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Abstract

Let R be a Noetherian ring and I an ideal. We prove that there
exists an integer k such that for all n ≥ 1 there exists an irredundant
primary decomposition In = q1 ∩ · · · ∩ ql such that

√
qi

nk ⊆ qi whenever
ht (qi/I) ≤ 1. In particular, if R is a local ring with maximal ideal m and
I is a prime ideal of dimension 1, then mknI(n) ⊆ In, where I(n) denotes
the n’th symbolic power of I .

We study some asymptotic properties of primary decompositions of powers
of ideals in a Noetherian ring. In particular, we consider the following question:

Let (R, m) be a regular local ring and P a prime ideal of dimension 1. Then
for some cn ∈ N , mcnP (n) ⊆ Pn. How does this cn depend on n? (cf. [2])

The main theorem 1 says that cn is bounded linearly, i.e. there exists an
integer k such that mnkP (n) ⊆ Pn for all n ≥ 0.

Note that if Pn = P (n)∩Jn is a primary decomposition of Pn with m ⊆
√

Jn

and mcn ⊆ Jn, then mcnP (n) ⊆ Pn. So we tackle the question via selected
irreducible primary components of powers of ideals. Hence we consider more
generally: if I is an ideal in a Noetherian ring and P ∈ ∪∞

n=1Ass (R/In), does
there exist an irredundant primary decomposition of In = qn1 ∩ · · · ∩ qnkn

such
that if

√
qni = P , then the least integer cn for which P cn ⊆ qni is bounded

linearly with respect to n?
We would also like to know whether there are good primary decompositions

of ideals of the form (xq
1, . . . , x

q
n), q ranging over powers of the characteristic of

R. A positive answer to this question would solve the open question whether
tight closure commutes with localization, at least for ideals generated by ele-
ments x1, . . . , xn for which ∪qAss (R/(xq

1, . . . , x
q
n)) is a finite set. There may be

infinitely many primes associated to such ideals if q is allowed to vary over all
positive integers. An example of Hochster is the following: let R = Z[X, Y ], a
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polynomial ring in two variables over the ring of integers. Let x1 = X , x2 = Y ,
and x3 = X + Y . It is easy to see that for each prime integer p, (p, X, Y ) is
a prime ideal of R associated to (xp

1, x
p
2, x

p
3). No such examples are known for

local rings or for rings containing fields, so there is some hope for this method
in proving that tight closure commutes with localization.

In this paper we give partial answers to the three stated lines of inquiry. The
main theorem is the following:

THEOREM 1 Let R be a Noetherian ring and I an ideal. Then there ex-
ists an integer k such that for all n ≥ 1 there exists an irredundant primary
decomposition In = q1 ∩ · · · ∩ ql such that

√
qi

nk ⊆ qi whenever ht (qi/I) ≤ 1.

Note that the theorem holds trivially if all of the associated primes of I are
minimal over I since the minimal primary components are uniquely determined.
Namely, if k is a positive integer such that P k is contained in the P -primary
component IRP ∩R of I for every minimal prime P over I (there are only finitely
many of them as R is Noetherian), then this k works also for all higher powers
of I. For let n be a positive integer. Then P kn ⊆ (IRP ∩ R)n ⊆ InRP ∩ R,
which is the P -primary component of In.

If P is not minimal over I, P -primary component of I is not uniquely de-
termined. In fact, it is not true that

√
qi

kn ⊆ qi for every irreducible primary
decomposition In = q1 ∩ · · · ∩ ql. We show this in an example:

Let R = k[X, Y ], a polynomial ring in two variables X and Y over a field
k. Let I = (X2, XY ). It is easy to verify that I = (X) ∩ (X2, XY, Y m) for
all positive integers m. Each one of these decompositions is an irredundant
primary decomposition, but for any integer k there exists an integer m such
that (X, Y )k 6⊆ (X2, XY, Y m). So the theorem can only hold for some primary
decompositions.

Before we prove the theorem we state two results needed in the proof:

THEOREM 2 (Ratliff [5]) Let I be an ideal in a Noetherian ring R. Then
∪n≥1Ass (R/In) is a finite set.

However, in general Ass (R/In) 6= Ass (R/I). Brodmann showed in [1] that
for large n, Ass (R/In) stabilizes.

THEOREM 3 (Katz-McAdam [4, (1.5)] ) Let R be a Noetherian ring. For
any ideal I there exists an integer l such that In : Jnl = In : Jnl+1 for all ideals
J and all n ≥ 0.

Actually, Katz and McAdam prove existence of such an integer l depending
on I and J , but their argument can be easily extended to show that there is an
l independent of J :

Proof: Let S = R[It, t−1], where t is an indeterminate over R. It is clear that
In :R J = (t−nS :S J) ∩ R for all n and all ideals J of R. Thus it suffices to
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show that there exists an integer l such that t−nS :S Jnl = t−nS :S Jnl+1 for
all n and all ideals J of S. So by replacing R by S we may assume without loss
of generality that I is a principal ideal generated by a regular element a.

Now let (a) = q1 ∩ · · · ∩ qs be a primary decomposition of I = (a). Let l be
such that (

√
qi)

l ⊆ qi for all i = 1, . . . , s.
We prove by induction on n that this l works for all ideals J . First assume

that n = 1. If J ⊆ √
qi then by the choice of l we have J l ⊆ qi. If, however,

J 6⊆ √
qi, then qi : J l = qi : J l+1 = qi as qi is primary. Thus I : J l = (q1 :

J l) ∩ · · · ∩ (qs : J l) = (q1 : J l+1) ∩ · · · ∩ (qs : J l+1) = I : J l+1, so we are done.
Now let n ≥ 1. It is enough to show that In : Jnl+1 ⊆ In : Jnl. Let x be

an element of In : Jnl+1. Then x ∈ In−1 : Jnl+1 and by induction assumption
x lies in In−1 : J (n−1)l. Let y be an element of J (n−1)l and z an element of
J l+1. Then xy lies in In−1, so xy = ban−1 for some b. As yz is in J ln+1, we
get that xyz lies in In, so xyz = can for some c. These two equations say that
can = bzan−1, hence that ca = bz. Since z is an arbitrary element of J l+1, this
says that b ∈ (a) : J l+1. So by induction assumption for n = 1 we get that
b ∈ (a) : J l. Now let w be an element of J l. Then xyw = ban−1w ∈ (an). This
holds for arbitrary y ∈ J (n−1)l and arbitrary w ∈ J l, so x ∈ In : Jnl.

Author’s original motivation for studying asymptotic properties of primary
decompositions of powers of an ideal was the question whether tight closure
commutes with localization. Part of this problem is determining asymptotic
properties of primary components of ideals of the form (xn1

1 , . . . , xns

s ). If the xi

form a regular sequence, a similar argument as above, together with an argument
from [3, Theorem 4.5], gives:

PROPOSITION 4 Let R be a Noetherian ring and x1, . . . , xs a regular se-
quence in R. Let l be as in Theorem 3 for I = (x1, . . . , xs). Then for any
n1, . . . , ns ≥ 1 and any ideal J ,

(xn1

1 , . . . , xns

s ) : J lN = (xn1

1 , . . . , xns

s ) : J lN+1,

where N = (
∑

ni) − s + 1.

Now we are ready to prove Theorem 1:
Proof: By the remark immediately after the statement of the theorem there
exists an integer k′ which works for all minimal associated primes. By Theorem 2
there are only finitely many prime ideals P1, . . . , Pt which are associated to some
power of I and are of height 1 over I. By prime avoidance we can choose an
element b contained in each one of these primes Pi but not contained in any
minimal prime over I. Let l be as in Theorem 3.

Claim 1: In = (In : bln) ∩ (In + (bln)).
Proof of claim 1: If a+rbln ∈ In : bln for some a ∈ In, then abln+rb2ln ∈ In.

Since a ∈ In then rb2ln ∈ In, so r ∈ In : b2ln = In : bln. Hence rbln ∈ In. The
other inclusion is easy.

Claim 2: Ass (R/(In : bln)) = {P ∈ Ass (R/In)|b 6∈ P}.
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Proof of claim 2: If P ∈ Ass (R/(In : bln)), then P = (In : bln) : c for some
c ∈ R. Then P = In : blnc, so P ∈ Ass (R/In). If b ∈ P = In : cbln, then
c ∈ In : bln+1 = In : bln, so P = In : cbln = R, which is impossible. Conversely,
if P ∈ Ass (R/In) and b is not in P , then P = In : c for some c ∈ R. As b is not
in P , P = P : bln = In : cbln, so P ∈ Ass (R/(In : bln)). This proves the claim.

It follows that {P ∈ Ass (R/In)|b ∈ P} ⊆ Ass (R/In + (bln)).
By the choice of b, each Pi is minimal over I + (bl). Let k′′ be such that

P k′′

i ⊆ (I + (bl))RPi
∩ R for all i. Then

P 2nk′′

i ⊆ (I + (bl))2nRPi
∩ R

⊆ (In + (bln))RPi
∩ R

which is the Pi-primary component of In + (bln) and by the claims also a (pos-
sibly redundant) Pi-primary component of In.

Finally, set k = max{k′, 2k′′}.
The question remains whether there are good primary decompositions with

similarly bounded properties for primary components of height greater than 1
over the chosen ideal.

Mark Johnson observed that the argument above shows that if (R, m) is a
regular local ring and P is a prime ideal of dimension 1, then k is bounded
below by 2

(

(ed!)1/d − d + 1
)

, where d = dim(R) and e = e(R/P ).

Proof: (Due to Johnson) We use notation from above. As mk′′ ⊆ P + (bl),

(

d + k′′ − 1

d

)

= λ
(

R/mk′′

)

≥ λ
(

R/(P + (bl))
)

.

But R/P is one-dimensional Cohen-Macaulay, so

λ
(

R/(P + (bl))
)

= em

(

R/(P + (bl))
)

≥ em (R/P ) .

Thus
(

d+k′′−1
d

)

≥ e and

(d + k′′ − 1)
d ≥ d!

(

d + k′′ − 1

d

)

≥ ed!,

from which we get

k = max{1, 2k′′} ≥ 2
(

(ed!)1/d − d + 1
)

.

Note that Theorem 1 may hold for smaller k, it is only the k from the proof
which has this lower bound.
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