=0,...,n
Elements Justification
1 s, f clearly
2 CL2 — CL3 by using hx41.5
k=0,...,7+1

3 Ck1 — Crabiyq by Lemma 9.2
k=1,...,r—1
a2 _ az"
4 crk1 — cr3bi, when k > 0: sco1 -+ Cp1 = 5Co1 -+ Ck—2,1Ck—1,4Ck1 D}
a2"
k=0,...,r+1 = 5C01 " - Ck—1,1Ck3b%,
when k& = 0: trivial
_ d
5 | co1 — Coa sco1(co1 — coa) = feor(cor — coa)bly € J
by using his3, hi4, his
6 | ck1— Cra sco1 -+ Ck1(Cr1 — Cra)
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— d2
= 5C01 - - Ck—2,1Ck—1,4Ck1(Cr1 — Cra)bly

k

which is in J by using hk+173, hk+1’4, hk_|_1,5

k
d? _ 0. d — d pd
7 Ck;3<1 - bk—l—l,l) k=0: SCOlcogclle = f601003011b11b03
o _ d 1d — d 1d 1d
k= NN 1 = 8002003611[)11[)03 = f002603611b11b02b03
_ 2d — d
= fCO2CO3C11b02 = scp2003¢11bG
— .2 d — d —
= 8002011b02 = f601002611b02 = S8Cp1€02C11
a2
k> 0: 8(001 s Ck+1,1)ck3bk+171
k
— d? d?
= SC01 "+ Ck—2,1Ck—1,4Ck1Ck+1,1Ck3bg 11 1D%3
k k
— d? d?
= 8Co1 " 'Ck—2,1Ck—1,1Ck20k+1,1ck35k+17lb;€3
I ko 2d2
= SC01 "+ Ck—2,1Ck—1,4Ck2Ck+1,1Ck3bg 11 1015
_ ko a2
= 5C01 "+ Ck—2,1Ck—1,4Ck2Ck+1,1Ck3b%o bTg
_ d?
= SCo1 * - 'Ck—2,1Ck—1,lck2ck+1,1ck3bk3
_ d?
= 5Co1 """ Ck—2,1Ck—1,4Ck1Ck+1,1Ck30}5
= 8C01 """ Ck—2,1Ck—1,1Ck1Ck+1,1Ck3
a2 a2
8 Ck4 — Ck3bk4 when k£ > 0: scpq - - - Ck—1,1(0k4 — Ckgbk4 )
a2
k=0,...,r+1 = 5C01 " Ck—2,1(Ck—1,4Cka — Cl—1,1Ck3)bjiy
_ 0 d
when k = 0: s(cos — co3b§,) € J
_ 0 — d
9 Ck3(6k4 — Ckl) k =0: SCp3Coq = f603503004
_ _ d _
k= 0, NN 1 = f003b03601 = SCp3Co1
k
. — d?
k> 0: scot -+ Cr—1,1Ck3Cka = 5Co1 * - Ck—1,4Ck3Ckab}5
_ 2"
= 5C01* " Ch—1,4Ck3Ck1b%s = SCo1 -+ - Cl—1,1Ck3Ck1
10 Ck3(014 —B- Cll) l=k+1: scoy... Ck1CE3CE11,4

k=0,...,7
l=k+1,...,r+1
ok+1 2
B =b,1,4 by

. qk+1
= 5C01 - - - Ck4Ck3Ck+1,4b5 41
B qk+1
= 5C01 - - - Ck4Ck3Ck+1,105 41
B qk+1
= SCo1 - - - Cklck30k+1,1bk+1 by 9

Il >k+1: scor... C1—1,1Ck3Cl4

_ a2
= 5C1 ... C1—2,1C1—1,4Ck3C1ab]y
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now proceed by induction

11 | cra(eiz — B - cnn) Il =Fk+1: sco1 - Cr1CR3CK+1,3
k=0,...,r = SCo1 * " * Ck—1,1Ck4Ck3CL+1,1
Il=k+1,...,r+1 = 5C01 * " Ck—1,1CK1Ck3Ck+1,1 DY 9
k41 1—1
d? d? .
B = bk+14 1—1,4 I >k+1: SCo1 -+ C1—1,1Ck3C13
= 8Co1 "+ €1—2,1C1—1,4Ck3C11 NOW use 10
_ 1. _ d 1d
12 | br—1,2 — bribr—13 k = 1: scorc11(boz — b11bo3) = fecoacii(bo2 — b11bo3 )by bhs,
k= 1,...,r k> 1: 8601"'0161(()]6_1’2 _bklbk—l,B)
= SC01 * "+ Ck—3,1Ck—2,4Ck—1,1Ck1
k—
_ d?
= (bk—1,2 — br1br-1,3)b5 14
g2
= sCo1 " Ck—2,1Ck—1,2Ck1 (bk—1,2 — Dk1br—1,3)b5 1 4
€ (sco1 -+ Ck—31Ck—2,4Ck—1,2Ck1 (br—1,2 — brp1br—1,3)) + J
13 | bg—1,2 — brabr—13 sco1 -+ - k1 (bk—1,2 — brabr—13)
a2
k=1,...,r = 5C01 -+ Ck—2,1Ck—1,4Ck1 (bk—1,2 — brabr—1,3)biy
a2
= sco1 - - Cp—1,1Ck2(br—1,2 — brabr_1,3)b%,
= 8Cp1 """ Ckr—3,1Ck—2,4Ck—1,1CL2"
k k—
d?" 1.d?
“(bk—1,2 — br2br—1,3)b%1 bj_1 4
_ d2k dzk*
= sCo1 """ Ck—2,1Ck—1,2Ck2(bk—1,2 — Dr2br—1,3)bg; b1 4
= 8Cp1 " Ckg—3,1Ck—2,4Ck—1,2Ck2"
k k—1 k—1
d?" 1d? d?
“(bk—1,2 — brabr—1,3)0%; bp_ 110512
14 | br—1,2 — brsbr—13 sco1 -+ - k1 (bk—1,2 — brsbr—13)
az"
k=1,...,r = 501+ Ch—2,1Ck—1,4Ck1 (bk—1,2 — br3br—1,3)b%,
az"
= 501+ Cr—1,1Ck2(bk—1,2 — br3br—1.3)b%,
az"
= 501+ Cl—1,1Ck3(bk—1,2 — br3br—1,3)b%,
continue as in 13
1. — d?
15 | br—1,2 — brabr—13 k =1: scoici1bo2 = scoac11bo20%;

k=1,...,r

_ d> _ d?pd
= 8004614b02b11 = f604014b02b11b04
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k>

d2rd — d21d 1d
8002014b02611604 = f002014b02b11b04b02
d21d pd — d?1d
f002014b14b03b11bo4b02 = 8002014b14503511504
d2rd — d?
fCO4C14b14b03511504 = 8004014b14b03511
d?
SCO4C11b14503511 = scp1c11b14b03
_ d?
1: scop--- Ck:lbk—l,Q = S8Co1 " Ck—Q,ICk—lAckzlbk;—l,Qbkl

k
dZ
5Co1 "+ Ck—2,1Ck—1,4Ckabr—1,20%;
k —1
d?" pd?
8Co1 "+ Ck—3,1Ck—2,4Ck—1,4Ckabr 1,25 D1 4
k -1
d?" pd?
$Co1 "+ Ck—3,1Ck—2,1Ck—1,2Ckabr 1,205 D)1 4
k k—1 —
d?" pd? d?
$Co1 "+ Ck—3,1Ck—2,4Ck—1,2Ckabr—1,2057 01 4bF 1 5
k k—1 k—1
d2 d2 2
$Co1 "+ Ck—3,1Ck—2,4Ck—1,2Ckabrabr—1,3b51 b4 4bk 4 o
a2 a2t
$Co1 "+ Ck—3,1Ck—2,1Ck—1,2Ckabrabr—1,30; b4 4
g2 g2t
$Co1 "+ Ck—3,1Ck—2,4Ck—1,4Ckabrabr—1,30; b4 4

k

d2

5CQ1 *** Ck—3,1Ck—2,1Ck—1,4Ckabrabr_1 303,
a2

5C1 *** Ck—3,1Ck—2,1Ck—1,4Ck1brabr—1 303

5¢o1 *** Ck—3,1Ck—2,1Ck—1,1Ck10kabK—13

k

16 | by_1.3(bei — bry) by 12, 13, 14, 15
k=1,...,r
ii=1,... 4
17 | cki(bk1 — bra) k = 0: sc1Co(bo1 — boa) = feco1Co(bor — boa)bl
k=0,...,r = 5¢02C0(bo1 — boa )b, = sCo(co2bo1 — co3bos)bdy,
i=1,...,4 now use that scg; € J + (f)
k> 0: by 2, 5, 6, and 4 it suffices to assume that i = 2
5Co1 -+ Ch—1,1Ck1Ck2(bk1 — Dra)
= 5¢01 -+ Cl—1,1Ck1 (Ck2br1 — Cr3bra)
= 5Co1 -+ C—1,4Ck1(Cr2br1 — Ck3bk;4)bﬁ21k eJ
18 | br1 — bk4b;ﬁ:1’1 5Co1 " - Ck+1,1bk4bgj:71

k=0,...,mr—1

k k
d? d?
S$CO1** * Ck—2,1Ck—1,4Ck1Ck+1,1bkabl 1 10k
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k k
d? d?
8Co1 "+ * Ck—2,1Ck—1,1Ck3Ck+1,10kab) 1 105y

k k
_ d? d2" 1.d?
= SC01 " Ck—2,1Ck—1,4Ck3Ck+1,10kab) 1 1057 Dfs

k gk 2k
_ d? d* +13d
= SC01 " Ck—2,1Ck—1,4Ck2Ck+1,10) 11 1651 7 b3

k
4> +1pd?
5C01 "+ Ck—2,1Ck—1,4Ck2Ck+1,1057 Do
= 5C01 * " Ch—2,1Ck—1,1Ck2Ck+1,1011
B pa> +1
= S8Co1 " Ck—2,1Ck—1,4Ck1CL+1,10}

= SCo1 - - 'Ck—2,1Ck—1,1Ck1Ck+1,1bk1

19 | (1 —b) by Lemma 9.3
=0,...,7r—1
E=1+1,...,r
i=23
20 ckg(b%ik — bﬁ?j) k = 0: scoicosbd; = sco1co2b3d = feoicoabdd
k=0,...,r = feorcosbyi "bos = scoacosby;  'boa
= 5¢2,009 by = feorcoabid tboa,
and by repetition of the last 4 steps,
= f001002bg1b‘014 = fco4002bglbg4 = sco4cogb6ll
= scouco3bd; = feoacozbdbis
= fco1c03bd, b5 = sco1cozbis,
when k > 0:
s(co1 -+ Ckl)Ckagzlk = s(co1 - Ck—2,1)¢k—1,46k10k3bi‘f2k
= s(coy - - ckl)ckgbﬁik bgzk
= 5(co1 -+ - Ck1)0k3bﬁ§k
21 ckg(bﬁjk — bzzk) proof as for 20
k=0,...,r
22 | c3(bk; — bij) by Lemma 9.3, 16
[l=0,....,r—1
k=1+2,....r
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ii=1,...

,4

23 | cr3brs(l — bri2,) s(co1 -+ ¢r1)Cr3bra(l — bryo,:)
k=0,...,mr—2 = s(coy - Crl)Ckgsz:’gbk:;(l — br42,i)
i=1,....4 = s(con <+ eo1)erbils 13 bk (b 18 — bir1,3bk12,0)
= s(co1 - - Crl)ckazfljglbk?)(bk—i—l,S — bit1,2)
by 12, 13, 14, 15
24 | c13(1 — bry) by 16, 19, 22
[=0,....,7m—3
k=143,
1=1,...,4
25 | cp1 — ckgbkjk k = 0: scoicosbls = fcorcosbd by
E=0,...,r = scoico3bd; = fc2 bl = scd,
1=2,3 k>0: sco-- -cklckgszk
_ a2*
= SCo1 - * - Cr1Ckiby;
= sco1 - Ck—2,1ck—1,4ck1cmbﬁjk ve,
= sco1 - Ck—z,lck—1,10k16kibﬁik
= sco1 Ck—z,lck—1,40ilbg21k
= SCo1 - Ck—Z,lck—l,lcil
26 | co1(b1; — b11) if 7 = 1: trivial
r>1 if i =2,3: scgyc11(b; — bi1) = scorcoacii(brs — bll)b‘fi
i=1,...,4 = sc3,c11c14(b1s — bn)bl1 = fct cri(by; — bn)b‘ﬁbgl

= 5¢01¢03¢1i(b1i — b11) b,

= feorcozcri(bri — b11 511501503

)
)b

(
= feoacoszcri(bri — b1t
feozcozci(boz — 511503)5115 bg§1b6l2
= scgaco3¢1i (Do — bubos)bﬂb&bggl
(

. d?pd—1
= SCp1Cp2C14 1)02 - bllbO?))bllbOS
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= scpaco2¢11 (bo2 — b11b03)biiibg§1
= sco1c02¢11(bo2 — b11bo3)bGs
= feorcocii(bog — bi1bos)bis 1bdy € J

if i = 4: SC%ICH(bM — b11) = 5631014(1)14 - bll);

now continue as for ¢ = 2,3

27 | cr1(brg1,i — bpy1,1) essentially the same proof as for 26
k=0,...,7mr—1
i=1,...,4

28 | cr3ckr1.1(bky1i —br+1,1) | @ =1: trivial, ¢ = 4: by 17

k=0,...,mr—1
i=1,...,4

1=2,3: k=0:
80016030%11711' = 80040036%11)11'[)%?
= 3001003011cliblz‘bﬁ = f00100301101ibubﬁbgg
= f00200361101¢b1¢bili bggbgz
d+1

. d21d—1
= feozco3c11¢1ib51by5  bos

d®+13d 1d d?
feoacozciiciiby ™ byabha = feoicosciiciibly

_ d24+1 _ 2 pd?+1
= 860160301161ib11 = 8004003611b11
= 2P
= 8C01€03C711011
k> 0:set A=s(cor-Cr_21):
2
s(co1 " Ck—1,1)CkaCk3Cry 1 1

_ 2
= Ack—1,10k1Ck3Ck 11 1bk+1,i

o 2 dk}+1
= Ack—1,10k4Ck3Ck 11 10k+1,i05 11 1

_ qet1
= Ack—1,1Ck1Ck3Ck+1,1Ck+1,iDk+1,i05 11 1

o g2
= Ack—1,4Ck1Ck3Ck+1,1Ck+1,ibk+1,i0% 11 1 %3
I dk+1 d2
= Ack—1,1Ck2Ck3Ck+1,1Ck+1,iDk+1,i05 11 1053
dk+1 d2 d2
jt1,10%3 Oko
g gt o1yt
k+1,1%3  Or2

= A" g1y g2t g g2t
= ACk—1,4Ck2Ck3Ck+1,1Ck+1,iby 1 T bz Do

= ACk—1,4Ck2Ck3Ck+1,1Ck+1,ibk+1,ib

= ACk—1,4Ck2Ck3Ck+1,1Ck+1,ib
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k+1
— +1
= Ack—l,lckQCkSCk—i—l,lCk—i—l,zbk_H 1 b

k+1
— +1
= Ack—1,40k10k36k+1,1Ck+1,zbk+1 1 b

_ dk+1+1
= ACk—1,1Ck1Ck3Ck+1,1Ck+1,ib) 1 |

— 2 dFtiqa
= Ack_1,10k4ck3ck+1’1bk+1’1

_ 2
= Ack—1,1C51Ck3Ck 11 10k+1,1

29

_ 1. — d 1d
k =1: scoicriciibis = f00201161ib1i501502
_ d 1d—1
= fCO2C1101ib11b1ib01b02 bo3
_ d 1d
= f60201101ib11501502
k> 1: set A= sco1---cr—3,1, then
5C01 * ** Ck1Chibri = AcCk—2,1CL—1,1Ck1CibLi
_ d?
= AcCkp—2,1Ck—1,4Ck1CkibLibT4
_ d?
= Ac—2,4C5—1,4Ck1Ckibribiy D1 4

k
= Acp—21¢1-1 3Ck1cmbmbﬁ21 b% 14
—1 2 —
= Acp—2 A4Ck—1 BCklckzbkzbkl bk 1 4bﬁ 1,3
421 21
= Ack—2,4CK—1 2Ck10mbmbk1 bl 4_1bk 1108,
gk—1 gk—1
= ACk—2,4Ck—1,2Ck10mbﬁ1 b1 4_1bk—1 1bk 1 3_1bk—1,2
22" 21@71
= Ack_94ck_12ck1cRibl, T bk 14_1bk 1108,
22" 21
= Ac—o A4Ck—1 SCklckzbkl bk 1 4bk 1,3
2
= Ac_2,1Cr—1,3Ck1CkibY, +1bﬁ2 14
2 k—
= Ack_2.4Ch_1.4Ck1CRibY 1bﬁ2 14
k
= ACk—Q,lck—lAClekibzl +

= Ack—2,1Ck—1,1Ck1Ckibk1

30

by 4, 5, 6, 2, and 29

31

cr1Cr41,i(bry1s — 1)

r>1

set A = 8Co1 * " Cr—2,1, then

5C01 "+ Cr1Cr1Crt1,ibry1i
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1=1,...,4 = Acr—1,1CTlcrlcr+1,ibr+1,i
27‘+1

= ACr—1,1Cr1Cr4Cr+1 ib7«+1 i
a2

= Acr 1,4Cr1CraCr41 ber-_|_1 i

d2 +1+1 d2r
= Acr—l,lcr3cr4cr+1,ib7~+1 i bq~4

+1

+1 bd2r

r+1 r T
d* 414 dZ
= Acr 1,4Cr3CraCr41 Zbr+1 4 b b

r+1 r
_ " 41,42 -1 d?
= Acr—1,4cr20r4cr+1,ibr+1 i b brlb»pg

a2 a2 -1 "1
= Acr 1,4Cr2CraCr41 zbr+1 i br4 b lb b'r2

= ACr—1,4Cr3Cr4Cr+1,ibfi;i 7 bf«l; by
= Acr—1,lcr3cr4c'r+1,ib7d~+1’i by«g _1br2

= Acr—l,lcri’»crlcr—&-l,ibgj_lbfrZ

= Acr— ,1Cr3Cr1Cr41 zbrl br2 by 29,

= Acr—l,ICTZCrlcr—&-l,ibglr_ bro

= Acr—l,lcTZCrlcr—&—l,ibgir by 29,

d?
= Acr 1,4Cr1Cr1Cr4-1, zbrl

= Ac,_1,1¢01Cr1Cr41,

32 | cricr41,1(bpg1i — 1) by 4, 5, 6, 2, and 31
r>1
i=1,....4

Lemma 9.4:
(J + (52, sf)) :s(cor - en—1,1)c03 = (s, f) + Do+ D1+ -+ Dy—1 + B3 1
+ (bai — ba1, co1 (by; — b11),1 — b, 1 — bg,)
+ (651 — b3, b1 — 0Gs)
+ (k2 — bry1,ibk3, b1 — bralk = 0,...,n — 1),
where all the indices i vary from 1 to 4.
Proof: Let I = (J+(s%,sf)): 3(001 -+ Cpn—1,1)C03. B3 n—1 is contained in I by 24 from the

table. By 19, I also contains 1 — bk2, — bgg forall k =1,...,n — 1. Thus by 16, all the
differences by; — byy are in I, and hence all 1 — bgi el.By71— b el

By 12-15, all byo — by41,ibr3 are in I, and by 18 also all by, — bk+1 1bra arein I. As all

k
1-— bgil’l are also in I, it follows that all by; — bxy are in I. In particular, also all 1 — bu
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are in [.

Entries 2, 4, 5, and 6 prove that Do + - -+ + D,,_1 is in I. Finally, co1(b1; — b11) is in
I by 26. This proves one inclusion.

Now let y € I. Then s(co1---cn_11)co3y € J + (s%,sf), so that by Lemma 9.1,

(co1 -+ Cn—1,1)co3y is in
(s, f,co1 — co2bily, cos — o2, Coa — Co2blly) + JJ
+ ¢y (bg1 — by, by — b33, bor — boa) + co2 (501533 — 604b§2)
+ co2 (c1i(boz — b1ibos), 15 (bor — bY;b04), c1i(cos — bsc02), cric1j(br; — bij))
= (s, f,co1 — co2b§y, cos — Coz, Coa — Co2b{y)
+ Cho (531 — by, by — b33, bor — boa) + co2 (501533 - 604632)
+ co2 (c1i(boz — b1ibos), 15 (bor — bY;b04), c1i(cos — b;c02), cric1j(br; — bij))
1
+B3p-1+ Do+ -+ Dp_1+ (by; —ba1) + ;(h2j7 h3j, ha;| all appropriate j
= (Sa ficor — 002631, Co3 — €02, Co4a — 002534)
+ oo (bg1 — by, by — b33, bor — boa) + o2 (b01bgg - bO4bf§2)
+ co2 (c1i(boz — bibos), 15 (bor — bY;b04), c1i(cos — b;c02), cric1j(br; — bij))
+ Bg 1+ Do+ -+ Dy_q + (b2 — b21)
+ (coac11 — €o1€12, Coac14 — Co1€13, Co1(C12 — C13))

+ (coa(c12b11 — €13b14), coac12¢21 (b12 — b21b13), co1(c14 — €11)C21).

Thus by going modulo (s, f) + D2+ -+ Dy—1 + B n—1 + (bai — ba1) + (co1 — co2bdy, cosz —
Co2, Coa — Co2bd,), this says that c2,bd; (c11 - - - Cn—1,1)y is contained in

cho (b — ba, bily — s, bor — boa) + coz (bo1bds — boabls)
+ co2 (c1i(boz — bisbos), c1i(bo1 — bd.bo4), cricoa (1 — b$,), ericrj(bri — bi;))
+ (co2(bfact1 — by c12), (coz(bGgcra — bi13), coabfy (cr2 — c13))
+ (002534(0121711 - 013514), 002534012021(512 - b21b13)7 002b81 (014 - 011)021)-
By coloning out with cd,, it follows that b3 (c11 -+ cp—1.1)y is contained in
(661 — b2, b4 — b33, bo1 — boa, bo1blz — boabls)
+ (c1i(bo2 — b1ibos), c1i(bor — bd.bo4), c1i(1 — b%,), crica; (b1 — bi;))
+ (bfacnn — bgyciz, bacia — bicrs, by (crz — c13))
+ (554(612511 - 013514), 554012021(512 - 521513), 531(014 - 011)021)-
Next we may go modulo bgy — bp1 so that
(661 — b2, b1 — b3, c1s(boz — bribos), c1i(1 — bS;), crica (bri — byy))
+ (b1 (e11 — €12), 01 (c14 — €13), b1 (c12 — 13))

+ (b, (c12b11 — c13b14), by c1aca1 (D12 — barbis), by (c1a — c11)ea1),
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and then colon with bd; to get that (c1y - - Cn—1,1)Yy is contained in

(b3 — b3y, b3 — b3, c1i(boz — bisbos), c1s(1 — bY;), crierj(bry — b)) : by
+ (011 — C12,C14 — C13,C12 — C13, ci12b11 — C135147 012021(512 - b21b13), (014 - C11)C21)
= (bgl — by, by — bls, c1i(bog — bribos), c1i(1 — b)), cricrj(by; — bi;))

+ (c11 — €12, €14 — €13, C12 — €13, C12b11 — €13b14, c12¢21 (b12 — b21b13), (€14 — €11)C21).

Next, by going modulo Dy,

Cl1** Cp—1,1Y € (bg1 — ng, b81 - bgg, c11(bo2 — biiboz), c11(1 — bfi)a 0?1(1711' - blj))

+ (011(511 - b14)7 011021(512 - b21513))7
whence by coloning with ¢11---¢p—1,1

y € (bl — by, by — bils, bo2 — biibos, 1 — bY;, c11(bri — biy), by — bia,biz — borbys) . =

Proposition 9.5: The set of embedded primes of J is contained in
{Qa Qkaa Ql} U Ass (R/(J + (827 Sf7 5631611 e Cn—l,l))) :

Proof: Let z = sc%lcn -+ Cp—1,1- We already know that the set of embedded primes of J
is contained in {Q, Qa, @'} UAss (R/(J + (s%,sf))). By Lemma 9.2,

Ass (R/(J—|— (52,sf))) C Ass (R/(J—l— (s, sf, x))) U Ass (R/((J—l— (s%,sf)) : :L'))) ,

so that it suffices to prove that none of the associated primes of (J + (s%,sf)) : x is
associated to J.

Clearly, (s, f) € (J + (s?,sf)) : . By numbers 12, 16, 19, and 26 from the table,
F C (J+(s2,5f)) : @, and by 17, 20, and 21, E C (J + (s2,5f)) : @. As bja —by3,1— b5 €
(J + (s?,5f)) : &, by 12-15 then for all i = 1,...,4, 1 — by; € (J + (s%,5f)) : x. Thus by
24, B,_1 C (J + (s%,sf)) : . It follows that by 2, 5, 6, 4, and 19, Dy + -+ + D,,_1 C
(J + (s2,5f)) : @. Thus p, + (s, f) is contained in (J + (s2,sf)) : x.

If y € (J+ (s%,sf)) : =, then

Ty = sc%lcll e Cp—1,1Y € P + (sz,sf).

Modulo p,,, we may rewrite s as fbgl, Co3 as Cpa, Cosa AS Co1, Co1 AS cogbgl, bo2 as b11bg3, bos
as bg1, all by; as by1, for r > 0, we can rewrite each ¢,; as ¢,1, and for » > 1, we can write
each b,; as 1. Thus the displayed equation implies that

fegabyien - Cn—-1,1Y € (2631, 651 — b3, 1 = b),
whence y € (f,bd; —bds, 1—b%,), so that (J+(s%,5f)) : = p,+(s, f). But now, p,+(s, f)

is the intersection of d? prime ideals none of which contains cg; so that by Proposition 6.8,
none of these prime ideals is associated to .J. [

44



Lemma 9.6: Forallk<n—2andr>k+1,

5(001 T Cr—l,l)ckl(crla Cr3) CJ+ (5(001 . 'Crl)ckl)-
Proof: Certainly s(co1 -« ¢r—1,1)ck1¢r1 1 in the ideal. Modulo J,

8(001 e 'cr71,1>ckzlcr3 = 8(001 T Crf2,1>cklcr71,4c'r1 = 8(001 T Cr72,1>cklcr71,1crla

where the last equivalence is by in 5 and 6 in the table. This proves the lemma. ]

Lemma 9.7: Fork=1,...,n—1, define
Io = J + (s%,sf, scac1y - Cn—k.1),
Tk = SCH1C11 """ Cr—k—1.1-
Then Iy, : x, = pn_r+(s, f), which is the intersection of d* primes, none of which contains

Co1 -

Proof: The same proof as in Proposition 9.5 shows that (s, f) + E+ Do + D11 + -+ +
D, _r—1n—k—1+Bn_k—1is contained in I, : x3. Furthermore, if K <n—2, also F' C I, : .
By the previous lemma, ¢, 1,¢n—k,3 € I : Tk, so that by 2 and 8, C,,_, C I} : x3. This
proves that p,_x + (s, f) C Iy : xk.

Now let y € I : zx. Then yxy € I C pp_k + (52, 8f,8¢2,c11 - cn—k.1), and similar
arguments as before show that y € p,,_r + (s, f)- n

Proposition 9.8: The set of embedded primes of J is contained in the set

{Q Qra, QYU Ass (R/(J + (s, 5/, 5¢0))) -
Proof: By Proposition 9.5, it suffices to prove that each element of
Ass (R/(J + (s*,sf,scici1 cn_1,1)))

is either associated to R/(J + (s, sf, sc3;)) or is not associated to J. We use the notation
from the previous lemma, Lemma 9.7. Define for each £ = 1,...,n—1 and each of the dth
roots of unity «, 8 € F, the ideals

Qras = Pk + (5, f,bo1 — aboz, bo2 — Bbosz, (1 — dk1)(B — b11)),

where ¢ is the Kronecker delta function. Each Qrqp is a prime ideal, minimal over p; +
(s, f), and furthermore,

i+ (5, f) = [ Qras-
a7ﬁ
Lemma 9.7 proves that
Ass (R/(J + (s%,sf,schici1 - cn_11))) = Ass (R/I1))
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g {anl,aﬁ|aa ﬁ} U Ass (R/IQ>
{Qn—l,aﬁ» Qn—Q,aﬁ‘aa ﬂ} U Ass (R/I3)

N 1N 1N

{Qn—l,aﬁy Qn_27a5, “eey anma, ﬁ} U ASS (R/In_l)
g {kaaﬁ k§ «, 5} U Ass (R/(827 va 50(2)1)) :

However, none of the prime ideals Qros contains cpi, so that by Proposition 6.8, none of
them is associated to J. This proves the proposition. ]

Our continuation of the search for the embedded primes of R/J is leading us to
consider ideals of the following form:
k’ZO,...,T—l),

k k
Lr = J+ (SQ,Sf) + s (Ckl <H Ci1> (H b13>
i=0
where r = 1,...,n. We have reduced the problem of finding the rest of the embedded

i=0
primes of J to finding the associated primes of R/L;. We will use the ideals L. : [, where
[, is the element

L, = s(co1 - cn_1,1)cr1(bog - - - br3).

To simplify notation, we define the following ideals in R:

a?"
Drr = (CTQ — Cr3,Cr1 — Crq,Cr1 — CT2bT1 )’

k
d 1d 1d d?
U, = co3(1 — b%1, 651, 003) + (ck1, Cra, Cha — Cr3, crabiy |k =0,...,7).

Note that DOO = D().

Proposition 9.9: Forallr=1,....,n—1,
Lr:lr:(Saf)+vr+Bn—l+Ur—1+DTT+Dr+1+"'+Dn—1-

Note that when r > 2, the same ideal is generated when D,.. above is replaced by D,..

Definition 9.10: It is easy to see that Co + -+ + Cr._1 C U,_1 + B,_1, so that when
r>2,

Ly:ly=(s,f/)+Vo+Bn1+Co+--+Cr1+Dp + Dy + -+ Dy 1)
N ((s, f,cots Cod, Co2 — o3, bty , bilg, 1 — b))
Vet Bno1+Ci4 -+ Gt + D+ Dy + -+ + D)
2
N ((57f7 Ci1, C1a, C12 — C13,0%)

+Ve+ B+ Co+Co+-+Cry +Dp+Dpyy + -+ Dyq).
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Clearly the first ideal Q! in the decomposition above is prime; the second ideal is the
intersection of the d primary ideals
= (s, [, Co1, Cos, Coz — Co3, b1, b3, o — b11)
+Vi+Bp1+Ci+-+Cri+ D+ Dyyy + -+ + Dy,
where « ranges over the dth roots of unity, and the third ideal ¢ is primary. Thus the
associated prime ideals of L, : 1, for r > 2 are
Qlo=(5,/)+Ve+Bn1+Co+--+Cr 14+ D+ Dpy1+-+Dpy
Qroa = (5, f5 o1, Coa; oz — o3, bot1, boz, & — b11)
Vi+Bp 1 +Ci 4+ +Cri+ Dy + -+ Dy,
Q% = (s, f,c11, €14, €12 — €13, b11)
+V,+B,1+Co+Co+--+Cr1+ Dy +Dpy1 4+ Dy_q.
When r = 1, the associated prime ideals of Ly : 11 are
lo=0f)+Vi+Bu1+Co+Dii+ Do+ -+ Dy
Toa = (8, f, co1, oa, Co2 — co3, bo1, bos, @ — by1)
+Vi4+ By 1 +Cy+Dy4--+ Dy

Proof of the proposition: Certainly s, f € L, : [,.. By 12-15 and 18, V,. C L,. : [,.. By 24
and 23, forall k =r+2,....n—1land allt =1,...,4, 1 —by; € L, : l,.. Also, for all
k=1,....,r+1andi=1,...,4, by 16, bx; — brg € (LT 1 S8Co1 vt Cn—l,lbk—1,3)7 so that by
12-15, br3(1 — bg+1,4) € (Ly @ SCo1 -+ - Cn—1bg—1,3). This implies that for all k =2,...,r+1
and all ¢ = 1,...,4, 1 —by; € L, : [, and hence that B,_1 C L, : [.. Then by 2, 4,
5,6,8 and 19, Dy + D11+ Do+ -+ D1+ Dy + Dypy1+---+ Dyp—1 C L, : 1,.. For
k =0,...,7r — 1, certainly cx1 € L, : s(co1---cg1)ck1(bos---bgs). Thus by 4 from the
table, ckgbiik € L, : ., and then by 2, 5 and 6, U,_y C L, : [.. Also, by 25 and 7,
cogbg3, cos(1l — b‘fl) € L, : l,.. This proves one inclusion.
Now let y € L, : [,.. Then

ys(co1 - - Cnfl,l)crl(b03 --bp3) € Ly
(5%, 8f,8Ch1, - sCi_11) + (b; —byjli, i =1,...,4)
+Bp1+ D2+ +Dr 1+ D+ Dpyp1 +-- -+ Dy
+ (hoj, haj, hej, hs;| all appropriate j)
= (8%, sf,s¢2,,. .-, 50?-1,1) + (b1 — bijli, g =1,...,4)
+Bp1+ D2+ +Dr 1+ Dy + Dy +- -+ Dy
+ (s(cor — co2blly), f(cor — co2bll), f(cos — cosbis), s(coa — cosbly), feor — scoz,
f(co1 — coa), s(coz — co3), f(co2bor — cozboa), feozcii(boz — b11bos),
s(coac11 — co1c12), 5(Coac14 — co1€13), Sco1(C12 — €13),

scoa(c12 — c13)b11, Sco1(c14 — €11)C21)-

yl,

N

(Above, as well as below, the index i varies from 1 to 4.) First assume that » > 1. Thus
D, may be replaced by D,. It follows that by coloning with bsg---b,3 and reducing
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modulo the established elements of L, : [, such as by; — by, generators of B,,_; and the
Di, yS(COl s Cn—l,l)crlbOSbll is contained in
d d d
(827 sf, 8031, cee 803_1,1, s(co1 — co2bpy ), f(cor — co2bpa), f(coa — co3bys),
d
8(004 - 003504), fco1 — scoz, f(001 - Co4); 5(002 - 003), f(Cozbm - 603504);
feozcri(boz — bi1bo3), s(coaci1 — coici2), s(Coacia — co1€13), Sco1(C12 — €13),

scoa(c12 — c13)b11, sco1(c14 — €11)C21)-

By taking the colon with coq - - CT_17167%10H_171 -+ Cp_1,1, it follows that

yscorc11bozbin € (8%, 8f,8¢a1, 8¢, Ca1,- -, Cr1.1,5(co1 — coably), fcor — co2bls),
f(Co4 - 603533)7 3(004 - 00353'4)7 feor — sco2, f(Co1 - 004)7 8(002 - 003)7
f(co2bo1 — co3boa), feoacii(boa — bi1bos), s(coac11 — co1¢12), S(Coac1a — co1€13),

5601(612 - 013), 3004(012 - 013)511, 5001(014 - 011))-

and thus by reducing modulo ca1,...,¢,—-1,1 € L, : [, without loss of generality

yscorci1bosbir € (5%, sf,s¢2,, 5¢31,5(co1 — co2bly), fcor — coabls),
f(coa — co3bls), s(cos — co3bly), feor — scoa, f(cor — coa), 8(coz — co3),
f(co2bor — co3boa), feozcii(boz — b11bos), s(coac11 — co1c12),

)
8(004614 - 001013), 8001(012 - 013), 8004(012 - 013)511, 8001(014 - 011))-

We take the colon with s:

2 2 d d
ycoic11bosbir € (s, f, Gy, ci1, co1 — co2bGy, Coa — Cco3bya, Co2 — Cos,

Cp4C11 — €01C12, Cp4C14 — Cp1C13, 001(012 - 013)7 004(612 - 013)511, 601(014 - 611))
+ (K :s),

where K is the ideal fK' + (fco1 — sco2), with
K’ = (co1 — co2bly, coa — cosbis, cor — coa, co2bor — cozboa, co2cri(boz — bribos)|i =1,...,4).
Let € K : s. Write s = k' f + a(fco1 — scp2) for some k' € K’ and a € R. By

modifying x by a multiple of fcg1 — scp2, without loss of generality no s appears in a.
From xs = k' f + a(fco1 — scp2) it follows that

a€ (K +(s): fecor = (s) + (K : co1),
and that can be verified to be

d d d d
(s, co1 — co2bhas Coa — Co3biss Co1 — Coa, Co2bo1 — Co3bo4, bo1bys — boaba,

c1i(bog — b11bo3), c1i(bor — bybos), cri(cos — bycoa)li = 1,...,4).
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As no s appears in a, xs € (f,acoz) implies that x € (f) 4+ co2((K' + (s)) : feo1), and so
after rewriting co; as cogbgz, Co3 as Cp2, and ¢y as c02b33 (note that all the differences are
contained in L, : [,.),

d 2 ;2d 2 d d d d
yco2¢11bo3bgab11 € (s, f, b2, €115 002(011b03 - 012502)7 002(014503 - 013b02)=

020y (12 — €13), Coabis(c1a — c13)bi1, coabls(c1a — c11),
cay(bor — Doa), co2(bo1bls — boabls),

co2c1i(boz — b11bo3), coac1i(bor — b1boa), cogeri(1 — b4)|i = 1,...,4).

Then going modulo s, f, bgs — b11bo3, bo1 — b‘f1b04 € L, : I, and coloning with cgo gives

2 2 2
y011b035g4b%(11 e (co2, 0%17 bgg(cll - Cl2bil1)> 583(014 - Cl3b(111)7
2 2

bisbly (c12 — c13), b5 (c12 — c13)bin, bilbi (c1a — c11)).

Now by going modulo (cg2) + D11 € L, : I, and taking the colon with bd;bd,,
2 2
et € (i),

whence finally y € (¢12) modulo the established elements of L, : I,., as was to be proved.
The proof of the case » = 1 is almost the same. It is left for the reader. [

Lemma 9.11: For eachr=1,...,n—1 and each k=1,...,n—r, define
Ly =Ly~ (s(co1 - cn—t,1)cr1(bos - - br3)),
L = s(co1 -+ n—k—1.1)¢r1(bos - - - br3).
Then forr <n—-2andk=1,...,n—1r — 2,
L ilok=(5,f)+Ve+Buk1+ U1+ Dy +Drpr+ -+ Dy g1 + Chy

Proof: By Lemma 9.6, ¢y,—x,3 € Lyi : [, With this, the tables prove just as in the proof
of Proposition 9.9 that the stated ideal is contained in L, : l,r. Now let y € L, : l,x.
Then

Ylpy = yS(Cm te Cn—k:—1,1)0r1(bo3 te br3)
€ (s% sf,sc2,... 73072«—1,1) +Ch_k
+(bri —=b13) + Bpg—1+ Do+ +Dr 1+ Dpp +Dpg1 + -+ D1
+ (hoj, h1j, hej, hs;| all appropriate j)
= (s%,sf,8c2,,..., 303_1’1, b1i — b13) + Ch—k
+Bpk-1+Do+ 4+ Dpr 1+ Dpp+ D1+ -+ Dpg1
+ (s(co1 — co2blly), f(cor — co2bls), f(cos — cosbis), s(coa — cosbly), feor — scoz,
f(co1 — coa), s(co2 — co3), f(co2bo1 — co3bos), feozcii(boz — bi3bos),
s(coac11 — co1c12), s(Coac14 — co1€13), Sco1(C12 — €13),

scoa(c12 — c13)b13, sco1(c14 — €11)C21)-
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First we assume that » > 2. Then D,., may be replaced by D,. above. Note that n —k > 2.
It follows that by coloning with s(cg; - - ¢p—k—1,1)¢r1b23 - - - byg and reducing modulo the
established elements of L, : l,4, such as by; — by, generators of C,,_, B,,_—1, the D; and

027"‘707“—13

yscorc11bozbi bin € (8%, sf, s¢81, 5¢11, s(co1 — co2bly), f(co1 — coabls),
f(Co4 - 003b33)7 8(004 - 00356[4% feo1r — scoo, f(001 - 004)7 8(602 - 603),
f(co2bo1 — co3boa), feoacii(boa — bi1bos), s(coaci1 — co1¢12), s(coacra — co1€13),

8001(012 - 613)7 8004(012 - 013)1911, 3001(014 - 011))-

The rest of the proof goes as in the proof of Proposition 9.9. The same applies to the case
r=1. ]

Definition 9.12: [t is easy to see that the the associated prime ideals of L,k : L.k for
r>2 are

Q=0 +Ve+Bp-1+Co+-+Cr1+Dr+Dpp1+ -+ Dp_j—1+ Cpry,
Qe = (8, f,co1, coa, co2 — €3, bo1, bog, @ — b11)
Vi+ By 1 +Ci+--+Cri+Dp+ -+ Dy_jo—1 + Cr—p,
Q5 = (s, f,c11,c1a,¢12 — €13,b11) + Vo + Bp—g—1
+Co+Co+---+Cr 1+ Dp+Dpy1+ -+ Dy g1+ Cryp,
and when r = 1, the associated prime ideals of L1 : 11 are
'=0f)+Vi+Buk1+Co+Di1+Do+--+Dy_1+Cpy,
Ta = (8, f, o1, coa, co2 — cos, bo1, bos, @ — b11)
+Vi+ By kg1 +Ci+ Do+ +Dy_p1+Cpy.

Thus by Proposition 9.8, repeated applications of Lemma 8.1, and the last two propo-
sitions,

Ass (R/J)\Min (R/J) C{Q,Qra,Q'} UAss (R/L1)
CH{Q: Qras Q'Y UAss (R/(L1:11))UAss (R/(L1 + (Ir)))
={Q, Qra, Q' Qy, QYo } UAss (R/L1y)
C{Q, Qra, Q', QYy, 10a}UASS (R/(L11 : i) UAss (R/(L11 + (l11)))
={Q, Qra, Q", QYp; Qn, Q11, Q10 } U Ass (R/L1))
CH{Q,Qka, Q' Qp, Qo0 @11, Q10
UAss (R/(Li2 : 112)) U Ass (R/(le + (I12)))
=1{Q, Qra, Q', Qs Qo0 Q11> Q110s @12, Q120 } U Ass (R/L13))
CH{Q, Qras Q' QY1 Qo } U Ass (R/Ly 1))

= {Q QkomQ Q1k7 1ka}UASS (R/LQ))
C.
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- {Q Qk‘OHQ Qlk?Qlka? 2[7 2la7Q/”l:07"'7n_3}
UAss (R/L3))

N Iﬂ

{Q QkonQ Qlka lka}
U{er, M @Qulr=2,....n—2;1=0,....n—r—1}UAss (R/L,_1))

N Iﬂ

{Q Qrar @', Qm,Qum
U{er, ’r’lou ///|T—2 n—21=0,...,n—r—1}

u{Q,- 1,00 @n—1,0a> Zl—l,O}UASS (R/(Ln—1+ (ln-1)))

(Above, the index k always varies from 0 to n — 2.) Thus it remains to find the associated

prime ideals of
k
L,=Lp 1+ (1) = J+(s sf <ck1 (HCH_) (Hbi?’) k=0,...,n—1).
i=0
Lemma 9.13: We would like to prove that for allr =0,...,n— 2, none of Qsrr, Qs 1S

associated to J(n,d).

THIS IS UNFINISHED, but has a reasonable start.

Proof: The primes Qs,a, Qor, Q%,.x, Qp, are defined on page 31.

The case 7 = 0 holds by [S, Theorem 4.1]. For the rest, by the recursive construction
in Section 7, it suffices to prove that for all » = 0,...,n — 3, none of Qf, 5, Q41 I8
associated to K, + E, + F,.. Consider the element = (¢, 43 2br431 —Cr43,3br434)(Cri3,2—
Cr43,3)Cr43,26r4+33(bry32 — bry33), and the ideal

Trying to eliminate Qs.x, Q.

dz"
G = by Cr+1,1(Cr+2,17Cr+2,4, Cry22 — Cr+2,3)
dz"
+ brl (Cr+1,4cr—|—2,1 — Cr4+1,1Cr42,2, Cr4+1,4Cr42,4 — Cr+1,lcr+2,3)
dz"
+0b r1 Cr+41, 4(Cr+2 2br+2 1 — Cr42, sbr+2 4y Cr42, 2(b7’+2 2 — br—|—2 3) Cr42, zbr+2,35r+3<n)

d a2 2"
+ (bm Cre1,1 — brl Crs1,2:0p4 (Cra1,a — Crg1,1): 071 (Cr1,3 — Crga, 2))

d2
+ b,,4 (CT+1,2br—|—1,1 - CT+1,3br+1,47 Cr—l—l,QCr—l—Q,i(br—l—l,Q - br+2,ibr+1,3))
27"

27 27
+ (br1bls = brably ) + crii(bra — brg1,ibes, ¢, (brini — brg,j), b1 — by ibra).

Clearly zG C K, + E, + F,. C G, and z is a non-zerodivisor modulo G. Thus G =
(K;+ Er +F,) : x. As z is not an element of Qf, 5, Qg, 1, it suffices to prove that none
of these prime ideals is associated to G.
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Modulo the last 4 generators, G can be rewritten as

r r+1
d2 2
G= by br+1 1Cr+41, 1(Cr+2 1,Cr42,4,Cr42,2 — Cr42, 3)
d ortl or+1 or+1 or+1
+ br4 (br+1,467~+1,46r+2,1 - br+1,107~+1,10r+2,2, br+1,40r+1,407~+2,4 - br+1,10r+1,16r+2,3)
42 r+1
b br+1 4Cr+1,4(Cry22bri01 — Cri2.3br19.4,Crp22(bryoo — brio3), Crio.9brio 30, 43<n)

d2'r 2'r+1 d2'r+l d2r+1
+brg | G411 = brgq 2Cr41,2, Cri1,4 — Cri1,1, 0y 3Cr41,3 — Uiy 90Crt12

az"
+bry (cry1,20r41,1 — Crg1,30r414, Crg1,2C042,i(bry1,2 — bry2,ibry13))
dz" dz" dz"
+ (br1b%5 — brabyy )+ crg1,i(bre — bry1,ibrs, crg1 j(brs1,s — bryi 5), b1 — br+17ibr4)-

Compute G : bff;:

2'r+1

pd?”
G:byy, = br+1 16411 (Crg2,15 Cri2,4, Cri2,2 — Cry2.3)
d27‘+1 or+1 or+1 or+1
+ (brg14Crt1,aCr421 — by 1Cr41,1Cr 12,2, 0041 4Cri1,4Cr 124 — by 1Cr11C12.3)

27‘+1
+ br+1 4Cr+1, 4(Cr+2 2br+2 1= Cry2, 3br+2 45 Cr42, 2(br+2 2 — br+2 3) Cr4-2, 2br+2 35r+3<n)

or+1 or+1 or+1
+ {11 —Ory1 06412, Cri1a — 1,1, 00 3Cr+1,3 — bpgg 2Cr 112

+ (cry1,2br11,10 — Cr41,30r41,45 Grg1 267 42,i (brg1,2 — brg2,ibri1,3))

d>" a" a?"
+ (br1bfs — brabfy ) + crp1,i(br2 — brg1,ibr3, Crp,j(bryri — bry15), br1 — by ;bra)
or+1 q2" r4+1  or4l
= (ra1 = b — erpr) + b0 ( ~ eri20)
Cr41,1 r+1, 2Cr+1,2,Cr41,4 Cr41,1 r+1,1%41, 2Cr+1,2\Cr42,1,Cr+2,4,Cr422 Cr42.3
r4+1 27‘+l 27‘+l 2r+l 27‘+l

+ br—l—l 2Cr+1, 2(bf~l+1 4Cri2,1 — br+1 16r+2,25 0pgq 4Crq2.4 — br—l—l 1Cr+2,3)
d2T+1 d2T+1
+ b,,+1 4b7~+1 2Cr41, 2(Cr+2 2br+2 1 — Cr42, 3b1’+2 4,Cr42, 2(br+2 2 — br+2,3), Cr+2,2br+2,35r+3<n)
2”+1 or+1
+ (b,«+1 3Cr+1 3 — br+1 9Cr41,2,Cr1,20r 41,1 — Crp1,30r41.4, Cr1,2Cr 42,5 (br1,2 — bry2,ibry1.3))
.
+ (brleg — br4b,«2 )+ crg1,i(bra — bry1,ibrs, crp1 j(bry1,s — brgi5), b1 — bg+17¢br4)-

Consider the ideal

' 2t 242"
G = (Cr—|—1,1 - br+1720'r—|—1,27 Cr4+1,4 — C'r’—l—l,l) + br+1,2 Cri2

a2’
+ (¢r42,i(bry1,2 — brg2,ibri13), bra — byy1,2br3,bp1 — b7~+172b7’4)
d2'r‘+1
+ br+1,2(br+1,z’ —brg1,2,Cr41,3 — Cry1,2, Crt2,i (1 — brgai))

+ (Cr+1,3(br+1,2 - br+1,3)7 Cr+1,2br+1,1 - Cr+1,3br+1,47 br+1,1(br+1,2 - br+1,3))-

It is straightforward to verify that ¢, ,,G" C G : bﬁzr C G'. We'll find a primary
decomposition of G’, verify that ¢,11 2 is a non-zerodivisor modulo G’. This would then
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establish that G’ = G : bffzr 2412 Now,

r+1 r+1
1. p2d? d?
G b0 = (11 — b1 2Cr41,2,Cri1a = Crp11,Crp1,3 — Crp12) + Crga

d2"
+ (br2 - br+1,2br3a brl - br+172br47 errl,i - br+1,2),

on which ¢, 41 2,b,41,2 are non-zerodivisors. Thus

2d2r+1

1 w3242 /
G =(G 051, )N(G + (012 )

r+1
So we analyze G’ + (bf,fL2 ):

G/ + (b2d2r+1) B ( B bd27'+1 B b2d2r+1)
r+1,2 /™ Cr41,1 7“—‘,—1,267’4-1,27 Cr41,4 Cr41,1, r+1,2

dz"
+ (crg2,i(bry1,2 = bry2,ibr41,3), 0r2 — brg1,2003,bp1 — b7y 9bra)

r+1
d2
+ b1 2(0r41, — bri1,2, 60413 — Crg1,2, Cri2,i(1 — brgoi))
+ (CT+1,3(br+1,2 - br+1,3), Cr+1,2b7’+1,1 - Cr+1,3br+1,47 br+1,1(br+1,2 - br+1,3))-

This ideal decomposes as follows:

2'r+1 2'r+1
= ((Cr+1,1 - bT+1,2Cr+1,2, Cr4+1,4 — Cr41,1, b7~+1,2 ;br+1,i - br—|—1,27 Cr+1,3 — Cr—|—1,2)

27
+ (Cr+2,i(1 - br+2,i)7 br2 - br+1,2br37 brl - b?«+1,2br4)>

r1 r
d? d?
N ((Cr+1,1, Cri1,4,b541.250r2 = bry1,2073, 001 — b3y 1 obra, Cry2i(bry12 — bry2,ibrin3))

+ (Cr+1,3(br+1,2 - br+1,3)7 Cr+1,2br+1,1 - Cr—|—1,3br+1,47 br+1,1(br+1,2 - br+1,3)))

r+1 r41
d? 2d>
= <(Cr+1,1 - br+1720r—|—1,27 Cr4+1,4 — Cr41,1, br+172 ,br+1,z‘ - b7~+1,2, Cr4+1,3 — Cr—|—1,2)

+ (crg2,i(1 = bry2,i), bro — bry1,2bp3, b1 — bgj_172br4)>

r+1 I
d? d?
N ((Cr+1,1, Cri1,45 0011 9,002 — bry1.2073, 01 — U3y 9bra, Crp2ibrg1 2(1 — bryag))

+ (br41,2 — brg1,3, Crg1,2br41,1 — Cr+1,sb7~+1,4)>

r+1 r
d? d?
N ((Cr—l—l,b Cr4+1,4, br+172, bro — br+1,2br37 br1 — br+172br47 Cr+2,i(br+1,2 - br+2,ibr+1,3))

+ (Cr+1,3abr+1,1)>
2'r+1 2'r+1
= ((Cr+1,1 - br+1720r+1,2, Cr4+1,4 — Cr41,1, br+172 ,br+1,z' - br+1,27 Cr4+1,3 — Cr+1,2)

+ (cry2,i(1 = bry2i), bra — bry1,2bp3, bpp — bi+1,gbr4)>

or+1

d d2"
r+1,2» br2 — br+1,2b’r’37 brl — b7~+1,2br47 CT—I—Q,i(l — br—|—2,i))

N ((CT+1,17CT—|—1,47b
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+ (bry1,2 — brg1,3, Crp1,2br411 — CT+1,3br+1,4)>

N (Cr—|—1,1acr—|—1,47brlvbr27br—|—1,27br—|—1,SaCr—|—1,2b7"+1,1 - Cr—|—1,3br+1,4>

2'r+1 oT
d
N ((Cr—i—l,h Cr+1,4, br+1 29 bro — br+1,2b’r’37 br1 — br+172b7’47 CT+2,i(br+1,2 - br+2,ibr+1,3))

+ (Cr+1,3,br+1,1)>-

Now it is clear that c¢,41 2 is a non-zerodivisor modulo G’, which proves that G' = G :

bd4 cr 41,2- The decomposition of G’ shows that b,4 and ¢,41 2 are non-zerodivisors modulo
G', so that by Fact 1.5,
G = G/ N (G + (b'r’4 Cr—i—l 2))

™ r r+1
dz 2 _ 3d? pd?
G+ (br4 C»r+1,2) = br4 br+1,10r+1,1(0r+2,1, Cr4+2,4,Cr42,2 — Cr—|—2,3)
27‘+1 d27‘+1 d2r+1 d2r+1
+ b, (br+1 4Cr1,4Cr42,0 — briy 1Cr 116422, b5y 4Cri1,4Cr42,4 — bri 1Cri1,1Cr42,3)

r+1
d 2
+ b7y br+1 4Cr41,4(Crg2,2br42,1 — Cry2.3br 424, ri2,2(brg22 — bry23), Cri2,2br42 3001 3<n)

d2'r d27‘+1 d27‘+1 d2'r+l
+ b | Cri10 = bpg1 2Cr4+1,2, Crp1,4 = Crp1,1, Uy 3Crt1,3 — i 2Crg 2

d2" [ 2
+ 08y (6412 Cre12bra11 — Crg1,3brg1,4, Crp1 26 42,i(bry1 2 — Drgaibrin 3))
dz" a2’ dz"
+ (br1byz = brably ) + crp1,i(br2 — brg1,ibr3, Crp, (bry,i — bry15), br1 — by g ;bra).

Then
r r+1
a2 _ d?
(G + (br4 Cr+1 2)) 1 bry = (Cr+1,1 - br+1 2Cr41,2,Cr414 — Cr41,1,C r+1 2)
22 r+1 d2r+1
+ br+1 10741 2Cr11,2(Cra2,15 Cra2.4, Cri22 — Cri23)
27‘+1 27‘+1 27‘+1 2r+1 27‘+1

00 ol 12(B 1 4Cria1 — Dy e, Uiy 4Crp2a — by 1 Cryas)
2" r+1 = or+4l
+b r+1, 4br+1 2Cr41, 2(0r+2 2br+2 1 — Cr42, 3br+2 4,Cr42, 2(br+2 2 — br—|—2 3) Cr42, 2br+2 35r+3<n)
or+1 or+1
- (bf+1730r+1,3 - bf+1,20r+1,2, Cr41,2br41,1 — Crp1,30r 41,45 Cr1,26r42,i(br 1,2 — bryo,ibry13))
27 27 27
+ (brlbgg - b’r4bg2 ) + CT+1,i(bT2 - br—l—l,ib’rB; C'r—i—l,j (br—l—l,i - br—l—l,j)a b'rl - bg+17¢br4)
_ 2t 2
= ((Cr+1,1 - bT+1720r+1,2, Cr4+1,4 — Cr41,1, CT+1,2)
2r+1 27"+1
bfﬂ 1bf«l+1 2(Cri2,1,Cr12.4,Cri22 — Cry23)
2t 2 or+1 or+1 or 1
00 ol 12(00 1 4Crian — By 122, Uiy 4Crp2a — by 1 Cryas)
or+1  or+l
+ bfﬂ 4bf~i+1 9Cri1,2(Cri2,2br421 — Cry2.3bri2.4, Cri22(brioo — bry23), Cry2.2br42 30, 13<n)

or+1 or+1

d d
+ (brg13Cr+1,3 = br 1 0Cr41,2,Crp1,.20r 111 — Crp1,3bry 1,45 Crg1 26042, (Dr 1,2 — bry2,ibry1,3))
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27 27 27
4 (bprbly = bpably )+ crp1i(Dra — bra1.ibrsy ot (brsti — bry1 ), br1 — bﬁﬂ,ibﬂ))

27’+1
N ((Cr+1,1 — br12Cr+1,2,Cr 1,4 — Cri1,1,Cri1,2)

2'r+1 2r+1
+ (br+1,36r+1,3 - b?«+1,20r+1,2, Cri1,2br11 — CT+1,3br+1,4)

27 27 27
+ (bp1b%s — babdy ) + Cr41,i(br2 — brg1,ibrs, Crg1 j(bry1s — brg1 5), b1 — bgﬂ,ibm))

Comnsider the ideal

r+1
/ d?
G = (Cr+1 1= br+1 2Cr+1,2,Cr4+1,4 — Cr41,1,C r+1 2)
2r+1 or+1 or+1
d d
+ br+1 1b,~+1 2(0r+1 2 br+1 3 br+1 4)(Cr+2 1,Cr42,4,Cr422 — Cr42, 3)
2 r+1 a2 or+1 a2 or+1 2r+1 d2r+1 or+1
+ b'r—|—1 2(0r+1 2, br—|—1 35 br41 4)(b7’—|—1 4Cr421 — br+1 16r+2,2; br—|—1 4Cr42,4 — b7~+1 1Cr+2, 3)
d27‘+l d2'r+l oT r+1

d
+ br+1 4br—|—1 2(Cr+1 25 br+1 39 br+1 4)

(Cry2,2br42,1 — Cry2,3br42.4, Crg2,2(brg2,2 — bry23), Cry2,2br 12,3004 3<n)
27‘+1 d2'r+1
+ (brﬂ 3Cr+1,3 — br+1720r+1,2, Cr+1,2br+1,1 - Cr+1,3br+1,4)

r4+1
d2
+ (Ccry1.2, br+1,3, bri1,4)Cr42,i(brs1,2 — brg2,ibri1,3)

dz"
+ (br2 = bry1,30r3, ¢ri1,j(0ri1,3 = brg1j), b1 — b7 g 3ra)

™

d
+ ery1,i(br2 = bry1,ibrs, erg1 i (bryas — brg1,5), brn — by q ibra)

o7

Clearly ¢, 413G’ C (G + (bm ¢2,19)) 1 b%, C G'. We will next decompose G and prove
that ¢,41 3 is a non-zerodivisor modulo G’, which would then prove that (G+ (bfzr Zi12)):

d2" v
bT4 CT+173 - G ‘
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