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Let R be a Noetherian ring and I an ideal in R. Then there exists
an integer k such that for all n ≥ 1 there exists a primary decomposition
In = q1 ∩ · · · ∩ qs such that for all i,

√
qi

nk ⊆ qi.

Also, for each homogeneous ideal I in a polynomial ring over a field
there exists an integer k such that the Castelnuovo-Mumford regularity
of In is bounded above by kn.

The regularity part follows from the primary decompositions part, so the heart of this
paper is the analysis of the primary decompositions. In [S], this was proved for the primary
components of height at most one over the ideal.

This paper proves the existence of such a k but does not provide a formula for it.
In the paper [SS], Karen E. Smith and myself find explicit k for ordinary and Frobenius
powers of monomial ideals in polynomial rings over fields modulo a monomial ideal and
also for Frobenius powers of a special ideal first studied by Katzman. Explicit k for the
Castelnuovo-Mumford regularity for special ideals is given in the papers by Chandler [C]
and Geramita, Gimigliano and Pitteloud [GGP].

Another method for proving the existence of k for primary decompositions of powers
of an ideal in Noetherian rings which are locally formally equidimensional and analytically
unramified is given in the paper by Heinzer and Swanson [HS].

The primary decomposition result is not valid for all primary decompositions. Here
is an example: let I be the ideal (X2, XY ) in the polynomial ring k[X,Y ] in two variables
X and Y over a field k. For each positive integer m, I = (X) ∩ (X2, XY, Y m) is an
irredundant primary decomposition of I. However, for each integer k there exists an
integer m, say m = k + 1, such that (X,Y )k 6⊆ (X2, XY, Y m). Hence the result can only
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hold for some primary decompositions.

Section 1 contains the necessary background and some reductions towards the proof
of the main theorem on the primary decompositions. The reductions make it necessary
to prove a version of the “linear uniform Artin-Rees lemma” in the spirit of Huneke’s
paper [Hu]. This is done in Section 2. Section 3 contains the main results concerning the
primary decompositions and the regularity of powers of an ideal. Section 4 contains several
more versions of the uniform Artin-Rees lemma relating to powers of ideals and products
of powers of various ideals and some related questions.

1. Background

We first make the observation that if φ : R → S is a ring homomorphism and I

an ideal in S, then any primary decomposition I = q1 ∩ · · · ∩ qs of I gives a possibly
redundant primary decomposition φ−1(I) = φ−1(q1) ∩ · · · ∩ φ−1(qs) of the contraction of
I to R. Namely, each φ−1(qi) is primary to φ−1(

√
qi). In all our applications of this, φ

will be the inclusion homomorphism: by the observation then any primary decomposition
of an ideal I in S contracts to a primary decomposition of the contraction IS ∩R.

In the proof of the first theorem to come, we need the following well-known lemma:

Lemma 1.1: If a prime ideal in a Noetherian ring R is associated to some ideal generated
by a non zerodivisor, then it is associated to every ideal generated by a non zerodivisor that
it contains.

With this we prove a generalization of Ratliff’s theorem which is needed in Sections 3
and 4:

Theorem 1.2: (Ratliff [R]) Let I1, . . . , Id be ideals in a Noetherian ring R. Then the set
∪n1,...,nd

Ass (R/In1
1 · · · Ind

d ) of all associated prime ideals of R/In1
1 · · · Ind

d as the ni vary
over non negative integers, is finite.

Proof: First we reduce to the case when all the ideals Ii are principal and generated
by non zerodivisors. This we may do by first passing to the extended Rees ring S =
R[Iit, t

−1]: if we can prove the result for ideals I1S, . . . , Ii−1S, t−1S, Ii+1S, . . . , IdS, then
as primary decompositions of ideals in S contract to a primary decomposition in R and as
In1
1 · · · Ini−1

i−1 t−niI
ni+1
i+1 · · · Ind

d S ∩R = In1
1 · · · Ind

d , we are done.

Thus we may assume that all the ideals Ii are principal and generated by non zerodi-
visors.

2



To finish the proof of the theorem it now suffices to prove that when all the ni ≥ 1,
Ass (R/In1

1 · · · Ind

d ) is contained in Ass (R/I1 · · · Id). But this follows by the lemma.

The main results of this paper are about “linear” properties of powers of an ideal.
The following result of Katz and McAdam is the first step in this direction:

Theorem 1.3: (Katz-McAdam [KM, (1.5)]) Let R be a Noetherian ring. For any ideal
I there exists an integer l such that In : Jnl = In : Jnl+1 for all ideals J and all n ≥ 0.

Actually, Katz and McAdam prove the existence of such an integer l depending on I

and J , but their argument can be easily extended to show that there is an l independent
of J . A proof of this generalization appeared in [S], but I include it here for completeness:

Proof: Let S = R[It, t−1], where t is an indeterminate over R. It is clear that In :R J =
(t−nS :S J) ∩ R for all n and all ideals J of R. Thus it suffices to show that there exists
an integer l such that t−nS :S Jnl = t−nS :S Jnl+1 for all n and all ideals J of S. So
by replacing R by S we may assume without loss of generality that I is a principal ideal
generated by a regular element a.

Now let (a) = q1 ∩ · · · ∩ qs be a primary decomposition of I = (a). Let l be such that
(
√

qi)l ⊆ qi for all i = 1, . . . , s.

We prove by induction on n that this l works for all ideals J . First assume that
n = 1. If J ⊆ √

qi then by the choice of l we have J l ⊆ qi. If, however, J 6⊆ √
qi, then

qi : J l = qi : J l+1 = qi as qi is primary. Thus I : J l = (q1 : J l) ∩ · · · ∩ (qs : J l) = (q1 :
J l+1) ∩ · · · ∩ (qs : J l+1) = I : J l+1, so we are done.

Now let n ≥ 1. It is enough to show that In : Jnl+1 ⊆ In : Jnl. Let x be an
element of In : Jnl+1. Then x ∈ In−1 : Jnl+1 and by induction assumption x lies in
In−1 : J (n−1)l. Let y be an element of J (n−1)l and z an element of J l+1. Then xy lies in
In−1, so xy = ban−1 for some b. As yz is in J ln+1, we get that xyz lies in In, so xyz = can

for some c. These two equations say that can = bzan−1, hence that ca = bz. Since z is an
arbitrary element of J l+1, this says that b ∈ (a) : J l+1. So by induction assumption for
n = 1 we get that b ∈ (a) : J l. Now let w be an element of J l. Then xyw = ban−1w ∈ (an).
This holds for arbitrary y ∈ J (n−1)l and arbitrary w ∈ J l, so x ∈ In : Jnl.

In particular, if R is a local ring with maximal ideal m and I is a prime ideal of
dimension one, then mknI(n) ⊆ In, where I(n) denotes the n’th symbolic power of I. This
answers a question of Herzog’s in [He].

With this, we are ready for some reductions towards the main theorem:
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Main Theorem: (see Theorem 3.4) For every ideal I in a Noetherian ring
R there exists an integer k such that for all n ≥ 1 there exists an irredundant
primary decomposition In = q1 ∩ · · · ∩ qs such that

√
qi

nk ⊆ qi for all i.

We start outlining the proof here, but we complete it only in Section 3.

Let P be a prime ideal associated to some R/In. We want to prove that we can find an
integer k, independent of n but possibly dependent on P , for which there exists a primary
decomposition In = q1 ∩ · · · ∩ qs such that whenever P =

√
qi, then Pnk ⊆ qi. If we can

find such a k for each P , then as there are only finitely many such P (see Theorem 1.2),
we have proved the theorem.

Our strategy is to first localize at P : if we can prove that PnkRP ⊆ qiRP , then
certainly Pnk ⊆ qiRP ∩ R = qi. Thus we may assume that R is a local ring and that
P is the maximal ideal of R. We may also assume that the result is already known for
Q-primary components, Q properly contained in P , as those components do not affect any
possible P -primary components.

Let l be the Katz-McAdam’s constant for I, i.e., l has the property that for all integers
n and all ideals J ,

In : J ln = In : J ln+1.

Thus in particular if P is the maximal ideal in the ring, In : P ln = In : P ln+1, and this
is the intersection of all the primary components of In not primary to P . To simplify
notation we denote this ideal as I<n>. Note that In = I<n> ∩ (In + Pm) for all large
integers m and that this intersection decomposes into a primary decomposition of In. In
order to prove the main theorem we have to bound the least possible m above by a linear
function in n. One way of accomplishing this is to find some sort of “linear Artin-Rees”
lemma: namely, we want to find an integer k such that

Pm ∩ I<n> ⊆ Pm−knI<n> (∗)
for all m ≥ kn and all n. If we can do that, then by the choice of l for all m ≥ kn + ln,
Pm ∩ I<n> ⊆ Pm−kn−lnIn. Hence In = I<n> ∩ (In + P (k+l)n) gives a desired primary
decomposition of In.

We prove the linear Artin-Rees statement (*) for special I in Section 3 (see Theo-
rem 3.3) where we then also finish the proof of the main theorem for all I (see Theo-
rem 3.4).
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2. Artin-Rees Lemma (following [Hu])

The goal of this section is the following generalized Artin-Rees Lemma along the lines
of Huneke’s “Uniform bounds in Noetherian rings”:

(See Theorem 2.7.) Let R be a complete Noetherian local ring with infinite
residue field. Let N ⊆ M be finitely generated R modules. Then there exists an
integer k such that for all a satisfying a technical condition to be described later,
for all proper ideals J in R and for all integers m ≥ k, aJmM ∩N ⊆ aJm−kN .

The case a = 1 was proved with less restrictive hypotheses in [Hu, Theorem 4.12].

The case we need for the main theorem of this paper is when a = 1, M = R and N

equals I<n> for some n. The integer k in the statement of the goal certainly depends on
n. By using the statement for a large set of elements a, we prove in Theorem 3.3 that for
special I we can bound k(n) above by a linear function in n. The connection between the
statement and the promised linear bound for k(n) may not be immediately obvious and
we explain it in Section 3.

This section is somewhat technical and the reader may skip the rest of it.

Lemma 2.1: (Compare with [Hu, Proposition 2.2].) Let N ⊆ K ⊆ M be R modules and
let a be an element of R. Assume that there exist integers h and k such that for all ideals
J in R, aJmM ∩K ⊆ aJm−hK for all m ≥ h and aJmK ∩N ⊆ aJm−kN for all m ≥ k.
Then aJmM ∩N ⊆ aJm−h−kN for all m ≥ h + k.

The proof is straightforward. An important consequence is

Proposition 2.2: (Compare with [Hu, Proposition 2.2].) Let R be a Noetherian ring,
a an element of R and N ⊆ M two finitely generated R modules. Assume that 0 = K0 ⊆
K1 ⊆ · · · ⊆ Kt = M/N is a filtration of M/N such that Ki/Ki−1

∼= R/Pi, where Pi is an
ideal of R. Let ki be an integer satisfying

aJm ∩ Pi ⊆ aJm−kiPi

for all ideals J and all m ≥ ki. Then for all J and all m ≥ k1 + · · ·+ kt,

aJmM ∩N ⊆ aJm−k1−···−ktN.

Proof: It suffices to prove that if M/N ∼= R/P for some ideal P in R, then aJm ∩ P ⊆
aJm−kP implies aJmM ∩N ⊆ aJm−kN .

By assumption M = N + xR for some x ∈ M such that N :R x = P . Then aJmM ∩
N = aJmN + aJmx ∩ N . Let y ∈ aJmx ∩ N . Write y = arx for some r ∈ Jm. Then
ar is an element of aJm ∩ (N :R x) = aJm ∩ P ⊆ aJm−kP . Thus y = arx lies in
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aJm−kPx ⊆ aJm−kN .

The following is a technical lemma which will allow us to conclude the main result for
all ideals primary to the maximal ideals once we know the result for any minimal reduction:

Lemma 2.3: (Compare with [Hu, Lemma 3.1].) Let J , L, and P be ideals in a ring R

and let a be an element of R. Suppose that
(i) aLm ∩ P ⊆ aJm−kP for all m ≥ k,
(ii) Lm ∩ P ⊆ Jm−kP for all m ≥ k, and
(iii) Jm ⊆ Lm−h + P for all m ≥ h + 1.

Then aJm ∩ P ⊆ aJm−k−h−1P for all m ≥ k + h + 1.

Proof: We first prove

Jm ⊆ Lm−h + Jm−k−h−1P for all m ≥ h + k + 1. (#)

If m = h + k + 1, this is just (iii). Now assume (#) for some m ≥ h + k + 1. Multiply
through by J and use (iii):

Jm+1 ⊆ (JLm−h + Jm−k−hP ) ∩ (Lm+1−h + P ).

Let x ∈ Jm+1. Write x = u + v = y + z for some u ∈ JLm−h, v ∈ Jm−k−hP , y ∈ Lm+1−h

and z ∈ P . Then
u− y = z − v ∈ (JLm−h + Lm+1−h) ∩ P

⊆ Lm−h ∩ P

⊆ Jm−h−kP by (ii).

Thus x = (u− y) + y + v ∈ Jm−h−kP + Lm+1−h, which finishes the induction.

Hence aJm ∩ P ⊆ a(Lm−h + Jm−k−h−1P ) ∩ P ⊆ aLm−h ∩ P + aJm−k−h−1P ⊆
aJm−h−kP + aJm−k−h−1P .

In the proof of the main result of this section we proceed by induction on the dimension
of M/N : important ingredients in the induction step are elements which may be thought
of as “Cohen-Macaulayfiers”. We denote their set as CM(R):

Definition 2.4: (See [Hu, 2.11].) Let

F : 0 → Ft
ft−→Ft−1 → · · · → F1

f1−→F0

be a complex of finitely generated free R modules. We say that F satisfies the standard
condition on rank if rank (ft) = rank Ft and for 1 ≤ i < t, rank (fi)+rank (fi+1) = rank Fi.

Let I(fi) denote the ideal generated by the rank-size minors of fi. We say that F
satisfies the standard condition on height if ht (I(fi)) ≥ i for all i.
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With this, we define CM(R) to be the set of all elements x ∈ R such that for all
complexes F satisfying the standard rank and height conditions, xHi(F) = 0 for all i ≥ 1.

Lemma 2.5: (Compare with [Hu, Lemma 3.3].) Let R be a Noetherian ring and P

a prime ideal in R. Let a and c be elements of R not contained in P such that the
image of c in R/P lies in CM(R/P ). Let L be any ideal in R generated by elements
a1, . . . , ad such that ht (a1, . . . , ad)R/P = d. Then if there exists an integer k such that
aLm ∩ (P + cR) ⊆ aLm−k(P + cR) for all m ≥ k, then also

aLm ∩ P ⊆ aLm−kP

for all m ≥ k.

Note that this lemma does the inductive step: assuming the main result of this section
(Theorem 2.7) for all (N, M) such that dim(M/N) < dim(R/P ), we can prove it also for
the pair (P, R), but only for the special ideals L. However, Lemma 2.3, together with some
more technicalities, takes care of the rest of the ideals.

Proof of Lemma 2.5: First note that aLm∩P = aLm∩(P +cR)∩P ⊆ aLm−k(P +cR)∩P =
aLm−kP + aLm−kcR ∩ P . Thus it suffices to prove that aLm−kcR ∩ P lies in aLm−kP .
First note that aLm−kcR ∩ P equals c(aLm−k ∩ P ). Thus by the choice of c it suffices
to prove that aLm−k∩P

aLm−kP
lies in some Hi(F) for some F satisfying standard rank and height

conditions and for some i ≥ 1.

First let G be a minimal homogeneous free resolution of (X1, . . . , Xd)m−k in the
polynomial ring T = Z[X1, . . . , Xd]. Let the maps in the complex be called gi. It is well-
known that

√
I(gi) = (X1, . . . , Xd) for all i (cf. the proof of Lemma 3.3 in [Hu]). Let

G′ = G⊗T R, where the map T → R takes Xi to ai. Let F′ be the same as G′ except that
the last map is composed with multiplication by a. Namely, F′ equals

F′ : 0 → Gt
gt⊗1−−−→Gt−1 → · · · → G1 = R(m−k+d−1

m−k−1 ) af1−−−→G0 = R → 0,

where the entries of (the matrix) f1 are all the elements of a generating set of Lm−k. Note
that H0(F′) = R/aLm−k. We compare F′ with a free resolution H of R/aLm−k:

F′ : · · · G2 → R(m−k+d−1
m−k−1 ) af1−−−→ R → 0

∨

‖
‖
‖

‖
‖
‖

H : · · · R2 → R(m−k+d−1
m−k−1 ) af1−−−→ R → 0

where the leftmost vertical arrow exists because G2 is free and the second complex is
exact. Now tensor both complexes with ⊗RR/P and set F to be F′ ⊗R R/P . We get a
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surjective map from H1(F) = H1(F′⊗RR/P ) to H1(H⊗RR/P ) = Tor R
1 (R/aLm−k, R/P ) =

aLm−k∩P
aLm−kP

. As by assumption F satisfies the standard conditions on height and rank, then
cH1(F) = 0, so the lemma is proved.

Note that if P is the only maximal ideal of the ring, the conlusion of the lemma is
trivially true with k = 1 for all a in the ring. However, the conclusion of this lemma is
false if a is an element of P and P is not the maximal ideal. For this reason we need to
put restrictions on a in the main theorem (Theorem 2.7) of this section:

Definition 2.6: Let R be a complete Noetherian local ring and let N ⊆ M be finitely
generated R modules. We define the condition (C) inductively on dimension of M/N : if
dim(M/N) = 0, we say that all the elements of R satisfy the condition (C) with respect
to the pair (N,M). Now suppose that M/N has positive dimension. We say that an
element a satisfies the condition (C) with respect to (N,M) if there exists a prime filtration
0 = K0 ⊆ K1 ⊆ · · · ⊆ Kt = M/N of M/N (i.e., for each i, Ki/Ki−1

∼= R/Pi for some
prime ideal Pi in R), such that a satisfies the condition (C) with respect to each (Pi, R). It
remains to define the condition (C) with respect to (P, R) where P is a nonmaximal prime
ideal in R. By [Hu, Proposition 4.5 (i)] and the Cohen Structure Theorem, CM(R/P )
is nonzero. We say that a satisfies the condition (C) with respect to (P,R) if a is not
contained in P and if there exists an element c of R whose image in R/P is nonzero in
CM(R/P ) such that a satisfies the condition (C) with respect to (P + cR, R).

Note that an element satisfies the condition (C) with respect to (N, M) if and only
if it avoids a finite set of nonmaximal primes. Thus 1 satisfies (C) for all (N,M), and
an element a satisfies (C) with respect to (N, M) if and only if all of its powers satisfy
(C) with respect to (N, M). Note that by the Prime Avoidance Theorem there are always
elements satisfying (C) with respect to some (N, M) even in the maximal ideal.

With this we are ready to prove the main result of this section:

Theorem 2.7: (Compare with [Hu, Theorem 4.12].) Let R be a complete Noetherian
local ring with infinite residue field. Let N ⊆ M be finitely generated R modules. Then
there exists an integer k such that for all proper ideals J in R, for any element a in R

satisfying condition (C) with respect to (N,M), and for all m ≥ k, aJmM∩N ⊆ aJm−kN .

Proof: First note that it suffices to prove the theorem for ideals primary to the maximal
ideal m only, because then for an arbitrary J we have: aJmM∩N ⊆ ⋂

l a(J+ml)mM∩N ⊆⋂
l a(J + ml)m−kN ⊆ ⋂

l(aJm−k + ml)N = aJm−kN.

Consider a prime filtration of M/N as in the definition of the condition (C). Note that
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by the choice of Pi, a satisfies the condition (C) with respect to all these (Pi, R). Also,
for each of these Pi 6= m there exists some ci whose image is nonzero in CM(R/Pi), such
that a also satisfies the condition (C) with respect to (Pi + ciR, R).

Now we proceed as in [Hu, Theorem 3.4] using induction on dim(M/N). By using
Proposition 2.2 and the given prime filtration of M/N , it suffices to prove that for each
Pi there exists an integer k such that for all m-primary ideals J and for all m ≥ k,
aJm ∩ Pi ⊆ aJm−kPi.

If dim(R/Pi) = 0, then Pi is the maximal ideal m of R, and the theorem follows easily
with k = 1 for all a.

Now assume that d = dim(R/Pi) > 0. We rename Pi as P and ci as c. By induction
on dimension there exists an integer kc such that for all a satisfying the condition (C)
with respect to (N, M), for all m-primary ideals J and for all m ≥ kc, aJm ∩ (P + cR) ⊆
aJm−kc(P + cR).

Also, as in the proof of [Hu, Theorem 4.12], there exists an integer s and an element
t ∈ m \P such that for all ideals J in R/P , t multiplies the integral closure of JnR/P into
Jn−sR/P . (In the notation of [Hu], t ∈ Ts(R/P ). In fact, in this case Ts(R/P ) = R/P

by the Uniform Briançon-Skoda Theorem [Hu, Theorem 4.13].) We may assume either by
induction with a = 1 or by using Huneke’s [Hu, Theorem 4.12] that there exists an integer
kt such that for all ideals J and for all m ≥ kt, Jm ∩ (P + tR) ⊆ Jm−kt(P + tR).

We claim now that aJm ∩ P ⊆ aJm−kt−kc−s−1P for all m ≥ kt + kc + s + 1 and for
all m-primary ideals J .

As R/P has an infinite residue field, we may choose elements a1, . . . , ad in J whose
images in R/P generate a reduction of the image of J in R/P (see [NR, Section 5]). As we
may assume that J is m-primary, ht (a1, . . . , ad)R/P = d. Let L = (a1, . . . , ad)R. Then
by Lemma 2.5

aLm ∩ P ⊆ aLm−kcP ⊆ aJm−kcP (i) and (ii)

for all a ∈ R satisfying condition (C) with respect to (N, M) and for all m ≥ kc.

Now note that the integral closures of JR/P and LR/P are the same, so by the choice
of t, t(JR/P )m ⊆ (LR/P )m−s. Thus

tJm ⊆ (Lm−s + P ) ∩ (P + tR)

= Lm−s ∩ (P + tR) + P

⊆ Lm−s−kt(P + tR) + P

= Lm−s−kttR + P
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Modulo P then tJmR/P ⊆ Lm−s−kttR/P , so as t is not in P , JmR/P ⊆ Lm−s−ktR/P .
Thus

Jm ⊆ Lm−s−kt + P (iii)

for all m ≥ s + kt.

Now we apply Lemma 2.3 to the displayed equations (i), (ii) and (iii) to obtain that
aJm ∩ P ⊆ aJm−kt−kc−s−1P .

Note that the assumptions in this theorem are overly restrictive. However, they help
keep the notation simple and the statement is enough for the main theorem of the paper
which is to be proved in the next section.

3. Primary decompositions and regularity of powers of ideals

We first apply the main theorem of the previous section (Theorem 2.7) to the case
when M = R and N varies over powers of a special ideal:

Theorem 3.1: Let R be a complete Noetherian local ring with infinite residue field and
x an element of R which is not a zerodivisor. Then there exists an integer k such that
for any proper ideal J of R, for all integers n, all m ≥ kn and any element a in R which
satisfies the condition (C) with respect to the pair ((x), R),

aJm ∩ (x)n ⊆ aJm−kn(x)n.

Proof: Let 0 = K0 ⊆ K1 ⊆ · · · ⊆ Kt = R/(x) be a prime filtration of R/(x), i.e., each
Ki/Ki−1 is isomorphic to R/Pi for some prime ideal Pi in R. The Pi may not be distinct,
but to simplify notation we think of them as distinct.

Note that for every integer n, R/(x)n has a prime filtration in which each Pi occurs
n times and no other prime ideals occur in the filtration. This follows by induction, using
the fact that (xn)/(xn+1) ∼= R/(x) and using the short exact sequences

0 −→ (x)n/(x)n+1 −→ R/(x)n+1 −→ R/(x)n −→ 0.

By Theorem 2.7 there exists an integer ki such that for all proper ideals J in R and
all integers m ≥ ki,

aJm ∩ Pi ⊆ Jm−kiPi.

Let k =
∑

i ki. Then by Proposition 2.2, for all proper ideals J , all given elements a in R,
all n and all m ≥ kn, aJm ∩ (x)n ⊆ aJm−kn(x)n.

This proof also shows:

10



Proposition 3.2: Let x be a non zerodivisor in a complete Noetherian ring R. Then
an element a of R which satisfies the condition (C) with respect to the pair ((x), R) also
satisfies the condition (C) with respect to all ((xn), R).

A corollary is the promised uniform linear Artin-Rees lemma for symbolic powers:

Theorem 3.3: Let I be a principal ideal generated by a non zerodivisor in a Noetherian
local ring (R,P ). Let I<n> denote the intersection of all the primary components of In

which are not primary to P . Then there exists an integer k such that for all n and all
m ≥ kn,

Pm ∩ I<n> ⊆ Pm−knIn.

Proof: Let X be an indeterminate over R and S the completion of R[X]PR[X] in the
PR[X]-adic topology. As S is faithfully flat over R, I<n>S is the intersection of all
primary components of InS which are not primary to PS. Suppose that there exists an
integer k such that PmS ∩ I<n>S ⊆ Pm−knInS. Then Pm∩ I<n> ⊆ PmS ∩ I<n>S ∩R ⊆
Pm−knInS ∩ R =⊆ Pm−knIn, so we are done. Thus we may replace R by S and assume
that R is a complete local ring with infinite residue field.

Let a be an element of R such that a satisfies the condition (C) with respect to (I,R),
a lies in P but not in any other prime ideal associated to any power of I, and a is a non
zerodivisor. As all of these conditions on a just mean that a has to avoid finitely many
prime ideals properly contained in P , then by the Prime Avoidance Theorem a exists.
Thus by Theorem 3.1 there exists an integer k such that

alPm ∩ In ⊆ alPm−knIn

for all n, l, and all m ≥ kn. As a is not contained in contained in any associated prime
ideal of I<n>, then I<n> = In : al for all sufficiently large l. Thus as a is not a zerodivisor,
the displayed equation says that

Pm ∩ I<n> = Pm ∩ (In : al)(alPm ∩ In) : al ⊆ Pm−knIn.

Now we can prove the main theorem:

Theorem 3.4: For every ideal I in a Noetherian ring R there exists an integer k such
that for all n ≥ 1 there exists an irredundant primary decomposition In = q1∩· · ·∩qs such
that

√
qi

nk ⊆ qi for all i.

Proof: Suppose we can prove the theorem for the ideal (t−1) in R[It, t−1]. Then as
t−nR[It, t−1]∩R = In and as every primary decomposition of t−nR[It, t−1] contracts to a
primary decomposition of In, we have also proved the theorem for the ideal I in R. Thus
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without loss of generality we may assume that I is a principal ideal generated by a non
zerodivisor x.

As in the reductions at the end of Section 1, we may localize and assume that R is a
Noetherian local ring with maximal ideal P and it then suffices to find an integer k and
primary decompositions In = q1 ∩ · · · ∩ qs such that whenever

√
qi = P , then Pnk ⊆ qi.

Set I<n> to be the intersection of those primary components of In which are not
primary to P . Then by Theorem 3.3 there exists an integer k such that for all n and for
all m ≥ kn, Pm∩ I<n> ⊆ Pm−knIn. This means that In equals I<n>∩ (In +P kn), which
gives a desired primary decomposition of In.

For general ideals, it is very difficult to find the integer k which satisfies the theo-
rem. For one thing, computing the embedded components of primary decompositions of
arbitrary ideals is very difficult (see [EHV]). However, for monomial ideals in polynomial
rings, computing primary decompositions is quite fast, see for example [STV]. It turns out
that one can obtain k for monomial ideals even without any primary decomposition algo-
rithms: in [SS] Smith and I prove that if I and J are monomial ideals in the polynomial
ring K[x1, . . . , xd] over a field K and if l is the maximum of the degrees of elements in a
minimal monomial generating set, then for every integer n there exists a primary decom-
position In + J = q1 ∩ · · · ∩ qs such that

√
qi

2dln ⊆ qi for all i. Thus in this case, k = 2dl,
which is easily computable. For a more precise statement and for the analogous result for
Frobenius powers of I modulo J , refer to [SS].

A consequence of the existence of the integer k in Theorem 3.4 is that we can bound
the Castelnuovo-Mumford regularity of powers of ideals linearly in the powers. Namely,
for every homogeneous ideal I in a polynomial ring R = K[x1, . . . , xd] over a field K

there exists an integer k such that the regularity of In is bounded above by kn (see
Theorem 3.6 below). When dim(R/I) ≤ 1, Chandler [C] and Geramita, Gimigliano and
Pitteloud [GGV] found explicit formulas for upper bounds of the regularity of In. In higher
dimensions, the obstruction to finding explicit bounds is precisely the lack of understanding
in which degrees In and the saturation of In start agreeing (in our notation the saturation
of In is I<n> = ∪mIn : (x1, . . . , xd)m).

We say that I is m-saturated if I and its saturation agree in degrees m and higher.

Definition 3.5: Let I be a homogeneous ideal in the polynomial ring R = K[x1, . . . , xd]
over a field K. Let

0 −→ Fd −→ · · · −→ F1 −→ F0 −→ I −→ 0

12



be a minimal graded free resolution of I. Thus each Fi = ⊕R(−bij) for some integers bij .
We say that I is m-regular if bij − i ≤ m for all i and all j. The (Castelnuovo-Mumford)
regularity reg (I) of I is then defined to be the least integer m for which I is m-regular.

Theorem 3.6: Let I be a homogeneous ideal in the polynomial ring R = K[x1, . . . , xd]
of d variables over a field K. Then there exists an integer k such that reg (In) ≤ kn for
all n.

Proof: We proceed by induction on dim(R/I). If dim(R/I) = 0 (or 1 also) this is true by
[C] (or Theorem 1.1 in [GGP]). Thus we may assume that dim(R/I) > 0.

Note that the hypotheses or the conclusion of the theorem are unaffected if we replace
K by an infinite field extension. Thus we may assume that K is infinite to start with.
Hence there exists a homogeneous element h of degree 1 in R which avoids all the finitely
many prime ideals different from (x1, . . . , xd) which are associated to the powers of I. By
induction on the dimension then there exists an integer k1 such that reg (In+hR) ≤ k1n for
all n. Also, by Theorem 3.4 there exists an integer k2 such that In and the saturation I<n>

of In agree in degrees k2n and larger. Now let k = max{k1, k2}. Then by assumptions In

is kn saturated and In +h is kn-regular. Now we use a lemma of Bayer and Stillman ([BS,
(1.8) Lemma]) which says that if h is a form of degree one in R which is not a zerodivisor
on R modulo the saturation of J such that J is m-saturated and J +hR is m-regular, then
J is m-regular. By applying that we get that In is kn-regular.

4. More uniform Artin-Rees lemmas for powers of ideals

Similar techniques as in the proof of Theorem 3.4 show:

Theorem 4.1: Let I be an ideal in a Noetherian ring R. Then there exists an integer k

such that for all ideals J in R, for all integers n and for all m ≥ kn,

Jm ∩ In ⊆ Jm−knIn.

Proof: As in the proof of Theorem 3.4 we may assume that I is principal and generated
by a non zerodivisor. To prove that Jm ∩ In ⊆ Jm−knIn, it suffices to prove the inclusion
after localization at every prime ideal associated to Jm−knIn. By Theorem 1.2 there are
only finitely many such prime ideals, thus if we find a k for each one of them, we are done.
Hence we may localize and assume that R is a Noetherian local ring with, say, maximal
ideal P . As in the proofs in Section 3 we may pass to the completion of R[X]PR[X] in the
PR[X]-adic topology, whence we may apply Theorem 3.1 to complete the proof.
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Moreover, a similar but messier proof shows that given ideals I1, . . . , Il in a Noetherian
ring R, there exist integers ki, i = 1, . . . , l, such that for all ideals J , all integers ni ≥ 1
and all m ≥ k1n1 + · · ·+ klnl,

Jm ∩ In1
1 · · · Inl

l ⊆ Jm−k1n1−···−klnlIn1
1 · · · Inl

l .

The only new observation we need for this is that if x1, . . . , xl are non zerodivisors in R,
then R/xn1

1 · · ·xnl

l R has a prime filtration in which each of the prime ideals occurring in a
prime filtration of R/xiR occurs exactly ni times.

And this can be easily generalized to the following: Let I1, . . . , Il be ideals in a Noethe-
rian ring R. Then there exist integers ki, i = 1, . . . , l, such that

In1
1 ∩ · · · ∩ Inl

l ⊆ In1
1 ∩ · · · ∩ I

nl−2
l−2 ∩ I

nl−1−klnl

l−1 Inl

l

⊆ In1
1 ∩ · · · ∩ I

nl−3
l−3 ∩ I

nl−2−kl−1(nl−1−klnl)−klnl

l−2 I
nl−1−klnl

l−1 Inl

l etc.

This brings us to the multi-ideal version of the uniform Artin-Rees lemma:

Theorem 4.2: (Compare with [Hu, Theorem 4.12].) Let R be a Noetherian ring satisfying
at least one of the following conditions:
(i) R is essentially of finite type over a Noetherian local ring.
(ii) R is a ring of positive prime characteristic p and is module-finite over Rp (Rp is the

subring generated by pth powers of elements of R).
(iii) R is essentially of finite type over Z.

Then given any finitely generated R modules N ⊆ M there exists an integer k such
that for all integers l, for all ideals J1, . . . , Jl in R and all integers ni ≥ k, i = 1, . . . , l,

Jn1
1 · · · Jnl

l M ∩N ⊆ Jn1−k
1 · · · Jnl−k

l N.

Moreover, if R is a complete local Noetherian ring with infinite residue field and a satisfies
the condition (C) with respect to (N,M), then also (for a possibly different k)

aJn1
1 · · · Jnl

l M ∩N ⊆ aJn1−k
1 · · · Jnl−k

l N.

In Section 2 we proved the special case of this when l = 1 and the ring is complete
and local.

The proof proceeds as in Section 2 or as in [Hu], with some modifications:

1) As in Proposition 2.2, we may assume that M = R and N is a prime ideal P in R.

2) As in the proof of Theorem 2.7 we may assume that each Ji is primary to some
maximal ideal in R.

3) We define

T l(R) = {c ∈ R : ∃t such that cJn1
1 · · · Jnl

l ⊆ Jn1−t
1 · · · Jnl−t

l for all ideals Ji, all ni}
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(Here, the overline above an ideal stands for the integral closure.) Then the natural
generalizations of [Hu, Proposition 4.7] and [Hu, Theorem 4.10] (by using a multi-ideal
version of the Briançon-Skoda Theorem for Proposition 4.7 and a multi-Rees ring for
Theorem 4.10) show that for any R satisfying (i), (ii) or (iii), T l(R/P ) is nonzero for
all prime ideals P in R and, moreover, that ∩lT

l(R/P ) is nonzero.

4) As in the proof of [Hu, Theorem 4.12], CM(R/P ) is nonzero for every prime ideal P

in R.

5) (Compare with Lemma 2.3.) Let L1, . . . , Ll, J1, . . . , Jl, and P be ideals in R. For any
l-tuple (n1, . . . , nl), Jn stands for the ideal Jn1

1 · · · Jnl

l , and for any integer n, n stands
for the l-tuple (n, . . . , n). Let h and k be integers. Assume that

(i) aLm ∩ P ⊆ aLm−kP for all mi ≥ k,

(ii) Lm ∩ P ⊆ Lm−kP for all mi ≥ k, and

(iii) Jm ⊆ Lm−h + P for all mi ≥ h + 1.

Then aJm ∩ P ⊆ aJm−k−h−1P for all mi ≥ k + h + 1.

6) A multi-ideal version of Lemma 2.5 holds: Let elements a, c not lie in a prime ideal P

and assume that the image of c in R/P lies in CM(R/P ). Let L1, . . . , Ll be any d-
generated ideals in R such that for each i, i = 1, . . . , l, ht (LiR/P ) = d. Suppose that
for a given integer l there exists an integer k such that for all integers m1, . . . , ml ≥ k,
aLm ∩ (P + cR) ⊆ aLm−k(P + cR). Then for all m1, . . . ,ml ≥ k,

aLm ∩ P ⊆ aLm−kP.

Now the proof proceeds as in Theorem 2.7, except that if the ring is not local, we also
need to use some methods of the proof of [Hu, Theorem 3.4].

The corollary of this is that for every ideal I in a Noetherian ring R there exists an
integer k such that for all ideals J1, . . . , Jl and all m1, . . . , ml ≥ k,

Jm ∩ In ⊆ Jm−knIn.

A natural follow-up, which was actually my main motivation for studying these asymp-
totic properties of primary decompositions, is:

Open Question: Given elements x1, . . . , xl in a Noetherian ring R of positive prime
characteristic p, does there exist an integer k such that for all integers n there exists a
primary decomposition (xpn

1 , . . . , xpn

l ) = q1 ∩ · · · ∩ qs such that
√

qi
kµ(

√
qi)p

n ⊆ qi? Here,
µ( ) stands for the minimal number of generators.

In analogy with the proof of Theorem 2.7, one may want to start with something like

15



Theorem 1.2 for ideals (xpn

1 , . . . , xpn

l ) as n varies. However, Katzman gave a counterexam-
ple in [K]: if R is K[X, Y, t]/(XY (X + Y )(X + tY )), where K is a field of characteristic p

and X, Y, t are indeterminates, then the set ∪nAss (R/(Xpn

, Y pn

)) is infinite. Nevertheless,
Smith and I verified that the stated open question and the analog of the Katz-McAdam’s
Theorem 1.3 do hold in this example (see [SS]). We also proved that the stated open ques-
tion has a positive answer when the xi are monomials and R is a polynomial ring modulo
a monomial ideal (see [SS] for precise statements).

In general, even the analog of the Katz-McAdam theorem is an open question for
ideals of the form (xpn

1 , . . . , xpn

l ) as n varies. The following special case is known: if the xi

form a regular sequence, a similar argument as in Theorem 1.3, together with an argument
from [HH, Theorem 4.5], gives:

Proposition 4.3: Let R be a Noetherian ring and x1, . . . , xs a regular sequence in R. Let
l be as in Katz-McAdam’s theorem for I = (x1, . . . , xs). Then for any n1, . . . , ns ≥ 1 and
any ideal J ,

(xn1
1 , . . . , xns

s ) : J lN = (xn1
1 , . . . , xns

s ) : J lN+1,

where N = (
∑

ni)− s + 1.

Acknowledgement: I thank Karen Smith for all the discussions regarding this material
and for all the suggestions which helped improve the clarity of this presentation.
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