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Primary decompositions

The aim of these lectures is to show that primary ideals, and also primary mod-
ules, are an important tool for solving problems, proving theorems, understanding
the structure of rings, modules, and ideals, and that there are enough of them to
be able to apply the theory.
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1. Primary ideals

This section contains the basic definitions. Throughout all rings are commutative
with identity, and most of them are Noetherian.

Definition 1.1. An ideal I in a ring R is primary if I 6= R and every zerodivisor
in R/I is nilpotent.
Examples 1.2. Here are some examples of primary ideals:

(1) Any prime ideal is primary.
(2) For any prime integer p and any positive integer n, pnZ is a primary ideal

in Z.
(3) More generally, let m be a maximal ideal in a Noetherian ring R. Let I

be any ideal in R such that
p
I = m. Then I is a primary ideal. Namely,

if r 2 R is a zerodivisor modulo I, then as R/I is Artinian with only one
maximal ideal, necessarily the image of r is in this maximal ideal. But then
a power of r lies in I.

Lemma 1.3. Let I be a primary ideal in a ring R. Then
p
I is a prime ideal.
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Proof: Let r, s 2 R such that rs 2
p
I. Then there exists a positive integer n such

that rnsn = (rs)n 2 I. If sn 2 I, then s 2
p
I, and we are done. So suppose that

s
n 62 I. As rnsn 2 I and as I is primary, rn is nilpotent on R/I. Thus r 2

p
I.

Definition 1.4. Let I be a primary ideal in R and P =
p
I. Then I is also called

P -primary.

The condition that
p
I be a prime ideal P does not guarantee that I is P -primary,

or primary at all. For example, let R = k[X,Y ] be a polynomial ring in variables
X and Y over a field k. Let I be the ideal (X2

, XY ). Then
p
I = (X) is a prime

ideal in R. However, I is not primary as Y is a zerodivisor on R/I, but it is not
nilpotent.
In algebraic geometry an algebraic set (a variety) can be decomposed as a union

of irreducible algebraic sets. In the standard correspondence between algebraic
sets and ideals, algebraic sets correspond to radical ideals and irreducible algebraic
sets correspond to prime ideals. Thus the decomposition of algebraic sets into
irreducible ones corresponds to writing a radical ideal as an intersection of prime
ideals. For example, the zero set of X3 �XY

3 in R2 can be drawn as

Clearly this algebraic set is the union of the vertical line X = 0 and the curve
X

2 � Y
3 = 0, which correspond to prime ideals (X) and (X2 � Y

3). Thus (X3 �
XY

3) = (X) \ (X2 � Y
3) reflects the primary (even prime) decomposition.

Now here are two ways to draw the zero set of the polynomials in the ideal
(X2

, XY ):

and

In the picture on the right we are emphasizing that the functions X
2
, XY vanish

at the origin (0, 0) to order 2. Clearly (X2
, XY ) = (X) \ (X2

, XY, Y
2). The

vanishing along the line X = 0 to order 1 is encoded in the intersectand (X),
and the vanishing to second order at the origin is expressed by the intersectand
(X,Y )2 = (X2

, XY, Y
2). Indeed, (X2

, XY ) = (X) \ (X2
, XY, Y

2) is a primary
decomposition.
Thus primary decompositions can contain also the information on the vanishing

along the components, even the embedded ones. More generally there is the famous
Zariski-Nagata theorem:

Theorem 1.5. (Zariski, Nagata) Let k be an algebraically closed field of charac-
teristic zero and R a polynomial ring over k. Let P be a prime ideal in R. For
all positive integers n, let Pn be the set of all elements of R which vanish along
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the zero set of P to order at least n. Then Pn equals the smallest P -primary ideal
containing P

n.

Remark 1.6. The smallest P -primary ideal containing P
n is called the nth sym-

bolic power of P , and it exists in every Noetherian ring. We will prove this existence
in Section 3 as a consequence of the existence of primary decompositions.

2. Primary modules
One can, more generally, develop the analogous theory for modules. We proceed

to do so not just for the sake of generality, but because we will need the results
for modules to establish the desired results for ideals. See for example proof of
Proposition : the result for ideals uses the theory of primary decompositions for
modules.

Definition 2.1. Let R be a Noetherian ring and M a finitely generated R-module.
A submodule N of M is said to be primary if N 6= M and whenever r 2 R,
m 2 M \N , and rm 2 N , then there exists a positive integer n such that rnM ✓ N .

In other words, N is primary in M if and only if for any r 2 R, whenever
multiplication by r on M/N is not injective, then it is nilpotent as a function.
Observe that N is primary in M if and only if 0 is primary in M/N .
Here are some examples of primary modules:

(1) If I is a primary ideal in a ring R, then I is also a primary submodule of
R, when the ring is thought of as a module over itself.

(2) If P is a prime ideal in a ring R, then for any positive integer n, P � · · ·�P

(n copies) is a primary submodule of Rn.
Lemma 2.2. Let N ✓ M be a primary submodule. Then

p
N :R M is a prime

ideal.

Proof: Let r, s 2 R such that rs 2
p
N :R M . Then there exists a positive integer

n such that (rs)n 2 N :R M . Thus rnsnM ✓ N . If snM ✓ N , then s 2
p
N :R M ,

and we are done. So suppose that snM 6✓ N . Choose m 2 M such that snm 62 N .
Then r

n(snm) 2 N , so that as N is primary in M , multiplication by r
n on M/N

is nilpotent. Thus r 2
p
N :R M .

Definition 2.3. Let N ✓ M be a primary submodule. Then N is also called
P -primary, where P is the prime ideal P =

p
N :R M .

Primary modules generalize the notion of primary ideals, and here is another
connection:

Lemma 2.4. Let R be a ring, P a prime ideal in R, M an R-module, and N a
P -primary submodule of M . Then N :R M is a P -primary ideal.

Proof: Set I = N :R M . Then by definition,
p
I = P . Let r, s 2 R such that rs 2 I

and s 62 P . As P is a prime ideal, then r 2 P . Hence for some positive integer
n, rn 2 I. Choose n to be smallest possible. Then r

n�1
M 6✓ N . Choose m 2 M

such that r
n�1

m 62 N . If n > 1, as sr
n�1

m 2 N , it follows that s
l
M ✓ N for

some positive integer l, whence sl 2 I ✓ P , which is a contradiction. So necessarily
n = 1, so r 2 I.

The converse fails in general:
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Example 2.5. Let R be a Noetherian ring, P ( Q prime ideals, M = R � R,
N = P � Q. Then N :R M = P , but N is not P -primary. Namely, choose
r 2 Q \ P , and set m = (0, 1) 2 M \N . Then rm 2 N , yet rn(1, 0) is not in N for
any n, so that rnM is not a submodule of N for any n.
Lemma 2.6. The intersection of any two P -primary submodules of M is P -
primary.

Proof: Let N,N
0 be P -primary submodules. Let r 2 R. Let m 2 M \ N \ N

0

such that rm 2 N \ N
0. By assumption m 62 N or m 62 N

0. But both N and
N

0 are primary. If m 62 N , then r
n
M ✓ N for all large n, and if m 62 N

0, then
r
n
M ✓ N

0 for all large n. In any case, a power of r is in P , thus r 2 P . It follows
that r 2

p
(N : M)\

p
N 0 : M =

p
(N : M) \ (N 0 : M) =

p
(N \N 0) : M , so that

r
n
M ✓ N \N

0 for all large n. Thus N \N
0 is primary to P .

Lemma 2.7. Let R be a ring, P a prime ideal, M an R-module, andN a P -primary
submodule of M . Then for any r 2 R,

N :M r =

8
><

>:

N, if r 62 P

M, if r 2 N :R M

a P -primary submodule of M strictly containing N, if r 2 P \ (N :R M)

Proof: First assume that r is not in P . Let m 2 (N :M r) \N . Then rm 2 N , and
by definition of primary modules, rn 2 N :R M ✓ P for some positive integer n.
Thus r 2 P , contradiction. Thus N :M r = N whenever r 62 P .
If r 2 N :R M , clearly N :M r = M .
Now assume that r 2 P \ (N :R M). Let x 2 R and m 2 M \ (N :M r) such that

xm 2 N :M r. Then rm 62 N and xrm 2 N . As N is P -primary, xn
M ✓ N for

some positive integer n. This means that x 2 P and that xn
M ✓ N :M r, so that

N :M r is P -primary. Furthermore, r 62 N :R M , and by definition of P -primary,
r
n 2 N :R M for some n. Let n be minimal such integer. Then n > 1, and there
exists m 2 M such that rn�1

m 62 N . Thus N :M r contains N and r
n�1

m, so that
it contains N properly.
Lemma 2.8. Let R be a ring, P a prime ideal, and M an R-module. Assume that
N is a P -primary submodule of M . Then for any m 2 M ,

N :R m =

(
R, if m 2 N ;

a P -primary ideal containing N :R M, if m 62 N .

Moreover, if P is finitely generated, there exists m 2 M such that N : m = P .

Proof: Certainly N :R m = R if m 2 N . Now assume that m 2 M \ N . Let
x, y 2 R such that xy 2 N :R m. Assume that y 62 N :R m. Then ym 62 N and
xym 2 N , so that by the definition of primary modules, xn

M ✓ N for some n.
Thus xn 2 N :R M ✓ P , which proves that N :R m is a P -primary ideal.
Now assume that P is finitely generated. As N is P -primary in M , by the

previous part, N :R m is P -primary. As P is finitely generated, there exists a
positive integer n such that P

n ✓ N :R m. Choose n to be smallest integer with
this property. Then n � 1, and there exists r 2 P

n�1 such that r 62 N :R m. Then
N :R rm = (N :R m) :R r is P -primary by Lemma 0.7, and as it contains P , it
equals P .
Lemma 2.9. Let R be a ring, U a multiplicatively closed subset of R, and N ✓ M

R-modules.
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(1) If N is primary in M and (N :R M) \ U 6= ;, then U
�1

N = U
�1

M .
(2) If N is primary in M and (N :R M) \ U = ;, then U

�1
N is primary in

U
�1

M .
(3) There is a one-to-one correspondence between primary submodules N of M

such that (N :R M) is disjoint from U and primary submodules of U�1
M .

The correspondence is given by N 7! U
�1

N for N a submodule in M , and
K 7! K \M for K a submodule of U�1

M .

Proof: Let N be a primary submodule in M . Part (1) follows trivially. Assume
hypotheses of (2). Let x 2 R, m 2 M , u, v 2 U , such that (x/u)(m/v) 2 U

�1
N .

Assume that m/v 62 U
�1

N . Then m 62 N , and there exists w 2 U such that
wxm 2 N . Thus (wx)nM ✓ N for some integer n, and wx 2

p
N :R M , which is a

prime ideal. But by the assumption on U then x 2
p
N :R M . Hence x/u is in the

radical of U�1
N :U�1R U

�1
M , which proves that U�1

N is primary to U
�1

P .
Now let K be primary in U

�1
M , and set N = K \ M . Then N 6= M . Let

m 2 M \ N and r 2 R such that rm 2 N . Then m 62 K and rm 2 U
�1

N ✓ K.
Thus for some positive integer n, rnU�1

M ✓ K. Thus rnM ✓ K \M = N , which
proves that N is primary.
Furthermore, it is always true that N ✓ U

�1
N \M and U

�1(K \M) = K. If
m 2 U

�1
N \ M , then wm 2 N for some w 2 U . If m 62 N , then w 2 N :M m,

which is in
p
N :R M by Lemma 0.8. But this contradicts the assumption that

N is primary to a prime ideal disjoint from U . This establishes the one-to-one
correspondence.

Thus the primary property is preserved under many localizations. It is also
preserved under passage to a polynomial extension:

Proposition 2.10. Let R be a ring, X a variable over R, M an R-module and
N a primary submodule. Then NR[X] is a primary R[X]-submodule of MR[X].
Furthermore, if N is a P -primary submodule of M , then NR[X] is PR[X]-primary
submodule of MR[X].

Proof: It is easy to see that NR[X] 6= MR[X]. Let m 2 MR[X] \ NR[X],

r 2 R[X] such that rm 2 NR[X]. Write r =
P

j1

i=j0
riX

i, m =
P

k1

i=k0
siX

i, for
some ri 2 R, si 2 M , with rj1 6= 0, sk1 62 N . We proceed by induction on j1 � j0.
As rm 2 NR[X], then rj1sk1 2 N . As N is primary in M , there exists a positive
integer n such that r

n

j1
2 N :R M . In particular, rn

j1
m 2 NR[X]. Let a be the

smallest integer such that r
a

j1
m 2 NR[X]. Then a � 1 and r

a�1
j1

m 62 NR[X].

Set m
0 = r

a�1
j1

m. Then rm
0 2 NR[X], and rj1X

j1m
0 2 NR[X]. It follows that

(r � rj1X
j1)m0 2 NR[X]. But r � rj1X

j1 has strictly fewer terms than r, so by
induction, r � rj1X

j1 2
p
NR[X] :R[X] MR[X]. Thus r 2

p
NR[X] :R[X] MR[X].

The last part follows easily.

It is not true that the passage to a faithfully flat extension preserves the primary
property. For example, let R be the ring R[X]/(X2 +1). Let S be C[X]/(X2 +1).
Then S is a faithfully flat extension of R. In R, the zero ideal is a prime ideal,
hence primary. However, the zero ideal in S is not primary, as X2 + 1 factors over
C into two distinct irreducible factors.
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3. Primary decompositions
Definition 3.1. Let R be a ring, M an R-module and N a submodule. A primary
decomposition of N is an expression of N as a finite intersection of primary sub-
modules of M . In other words, a primary decomposition of N is N = N1\ · · ·\Ns,
where each Ni is primary in M .

Note that N has a primary decomposition N = N1 \ · · · \Ns if and only if 0 in
M/N has a primary decomposition 0 = N1/N \ · · · \Ns/N .
Primary decompositions exist for Noetherian modules, as we prove below.
Most of the time we will work with ideals, so for emphasis we state explicitly the

definition of primary decompositions for ideals:

Definition 3.2. Let I be an ideal in a ring R. A decomposition I =
s\

i=1

qi is a

primary decomposition of I if the q1, . . . , qs are primary ideals.

One of course wants a constructive method to obtain primary decompositions.
The following lemma is a step in that direction:
Lemma 3.3. Let R be a ring, M a Noetherian R-module, N a submodule of M ,
and r 2 R. Then there exists a positive integer n such that N :M r

n = N :M r
n+1,

and then for all m � n, N :M r
m = N :M r

n and N = (N :M r
m) \ (N + r

m
M).

Proof: For any elements r, s 2 R, N :M r ✓ N :M rs. In particular, N ✓ N :M
r ✓ N :M r

2 ✓ · · · is an ascending chain of submodules in M . As M is Noetherian,
there exists n such that N :M r

n = N :M r
n+1. Assume that m > n + 1. If

s 2 N :M r
m, then r

m�1
rs 2 N , so by induction on m, rnrs 2 N , whence rns 2 N .

This proves that N :M r
n = N :M r

m for all m � n.
Certainly N ✓ (N : rm) \ (N + r

m
M). Let s 2 (N : rm) \ (N + r

m
M). Write

s = a + r
m
b for some a 2 N and b 2 M . Then sr

m = ar
m + r

2m
b 2 N , so that

r
2m

b 2 N . By the first part then r
m
b 2 N , so that s = a + r

m
b 2 N . Thus

N = (N : rm) \ (N + r
m
M).

In general, an ascending chain of submodules in a Noetherian module need not
stabilize as soon as two consecutive submodules are equal, but the proof above
shows that this is the case for the chain N ✓ N :M r ✓ N :M r

2 ✓ N :M r
3 ✓

N :M r
4 ✓ · · · . This makes the computation of its stable value feasible.

The stable value of the chain N ✓ N :M r ✓ N :M r
2 ✓ N :M r

3 ✓ · · · is
typically denoted as N :M r

1, but no meaning is attached to the notation r
1. If I

is an ideal, the stable value of I ✓ I : r ✓ I : r2 ✓ I : r3 ✓ · · · is similarly denoted
as I : r1.
Theorem 3.4. Let R be a ring, and M a Noetherian R-module. Then any proper
submodule N of M has a primary decomposition.
In particular, every proper ideal I in a Noetherian ring R has a primary decom-

position.

Proof: If N is primary, we are done. So assume that N is not primary. Let r 2 R,
m 2 M \N such that rm 2 N and r

n
M 6✓ N for any positive integer n. As M is

Noetherian, the chain N ✓ N :M r ✓ N :M r
2 ✓ · · · terminates. Choose n such

that N :M r
n = N :M r

n+1 = · · · . Let N
0 = N :M r

n, N 00 = (N + r
n
M). Then

both N
0 and N

00 properly contain N . By Lemma 0.3, N = N
0 \N

00, so it su�ces
to find primary decompositions of N 0 and N

00. But this we can do by Noetherian
induction.
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We summarize the procedure from the proof above formally for the case of ideals:
Procedure 3.5. Let I be an ideal in a Noetherian ring R, and r, s 2 R such that
r 62

p
I, s 62 I, rs 2 I.

1. Find n such that I : r1 = I : rn.
2. Set I 0 = I + (rn), I 00 = I : rn. Then I = I

0 \ I
00.

3. To find a primary decomposition of I, it su�ces to find primary decomposi-
tions of strictly larger ideals I 0 and I

00.

Note that Procedure 0.5 does not say how one can find the appropriate zero
divisors r, s modulo an ideal in order to compute its primary decomposition. Fur-
thermore, the procedure gives no indication on how to determine whether an ideal
is primary.
Nevertheless, the procedure can be used successfully to compute some examples:

Example 3.6. Let I be the ideal I = (X2
, XY ) in the polynomial ring k[X,Y ].

Observe that X 62 I, Y 62
p
I = (X), but that XY 2 I. So by Procedure 0.5,

we need to find I : Y 1. Clearly I : Y = (X) = I : Y 1, so, as in the proof,
I = (I : Y 1) \ (I + (Y )) = (X) \ (X2

, Y ). But (X) is prime, hence primary, and
(X2

, Y ) is primary by Example 0.2 (3), as its radical is a maximal ideal. Thus
(X) \ (X2

, Y ) = I is a primary decomposition of I.
If we repeat the same procedure with elements X and Y

n in place of X and Y ,
then we obtain the decomposition I = (X) \ (X2

, XY, Y
n), which is a primary

decomposition by the same reasoning as the one above.

This example shows that primary decompositions are not unique. See Lemma for
a formalization of this.
If, furthermore, we repeat the procedure above with elements X and Y (Y �1) in

place of X and Y , then we obtain the decomposition I = (X)\(X2
, XY, Y (Y �1)).

The component (X) is primary, but the component J = (X2
, XY, Y (Y �1)) is not:

Y (Y � 1) 2 J , Y 62 J and Y � 1 62
p
J = (X,Y (Y � 1)). Then J : (Y � 1)1 =

(X2
, Y ) = J : (Y �1) is primary, and J +(Y �1) = (X,Y �1) is also primary as it

is a prime ideal. Thus by Lemma 0.3 or by Procedure 0.5, J = (X2
, Y )\(X,Y �1),

whence I = (X) \ (X2
, Y ) \ (X,Y � 1) is also a primary decomposition.

However, observe that the component (X,Y � 1) in the last decomposition is
redundant as it contains the component (X). We next formalize the notion of
irredundancy or minimality:

Definition 3.7. A primary decomposition N = N1 \ · · · \ Ns of a submodule N

of M is irredundant or minimal if

(1) the prime ideals
p
N1 :R M, . . . ,

p
Ns :R M are distinct, and

(2) for all j = 1, . . . , s, N 6=
\

i 6=j

Ni.

Explicitly for ideals, a primary decomposition I = q1 \ · · · \ qs of ideal I is an
irredundant or minimal decomposition if

p
q1, . . . ,

p
qs are all distinct, and for any

i 2 {1, . . . , s}, \j 6=iqj 6= I.
Irredundant decompositions exist whenever primary decompositions exist:

Proposition 3.8. Let R be a ring, M an R-module and N a submodule of M . If N
has a primary decomposition, then N has an irredundant primary decomposition.

Proof: Write N = N1 \ · · · \ Ns, with each Ni primary. By Lemma 0.6, we may
combine any two Ni with the same radical to obtain another primary module. Thus
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once a primary decomposition is given, a primary decomposition satisfying (1) is
easy to obtain. If for some j, the condition (2) is not satisfied, then we remove the
jth component from the decomposition. By repeating this step, in finitely many
steps we obtain a primary decomposition satisfying (1) and (2).
Proposition 3.9. Let N ✓ M be modules over a ring R. Assume that N has an
irredundant primary decomposition N = N1 \ · · · \Ns. Then

{
p
Ni :R M | i = 1, . . . , s} = {P 2 SpecR | P is minimal over N :R m for some m 2 M}.

This set is independent of the irredundant primary decomposition and contains all
prime ideals in R which are minimal over N :R M .
If R is Noetherian, then

{
p
Ni :R M | i = 1, . . . , s} = {P 2 SpecR | P = N :R m for some m 2 M}.

Proof: For j = 1, . . . , s, let Pj =
p
Nj :R M . By Lemma 0.2, Pj is a prime ideal.

For each j 2 {1, . . . , s}, choose mj 2 \i 6=jNi \ Nj . Then N :R mj =
\

i

(Ni :

mj) = Nj : mj , which is primary to Pj by Lemma 0.8. Thus by the same lemma,
if R is Noetherian, there exists m 2 M such that N :R m = P . This proves that
each Pj is in the set {P 2 SpecR | P is minimal over N : m for some m 2 M}, or
in case of Noetherian ring, in the set {P 2 SpecR | P = N : m for some m 2 M}.
Now let P be a prime ideal minimal over N : m for some m 2 M . Then P is

minimal over N : m =
s\

i=i

(Ni : m), so necessarily there exists j 2 {1, . . . , s} such

that P is minimal over Nj : m. But then by Lemma 0.8, necessarily P = Pj .
This proves the displayed equality, and hence that the set is independent of the
irredundant primary decomposition.

Now assume that P is minimal over N :R M . As N :R M =
\

i

(Ni :R M), it

follows that P is minimal over some Nj :R M . But then by Lemma 0.2, P = Pj .

The unique set in the theorem above has a name:

Definition 3.10. Let N ✓ M be modules over a ring R. The set

{P 2 SpecR | P is minimal over N :R m for some m 2 M}

is called the set of weakly associated primes of M/N , and is denoted gAss(M/N).
If I is an ideal, the weakly associated primes of the ideal I are the weakly associ-

ated primes of the module R/I.

Note that gAss(M/N) does not depend on N and M , but only on the module
M/N . Thus to simplify notation, from now on we will usually talk about (weakly)
associated primes and primary decompositions of the zero submodule in a module.
Sometimes, for clarity, if M is a module over two rings, we will write gAssR(M) to
denote the set of weakly associated primes of M as an R-module.
It is possible that the zero submodule of M does not have a primary decompo-

sition, yet one can define associated primes of M .
Remark 3.11. There are several variant definitions of associated primes in the
literature. The following are from Iroz-Rush and Divaani-Aazar-Tousi :
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(1) If P is minimal over 0 :R m for some m 2 M , then P is, as above, called a
weakly associated prime of M . Sometimes P is also called a weak Bourbaki
prime of M .

(2) If P equals 0 :R m for some m 2 M , then P is called an associated prime
of M , or a Bourbaki prime of M .

(3) If P is a Bourbaki prime of M/0P \M , then P is called a Noether prime
of M .

(4) If 0 :R m is P -primary for some m 2 M , then P is called a Zariski-Samuel
prime of M .

(5) If for every x 2 P there exists m 2 M such that x 2 0 :R m ✓ P , then P

is called a Krull prime of M .
(6) If for every finitely generated ideal I ✓ P there exists m 2 M such that

I ✓ 0 :R m ✓ P , then P is called a strong Krull prime of M .
(7) If there exists a multiplicatively closed subset U of R such that U

�1
P is

a maximal ideal in the set of zerodivisors in U
�1

R on U
�1

M , then P is
called a Nagata prime of M .

(8) If there exists a submodule N of M such that P = 0 :R N , then P is called
a Divaani-Aazar-Tousi prime of M .

By convention, the zero module has no associated primes of any type.
All the primes above are the same if R is Noetherian and M is finitely generated,

see Exercise 3.12. But these notions need not agree in general. For example, let k
be a field and t, x1, x2, . . . , y1, y2, . . . variables over k. Let

R = k[t, x1, y1, x2, y2, . . .]/(txiyi | i)(yii | i),
P = (xi | i)R, and Q = (yi | i)R. Then P is minimal over 0 :R ty1, but P is not
the radical of 0 :R m for any m 2 M . Also, Q is the radical of 0 : tx1y1 but Q is
not 0 : N for any N ✓ M .
For Noetherian rings and modules at least, the following definition of associated

primes is more standard:

Definition 3.12. Let N ✓ M be modules over a ring R. The set

{P 2 SpecR | P = N :R m for some m 2 M}
is called the set of associated primes of M/N , and is denoted Ass(M/N) or AssR(M/N)
to make the underlying ring clear. If I is an ideal, the associated primes of the ideal
I are the associated primes of the module R/I.

Associated primes and primary decompositions localize in a natural way:

Corollary 3.13. Let M be an R-module, and U any multiplicatively closed subset
of R. Then

gAss(U�1(M)) = {U�1
P | P 2 gAss(M), P \ U = ;},

and if R is Noetherian,

Ass(U�1(M)) = {U�1
P | P 2 Ass(M), P \ U = ;}.

If 0 has an irredundant primary decomposition 0 =
\

i

Ni, then

U
�10 =

\

U\(Ni:RM)=;

U
�1

Ni
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is an irredundant primary decomposition if U�10 6= U
�1

M .

Proof: Let P 2 gAssM (resp. in AssM). Then there exists m 2 M such that P is
minimal over 0 :R m (resp. P = 0 :R m). If U \ P = ;, then U

�1
P is minimal over

U
�10 :U�1R m (resp. U�1

P = U
�10 :U�1R m). Thus U

�1
P 2 gAssU�1

M , (resp.
U

�1
P 2 AssU�1

M).

Now let U
�1

P 2 gAssU�1
M (resp. in AssU�1

M). Then P \ U = ; and there
exists m 2 M such that U

�1
P is minimal over U

�10 :U�1R m (resp. U�1
P =

U
�10 :U�1R m). But then P is minimal over 0 :R m, and in particular P 2 gAssM .

If R is Noetherian, then by Proposition 0.9, P 2 Ass(0 :R m), hence in AssM .
This proves that the (weakly) associated primes localize as stated.

Now let 0 =
\

i

Ni be an irredundant primary decomposition. Let Pi =
p
Ni :R M .

By Proposition 0.9, P1, . . . , Ps are the weakly associated primes of M . After
reindexing, assume that Pi \ U = ; for i = 1, . . . , r, and that Pi \ U 6= ; for
i = r + 1, . . . , s. By Lemma 0.9, U�1

Ni is primary to U
�1

Pi for i = 1, . . . , r, and
U

�1
Ni is U�1

M for i > r.
Localize the primary decomposition at U : as U

�10 6= U
�1

M , r � 1, and so

U
�10 =

r\

i=0

U
�1

Ni is a primary decomposition. It is an irredundant primary de-

composition because we have proved that the localizations of P1, . . . , Pr are (weakly)
associated.

We proved in Proposition 0.9 that gAss(M) contains the prime ideals which are

minimal over 0 :R M . These are special, and form a special subset of gAss(M). In
general, for any type of associated prime ideals we partition the associated primes
as follows:

Definition 3.14. Let R be a ring and M an R-module. Among the associated
primes of a module (associated of any type as in Remark 0.11), the ones minimal
with respect to inclusion are called the minimal prime ideals, the others embedded
prime ideals.
If 0 = N1 \ · · · \Ns is an irredundant primary decomposition, then Ni is called

an embedded component of M if
p
Ni : M is embedded, and is called a minimal

component of M if
p
Ni : M is minimal.

Lemma 3.15. Let R be a ring and M an R-module in which the zero ideal has a
primary decomposition. Each minimal component of M is uniquely determined.
Explicitly, if P is a minimal prime in Ass(M), then the P -primary component of

M equals the kernel of the map M ! MP .
If R is Noetherian and M finitely generated, embedded components are never

uniquely determined.

Proof: Let 0 = N1 \ · · · \ Ns be an irredundant primary decomposition. Let

P =
p

Nj :R M . If P is minimal, then 0P =
\

i

(Ni)P = (Nj)P , so that 0P \M =

(Nj)P \ M = Nj by Lemma 0.9, whence the P -primary component is uniquely
determined.
Now let P be an embedded prime ideal. Let Nj be a P -primary component. Asp
Nj :R M = P and R is Noetherian, there exists a positive integer n such that
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P
n
M ✓ Nj . For any m � n, set Km = P

m
MP \ M . By Lemma 0.9, Km is P -

primary. Furthermore, (Km)P = P
m
MP is contained in (Nj)P , so that Km ✓ Nj .

It follows that
\

i 6=j

Ni \Km ✓
\

i

Ni = 0, so that 0 =
\

i 6=j

Ni \Km. Thus any Km

can be taken to be a P -primary component.
It remains to show that Km 6= Km0 whenever m

0 6= m. By Lemma 0.9, Km 6=
Km0 if and only if Pm

MP 6= P
m

0
MP . By Nakayama’s lemma, Pm

MP = P
m

0
MP

if and only if Pmin{m,m
0}
MP = 0P . But P is not minimal over 0 :R M , so PRP

is not minimal over 0P :RP M , so P
m
MP = 0P is impossible. Thus Km 6= Km0

whenever m0 6= m.

In particular, if P is a prime ideal in a Noetherian ring R, then for every positive
integer n, there is a unique P -primary component of Pn. This component is called
the nth symbolic power of P , and is usually denoted P

(n).
Even though the embedded components are highly non-unique, the P -primary

component from one decomposition can be used as the P -primary component in
any other decomposition:

Theorem 3.16. (“Mix-and-match”, Yao ) Let R be a Noetherian ring and M

a finitely generated R-module. Let {P1, . . . , Ps} = AssM . Assume that for all
i, j = 1, . . . , s, Nji is a Pi-primary component of 0 in M , and that we have s

primary decompositions of 0 in M :

0 =
s\

i=1

Nji, j = 1, . . . , s.

Then 0 =
T

s

i=1 Nii is also a primary decomposition.

4. More ways to get associated primes
The only method for computing the associated primes of a module described so

far involves the computation of a primary decomposition. This is not an easy task,
as we will show in Section 9. Fortunately, there are indirect and e�cient methods for
computing the associated primes without computing the primary decompositions.
We describe some of those methods in this section. Another method can be found
in the proof of Theorem .
For example, the knowledge of zero divisors gives information on associated

primes, and vice versa:
Proposition 4.1. Let R be a ring and M an R-module. Then the set of zero

divisors on M is contained in the set
[

P2gAss(M)

P . If the latter set is finite (for

example, if the zero submodule of M has a primary decomposition), then the set

of zero divisors in M equals
[

P2gAss(M)

P .

Proof: Let m be a non-zero element of M and x 2 R such that xm = 0. Then
x 2 0 :R m. Thus by the definition of associated primes, the zerodivisor x on M is
contained in some weakly associated prime of M .
Now let x be a non-zero element in some weakly associated prime P of M . Then

there exists an element m 2 M such that P is minimal over 0 :R m. By assumption,
there are only finitely many prime ideals minimal over 0 :R m. Thus there exists
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r 2 R contained in all the prime ideals minimal over 0 :R m but not in P . Then rx

is contained in all the prime ideals minimal over 0 :R m, so that for some integers
n, n

0, rn
0
x
n
m = 0. Choose n, n

0 such that n is smallest possible. By the choice of
r, n � 1. Then the non-zero element r

n
0
x
n�1

m is annihilated by x. Thus x is a
zerodivisor on M .

This gives another way to decide whether a given prime ideal P is associated to
a module:
Lemma 4.2. Let R be a ring, P a prime ideal, and M an R-module. If 0P :MP

P 6= 0P , then PRP 2 Ass(MP ).

If PRP 2 gAss(MP ) is finitely generated (after localization at P ), then 0P :MP

P 6= 0P .

Proof: Without loss of generality we may assume that R is a ring whose only
maximal ideal is P .
Assume that 0 :M P 6= 0. Let m be non-zero in 0 :M P . Then P ✓ 0 :R m. As

m is non-zero, 0 :R m is a proper ideal, so that P = 0 :R m, whence P 2 Ass(M)
by Proposition 0.9.
Now assume that P 2 gAss(M). Then P is minimal over 0 : m for some m 2 M .

As P is the maximal ideal and finitely generated, there exists an integer n such that
P

n ✓ 0 :R m. Choose n minimal. Then n � 1 and P
n�1

m is a non-zero submodule
of 0 :M P .

Associated primes and even primary decompositions can be obtained via con-
traction:
Lemma 4.3. Let R be a ring, S an R-algebra, N ✓ M S-modules, and K an
R-submodule of M . Then gAssR(K/N \K) ✓ {P \R | P 2 gAssS(M/N).
Furthermore, if N has a primary decomposition N = N1 \ · · · \ Ns in M , then

N \K = (N1 \K) \ · · · \ (Ns \K), after removing intersectands equal to K, is a
primary decomposition of the R-module N \K in K.

Proof: Let P 2 gAssR(K/N \ K). By localization we may assume that P is the
only maximal ideal in R. There exists m 2 K \ N such that P is minimal over
N \ K :R m. Then N :S m is a proper ideal in S which contains P . Any prime
ideal Q in S minimal over N :S m contracts to P and is weakly associated to M/N .
This proves the first statement.
Now let Ni be a P -primary submodule of the S-module M . Assume that Ni \K

is a proper submodule of K. Let m 2 K \Ni and r 2 R such that rm 2 Ni \K.
Then m 2 M \ Ni, and as Ni is primary, there exists a positive integer n such
that rnM ✓ Ni. Thus rN

i
K ✓ Ni \K. This proves that Ni \K is primary in K.

Furthermore, the proof above shows that
p
Ni \K :R K ✓

p
Ni :S M \R, and the

other inclusion is trivial. This proves that if Ni is P -primary in M and K 6✓ Ni,
then Ni \K is primary in K to the prime ideal P \R.
Hence N \K = (N1 \K) \ · · · \ (Ns \K), after removing intersectands K, is a

primary decomposition of the R-module N \K in K.
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One can then also read o↵ the associated primes of the contraction from this:

gAssR(K/N \K) ✓ {
p

Ni \K :R K | i = 1, . . . , s}

✓ {
p

Ni :S M \R | i = 1, . . . , s}

✓ {P \R | P 2 gAssS(M/N)}.

Associated primes can also be read o↵ from short exact sequences:
Proposition 4.4. Let R be a ring and

0 �! M
0 �! M �! M

00 �! 0

a short exact sequences of R-modules. Then

(1) gAssM 0 ✓ gAssM .

(2) gAssM ✓ gAssM 0 [ gAssM 00.

(3) If P 2 gAssM 00 is finitely generated, then P 2 gAssM [ gAssH1
P
(M 0).

Proof: (1) follows from Lemma 0.3.

Let P 2 gAssM . By localization, without loss of generality P is the unique
maximal ideal of R. There exists m 2 M such that P is minimal over 0 :R m. Let
m

00 be the image of m in M
00. If m00 is non-zero, then P is minimal over 0 :R m

00

so that P 2 gAssM 00. Now assume that m00 = 0. Then m 2 M
0, and P is minimal

over (0M 0) :R m, so that P 2 gAssM 0. This proves (2).

Now let P 2 gAssM 00 be finitely generated. Again without loss of generality
by localization P is the only maximal ideal in R. By Lemma 0.8 there exists
m

00 2 M
00 such that P = 0 :R m

00. Thus m
00 is a non-zero element of H0

P
(M 00)

and P 2 gAssH0
P
(M 00). The following is a part of the long exact sequence on local

cohomology:

H
0
P
(M) �! H

0
P
(M 00) �! H

1
P
(M 0).

If P 62 gAssM , then H
0
P
(M) is zero. Thus by (1), P 2 gAssH1

P
(M 0).

Associated primes can also be constructed from direct limits:

Proposition 4.5. Let R be a ring, and {Mi}i2I a direct system of R-modules. Let

P 2 Ass(lim
�!

Mi) and assume that PRP is finitely generated. Then P 2
[

i2I

gAssMi.

Proof: By localization we may assume that P is the only maximal ideal of R.
By Lemma 0.8, there exists m 2 lim

�!
Mi such that P = 0 :R m. As P is finitely

generated, there exists i 2 I such that m 2 Mi and Pm = 0 in Mi. Hence
P ✓ (0Mi) :R m. But m is non-zero, so that (0Mi) :R m is a proper ideal, whence

it equals P . Thus P 2 gAssMi.

In special cases, a module has a natural corresponding ideal such that the asso-
ciated primes of the two are equal:

Proposition 4.6. Let R be a ring R, M a square matrix with entries in R, and
C the cokernel of M . Then the minimal primes over (detM)R are precisely the
minimal primes over 0 :R C.
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Proof: If M is an n⇥n matrix, then R
n M�!R

n ! C ! 0 is exact. For a prime ideal

P , CP = 0 if and only if Rn

P

M�!R
n

P
is surjective, or equivalently, is an isomorphism.

This occurs if and only if detM is a unit in RP .
This proves that a prime ideal P contains detM if and only if CP 6= 0. But C is

finitely generated, so then CP 6= 0 if and only if 0 :R C ✓ P .

5. Witnesses
By definition, every associated prime of an R-module M is minimal over 0 :R m

for some m 2 M . Such m is called a witness of P . Witnesses are not unique, but
not surprisingly, they carry some structure of the modules.
For example, for an ideal containing a non-zerodivisor, every associated prime

has a witness which is a non-zerodivisor:
Proposition 5.1. Let I be an ideal in a ring R which contains a non-zerodivisor.
Assume that 0 and I have primary decompositions. Let P be weakly associated to
I. Then there exists a non-zerodivisor r 2 R such that P is minimal over I : r. If
R is Noetherian, there exists a non-zerodivisor r 2 R such that P = I : r.

Proof: Let P1, . . . , Ps be the associated primes of 0. Let I = q \ J , where q is
primary to P and J is the intersection of the irredundant components of I not
primary to P . As I contains a non-zerodivisor, so does J . Thus by Proposition 0.1,
J 6✓ Pi for all i. As J 6✓ q, by Prime Avoidance (see Exercise 0.7), there exists
r 2 J \ (q [ P1 [ · · · [ Ps). Thus r is a non-zerodivisor, and by Lemma 0.8,
I : r = q : r is primary to P . If R is Noetherian, there exists a positive integer n

such that P
n ✓ I : r. Choose n minimal with this property. Thus P

n�1 6✓ I : r.
Then again by Prime Avoidance, there exists x 2 P

n�1 \ ((I : r) [ P1 [ · · · [ Ps).
Then x is a non-zerodivisor, so rx is a non-zerodivisor, P ✓ I : rx, and I : rx is
P -primary. Thus P = I : rx.

The following corollary is used in the exercises to prove that for a finite set of
ideals in a Noetherian ring, the set of associated primes of products of their powers
is finite, see Exercise 7.38.
Corollary 5.2. Let R be a Noetherian ring, x 2 R a non-zerodivisor and P 2
Ass(R/(x)). Let y 2 P be a non-zerodivisor. Then P 2 Ass(R/(y)).

Proof: By Proposition 0.1 there exists a non-zerodivisor r such that P = (x) : r.
Then ry 2 (x), so there exists s 2 R such that ry = sx. Set Q = (y) : s. If z 2 P ,
then zr = ax for some a 2 R. Thus srz = asx = ary. As r is a non-zerodivisor,
sz = ay. Hence z 2 (y) : s = Q.
Conversely, let z 2 (y) : s. Write zs = ay for some a 2 R. Then zsr = ayr = asx.

But s is also a non-zerodivisor, as sx = ry is a product of non-zerodivisors. Thus
rz = ax, so that z 2 (x) : r. This proves that Q = P , so that P is associated to
(y).

See Exercise 5.33 for a version of this lemma for non-Noetherian rings.
Naturally, associated primes preserve some structure of the ideals:

Proposition 5.3. Let G be a totally ordered abelian monoid (e.g., G = Nn or
G = Zn). Let R be a G-graded ring, and M be an R-submodule of a G-graded
R-module. Then every associated prime P of M is homogeneous. Furthermore, if
M is G-graded, there exists a homogeneous element m 2 M such that P = 0 : m.
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Proof: Write P = 0 : m for some m 2 M . Write m =
P

g
mg, where g varies

over a finite subset of G, and each mg is a homogeneous element of degree g. Let
h = max{g | mg 6= 0}. Let p 2 P . Write p =

P
g
pg (finite sum), with each pg a

homogeneous element of degree g. Let k = max{g | pg 6= 0}. Then pkmh is the
component of pm = 0 of degree k + h, so that pkmh = 0.
We claim that there exists a positive integer i such that pi

k
m = 0. Suppose that

for all g0 > g, we have proved that pi
k
mg0 = 0. The term of degree k+ g in pm is of

the form
P

g0�g
pk+g�g0mg0 , so that pi+1

k
mg = 0. It follows that for some positive

integer i, pi
k
2 0 : m = P , and as P is a prime ideal, then pk 2 P . By repeating,

we get that every component of p is in P , so that every associated prime of M is
homogeneous.
In particular, if M is also G-graded, P = 0 : m = \g(0 : mg), so that for some g,

P = 0 : mg.

In particular, the only maximal ideal in the polynomial ring k[X1, . . . , Xn] which
may be associated to homogeneous ideals is (X1, . . . , Xn). By Lemma 0.2 one can
test whether that maximal ideal is associated.
Another consequence of the proposition above is that all the associated primes of

a monomial ideal are monomial, and furthermore one can compute all the associated
primes of a monomial ideal: for each of the finitely many primes generated by a
subset of the variables, by Lemma 0.2 one can test whether that prime ideal is
associated to the monomial ideal.

Example 5.4. Let I be the monomial ideal (X2
, XY ) in the polynomial ring

k[X,Y ]. The only prime ideals generated by variables are 0, (X), (Y ), (X,Y ).
Clearly 0 and (Y ) are not associated to I as they do not contain it. But by using
Lemma 0.2, (X) is associated as I : (X) = (X,Y ), so that (I : (X))(X) 6= I(X),
and (X,Y ) is associated as (I : (X,Y ))(X,Y ) = (X)(X,Y ) 6= (X2

, XY )(X,Y ). In
fact, in Example 0.6 we saw that I has an irredunant primary decomposition
(X2

, XY ) = (X) \ (X2
, Y ).

As in the case of this example, the primary components of homogeneous modules
have graded structure:

Corollary 5.5. Let R be a Noetherian ring graded by a totally ordered abelian
monoid G and let M be a Noetherian G-graded R-module. (M is not necessarily
graded.) Then the submodule 0 in M has a primary decomposition in which each
primary component is homogeneous.

Proof: By Theorem 0.4, every submodule of M has a primary decomposition. Let
0 = N1 \ · · ·\Ns be an irredundant primary decomposition. For each i = 1, . . . , s,
let N⇤

i
be the submodule of Ni generated by all the homogeneous elements of Ni.

Then 0 = N
⇤
1 \ · · · \ N

⇤
s
, and it su�ces to prove that each N

⇤
i

is primary to
Pi =

p
Ni : M . By Proposition 0.3, Pi is homogeneous.

We change notation, letN be a P -primary submodule ofM , where P is a homoge-
neous prime ideal, and letN⇤ be the submodule ofN generated by the homogeneous
elements. By the primary assumption, there exists k such that P k

M ✓ N . But P
and M are G-graded, hence P

k
M ✓ N

⇤. Let r 2 R and m 2 M ✓ N
⇤ such that

rm 2 N
⇤. By possibly multiplying m by a power of P , without loss of generality we

may assume that Pm ✓ N
⇤, and that furthermore no homogeneous component of

m is in ✓ N
⇤. Under the total grading of G, let r0 be the homogeneous component
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of r of highest degree, and let m0 be the homogeneous component of m of highest
degree. Then r

0
m

0 2 N
⇤ ✓ N . As m0 is not in N

⇤, it is not in N , so that as N is
P -primary, r0 2 P . But then r

0
m 2 N

⇤. By repeating this for (r � r
0)m, we get

that r 2 P , which proves that N⇤ is P -primary.

Now we can describe monomial primary ideals and primary decompositions of
monomial ideals:
Proposition 5.6. Let R = k[X1, . . . , Xn] be a polynomial ring over a field k and
let I be an ideal in R generated by monomials in the Xi. Then

(1) I has a unique minimal generating set S consisting of monomials.
(2) The radical of I equals

{Xi1 · · ·Xir | for some positive integers a1, . . . , ar,X
a1
i1

· · ·Xar
ir

2 S}.
(3) For any i = 1, . . . , n, I : Xi =

P
m2S

(m) : Xi, where

(Xa1
1 · · ·Xan

n
) : Xi =

(
(Xa1

1 · · ·Xan
n

), if ai = 0;

((Xa1
1 · · ·Xan

n
)/Xi), if ai > 0.

(4) I is primary if and only if for every variable Xi, whenever Xi divides one
of the monomial generators of I, then Xi 2

p
I.

(5) To find a primary decomposition of I, if I is not primary, find m 2 S

and a variable Xi such that Xi divides m but Xi 62
p
I. Let a be any

integer greater than or equal to max{e | Xe

i
divides some m 2 S}. Then

I = (I + (Xa

i
)) \ (I : Xa

i
) is a decomposition of I into two strictly larger

monomial ideals, and so the primary decomposition of I is obtained from
Noetherian induction.

Proof: The first three parts are elementary. If I is primary then by the definition for
every variable Xi, if Xi divides one of the monomial generators of I, then Xi 2

p
I.

Now assume that for every variableXi, ifXi divides one of the monomial generators
of I, then Xi 2

p
I. We know that

p
I is a monomial ideal. If Xi1 · · ·Xir is one of

the minimal monomial generators of
p
I then for some positive integers a1, . . . , ar,

X
a1
i1

· · ·Xar
ir

2 S. By assumption then Xi1 2
p
I, so that r = 1. This proves thatp

I is a prime ideal. By Proposition 0.3, all the associated prime ideals of I are
monomial prime ideals, and as

p
I is a prime ideal, each of the associated primes

other than
p
I contains a variable not in

p
I. Let Xi be one of those variables.

Then Xi divides some m 2 S, so by assumption, Xi 2
p
I, contradicting the choice

of Xi. Thus necessarily
p
I is the only associated prime of I, so that I is primary.

The last part follows from Procedure 0.5 and from part (4).

Homogeneity can be used in yet another way to compute associated primes:
Proposition 5.7. Let G be a submonoid of Nn. Let R be a G-graded ring and
M a G-graded R-module. Let P 2 gAssR0 Mg. Then there exists Q 2 gAssR M such
that Q \R0 = P .
Furthermore, if P is minimal over 0 :R0 m, then Q is minimal over 0 :R m.

In particular, if gAssR(M) is a finite set, then
[

g2G

gAssR0 Mg is a finite set.

Proof: Let m 2 Mg such that P is minimal over 0 :R0 m. By definition m is
homogeneous. Set I = 0 :R m. Let R+ = �g>0Rg. Then by the assumption on
G, R+ is a proper ideal in R, and even I + R+ ✓ P + R+ are proper ideals in R.
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Clearly R/(P + R+) ⇠= R0/P , so that P + R+ is a prime ideal in R. Let Q be a
prime ideal in R minimal over PR and contained in P + R+. Then Q \ R0 = P .
Suppose that Q is not minimal over I. Let Q

0 be a prime ideal containing I and
properly contained in Q. Then by the definition of Q, P is not contained in Q

0.
But then I \R0 ✓ Q

0 \R0 ( Q \R0 = P , contradicting the minimality of P over
I \R0. Thus Q is minimal over I, so that Q ✓ gAssM .

With the set-up as in the previous proposition, under the assumption that M is
Noetherian, there are some stabilization properties of the sets AssR0 Mg:
Proposition 5.8. Let R be a Noetherian N-graded ring generated over R0 by
elements of degree 1. Let M be a finitely generated N-graded R-module. Then
there exists an integer m such that for all n � m, AssR0 Mn = AssR0 Mm.

Proof: As M is Noetherian, by Theorem 0.4, the set AssR M is finite. Thus by the

previous proposition,
[

n

AssR0 Mn is a finite set. It su�ces to prove that for each

P 2 SpecR0 there exists N such that for all n � N , P 2 AssR0 Mn if and only if
P 2 AssR0 MN .
Let P 2 SpecR0. Without loss of generality R0 is local with maximal ideal P .
Suppose that for some i � 0, (0 :M P ) ✓ (0 :M R

i

1). Let N
0 be the maximal

degree of an element in a minimal homogeneous generating set of 0 :M P , and let
N = N

0 + i. If n � N and P 2 AssR0 Mn, write P = (0 :R0 b) for some b 2 Mn.
Then b 2 0 :Mn P , so that asN�n � i and by degree count, b 2 RN�n(0 :M P ) = 0,
which is a contradiction, i.e., P 62 AssR0 Mn for all n � N .
Now suppose that for all i � 0, (0 :M P ) 6✓ (0 :M R

i

1). Fix i such that for all n,
(0 :M R

n

1 ) ✓ (0 :M R
i

1). Let m 2 M be a homogeneous element such that Pm = 0
and R

i

1m 6= 0. Then for all n, Rn

1m 6= 0. Let N = degm. Now for any n � N ,
P = (0 :R0 R

n�degm

1 m), so that P 2 AssR0 Mn.

6. Canonical primary decomposition

We saw in Proposition 0.6 that monomial ideals have primary decompositions in
which all primary components are monomial ideals. It is straightforward to show
that there is a natural notion of the “largest” possible monomial components:

Proposition 6.1. Let I be a monomial ideal in a polynomial ring over a field. Let
P be associated to I. Then there exists a unique largest monomial P -primary ideal
q which appears as a P -primary component in some minimal monomial primary
decomposition of I. Furthermore, in any primary decomposition of I, the P -primary
component of I may be replaced by q.

Proof: For i = 1, 2, let qi be a monomial P -primary ideal in a monomial primary
decomposition of I, and let Ii be the intersection of the other primary components
of I. By Theorem 0.16, I1 \ q2 = I. By Proposition 0.6, q1 + q2 is a P -primary
monomial ideal. The intersection of monomial ideals is generated by the least
common multiples of monomials taken one from one ideal and another from the
second ideal. Thus I1 \ (q1 + q2) = I1 \ q1 + I1 \ q2 = I + I = I. Thus clearly there
exists an ideal q as in the statement of the proposition. The last statement follows
from Theorem 0.16.

We have seen that embedded components need not be unique, but there is a
notion of canonical primary decomposition, which is unique:
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Theorem 6.2. (Ortiz ) Every ideal I in a commutative Noetherian ring admits a
unique irredundant primary decomposition

I = q1 \ · · · \ qr

with the following property: whenever I = q
0
1 \ · · · \ q

0
r
is another irredundant

primary decomposition of I, with
p
qi =

p
q
0
i
for i = 1, . . . , r, then for all i,

(1) nilpotency degree nil(qi) is less than or equal to nil(q0
i
),

(2) if nil(qi) = nil(q0
i
), then qi ✓ q

0
i
.

Proof: By Theorem 0.16, it su�ces to prove that for each P 2 Ass(R), there exists
a P -primary ideal q such that q appears as the P -primary component of I in some
primary decomposition of I, the nilpotency degree of q is smallest possible, and if
nil(q) = nil(q0) for some P -primary component q

0 of I, then q ✓ q
0. Let S be the

set of all Q-primary components of I with the smallest possible nilpotency degree.
Let this nilpotency degree be n. Then S is closed under intersections:

Q
n ✓

\

q2S

q ✓ Q,

and furthermore
T

q2S
q is Q-primary. Thus S has a minimal element under inclu-

sion. This element, qr, satisfies the two conditions of the theorem.

The construction immediately shows the following:

Corollary 6.3. If q is a canonical component of I, then q equals the q-primary
component of I + (

p
q)nil(q).

7. Associated primes of powers of an ideal
We prove in this section that there are classes of ideals which share the same

associated primes. In particular, we prove that for any ideal I in a Noetherian ring
R, Ass(R/I

n) is the same for all large n. It is not true in general that Ass(R/I
n) =

Ass(R/I) for all n, even for prime ideals:

Example 7.1. Let R = k[X,Y, Z], P the kernel of the map R ! k[t] taking X to
t
3, Y to t

4, and Z to t
5. Then P = (X3 � Y Z, Y

2 �XZ,Z
2 �X

2
Y ) and P is of

course a prime ideal. However, P 2 has an embedded component:

(X3 � Y Z)2 + (X2
Y � Z

2)(Y 2 �XZ) = X
6 � 3X3

Y Z +X
2
Y

3 +XZ
3

= X(X5 � 3X2
Y Z +XY

3 + Z
3),

so that as X is not in P , X5 � 3X2
Y Z + XY

3 + Z
3 is in P

(2). Note that under
the grading degX = 3, deg Y = 4, degZ = 5, P is a homogeneous ideal. By degree
count, X5 � 3X2

Y Z + XY
3 + Z

3 is not in P
2. Thus P

2 must have at least one
embedded associated prime ideal. By homogeneity, that embedded prime ideal is
necessarily equal to (X,Y, Z), and P

2 has exactly one embedded prime ideal.

This shows that Ass(R/I
n) is not a constant function as n varies. The function

is also not monotone increasing or decreasing. Here is an easily verifiable example:

Example 7.2. Let R = k[X,Y, U, V ], I = (X4
, X

3
Y,X

2
Y

2
U,XY

3
, Y

4) \ (V,X2).
Then it is easy to verify that Ass(R/I) = {(X,Y ), (X,Y, U), (V,X)}, and that
Ass(R/I

2) = {(X,Y ), (V,X), (X,Y, U, V )}.
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We prove below that Ass(R/I
n) is eventually constant. We will make use of

the extended Rees algebras, a ubiquitous construction in the study of properties of
powers of an ideal:

Definition 7.3. Let R be a ring, and I an ideal in R. The Rees algebra of I is the
subalgebra of R[t], where t is a variable over R, generated over R by all elements
of the form at, as a varies over the elements of I. This algebra is denoted R[It].
The extended Rees algebra of I is the subalgebra of R[t, t�1] generated over R

by t
�1 and all elements of the form at, as a varies over the elements of I. The

extended Rees algebra is denoted R[It, t�1].

It is easy to verify that for all n 2 N,

R[It] = �n�0I
n

and that

I
n
R[It, t�1] \R = t

�n
R[It, t�1] \R = I

n
, I

n
R[It] \R = I

n
.

Also, if I is generated by a1, . . . , as, then the two kinds of Rees algebras are finitely
generated over R:

R[It] = R[a1t, . . . , ast], R[It, t�1] = R[a1t, . . . , ast, t
�1].

In particular, if R is Noetherian, both Rees algebras are Noetherian, and primary
decompositions exist in R, R[It], R[It, t�1].
Similarly, if M is an R-module, then MR[It] and MR[It, t�1] are modules over

the Rees algebras R[It] and R[It, t�1], respectively. If M is finitely generated, so
are these extended modules. In any case,

I
n
MR[It, t�1] \M = t

�n
MR[It, t�1] \M = I

n
M, I

n
MR[It] \M = I

n
M.

Thus under the Noetherian assumptions, primary decompositions exist inM ,MR[It],
MR[It, t�1], and by Lemma 0.3, a primary decomposition of InM is a contraction
of a primary decomposition of t�n

MR[It, t�1].
Proposition 7.4. Let R be a Noetherian ring, I an ideal andM a finitely generated

R-module. Then
[

n

Ass(InM/I
n+1

M) is a finite set and there exists an integer m

such that for all n � m, Ass(InM/I
n+1

M) = Ass(ImM/I
m+1

M).

Proof: Let S be the Rees algebraR[It] andN the N-graded S-module�nI
n
M/I

n+1
M .

For each non-negative integer m, Nm = I
m
M/I

m+1
M . Proposition 0.8 applied to

the N-graded ring S finishes the proof.

A similar proof also shows that
[

n

Ass(InM) is a finite set and that there exists

an integer m such that for all n � m, Ass(InM) = Ass(ImM). A similar result
also holds for the modules M/I

n
M :

Proposition 7.5. Let R be a Noetherian ring, I an ideal, and M a finitely gener-
ated R-module. Then there exists m 2 N such that for all n � m, Ass(M/I

m
M) =

Ass(M/I
n
M).

Proof: For each positive integer n,

0 ! I
n
M

In+1M
! M

In+1M
! M

InM
! 0
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is a short exact sequence. By Proposition 0.4, Ass(InM/I
n+1

M) ✓ Ass(M/I
n+1

M) ✓
Ass(M/I

n
M) [ Ass(InM/I

n+1
M). By Proposition 0.4, there exists an integer k

such that for all n � k, Ass(InM/I
n+1

M) = Ass(IkM/I
k+1

M). Thus for n � k,

Ass(InM/I
n+1

M) ✓ Ass(M/I
n+1

M) ✓ Ass(M/I
n
M) [Ass(In/In+1

M).

It immediately follows that
[

n

Ass(M/I
n
M) is finite. Also, for each P 2

[

n

Ass(M/I
n
M),

if P is associated to infinitely many M/I
n
M , then it is associated to M/I

n
M for

all n � k, and if P is associated to only finitely many M/I
n
M , let kP be the largest

integer such that P is associated to M/I
kPM . Set m = max{k, kP | P}. Then by

the set-up, for all n � m, Ass(M/I
m
M) = Ass(M/I

n
M).

8. Primary decompositions of powers of an ideal
In this section we prove that one can choose primary components of powers of an

ideal in such a way that they “do not grow small too fast”. This is one of the many
results on the linear properties of primary decompositions. The proof presented
here depends on a version of the Artin-Rees lemma for Artinian modules, due to
Kirby . We present Kirby’s results here for completeness.
Proposition 8.1. (Kirby ) Let R be a ring, X1, . . . , Xs variables over R, and
M =

P1
i=�1 Mi a graded R[X1, . . . , Xs]-module. (So XjMi ✓ Mi+1, RMi ✓ Mi.)

Then M is an Artinian R[X1, . . . , Xs]-module if and only if there exist integers k, l
such that

(1) Mi = 0 for i > l,
(2) 0 :Mi (X1, . . . , Xs) = 0 for i < k,
(3) Mi is an Artinian R-module for i 2 {k, k + 1, . . . , l}.

Proof: First assume that M is Artinian. Certainly then conditions (1) and (3) hold.
Also, the submodule 0 :M (X1, . . . , Xs) of M is Artinian, so that the descending

chain Dn = ��n

i=�1(0 :Mi (X1, . . . , Xs)) has to stabilize. As
\

n

Dn = 0, for all

su�ciently large n, Dn = 0. This proves (2).
Now assume that M satisfies conditions (1), (2) and (3). If s = 0, M is trivially

an Artinian R-module. So we may assume that s > 1. Set Nn = 0:MX
n+1
s

0:MXn
s

. Then

Nn is a graded R[X1, . . . , Xs]-module which is annihilated by Xs, so that Nn is a
module over R[X1, . . . , Xs�1]. Clearly Nn satisfies conditions (1), (2) and (3), so
that by induction on s, N is Artinian over R[X1, . . . , Xs�1].
For each positive integer n, define 'n : Nn ! N0 by sending a + 0 :M X

n

s
to

X
n

s
a. Then clearly 'n is injective and M ◆ N0 ◆ '1(N1) ◆ '2(N2) ◆ · · · .
Now let A1 ◆ A2 ◆ A3 ◆ · · · be a descending chain of R[X1, . . . , Xs] submodules

of M . For each i, n, define Ain to be the submodule of Nn generated by Ai \ (0 :M
X

n+1
s

). Then Nn ◆ A1n ◆ A2n ◆ · · · is a descending chain of R[X1, . . . , Xs�1]-
submodules of Nn. But Nn is Artinian, so there exist an Artinian module Ln over
R[X1, . . . , Xs�1] and a positive integer mn such that for all k � mn, Ln = Akn.
For any k � mn,mn+1,

'n(Ln) = 'n(Akn) ◆ 'n+1(Ak,n+1) = 'n+1(Ln+1).

It follows thatN0 ◆ '1(L1) ◆ '2(L2) ◆ · · · is a descending chain ofR[X1, . . . , Xs�1]-
submodules of N0. But N0 is Artinian, so there exist an Artinian module L and a
positive integer t such that for all k � t, L = 'k(Lk).
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Now let T = max{m0, . . . ,mt}. Then by the choices of the mi, for all k � T and
0  n  t, Akn = Ak+1,n = · · · = Ln. Now let k � T and n > t. Then

'n(Ln) ✓ 'n(Akn) ✓ 't(Akt) = 't(Lt) = 'n(Ln).

Thus equality holds throughout, and since 'n is injective, Ln = Akn. This proves
that for all n � 0 and k � T , Akn = Ak+1,n.
Finally we prove that this implies that Ak = Ak+1. Let ↵ 2 Ak. By condition

(1) there exists n such that Xn+1
s

↵ = 0. Thus ↵ has an image in Nn, hence in Akn.
Thus there exists � 2 Ak+1 such that ↵�� 2 0 :M X

n

s
. If n = 0, then ↵ = � 2 Ak.

Otherwise assume that n > 0. Then ↵ � � 2 (0 :M X
n

s
) \ Ak, so ↵ � � has an

image in Ak,n�1. But then by induction on n, ↵ � � 2 Ak+1, whence ↵ 2 Ak+1.
This proves that Ak = Ak+1 for all k � T . Thus M is Artinian.

A consequence is the following version of the Artin-Rees lemma for Artinian
modules:

Theorem 8.2. (Kirby ) Let R be a ring, I an ideal, M an Artinian R-module,
and N a submodule of M . Then there exists an integer k such that for all n � k,

N + 0 :M I
n =

�
N + 0 :M I

k)
�
:M I

n�k
.

Proof: Let S be the set of all finitely generated ideals contained in I. Then as
M is Artinian, there exists J 2 S such that 0 :M J ✓ 0 :M K for all K 2 S. If
m 62 0 :M I, there exists a 2 I such that am 6= 0. Then m 62 0 :M (J + (a)), so
that by the choice of J , m 62 0 :M J . It follows that 0 :M J = 0 :M I. Hence by
induction on n � 1, 0 :M J

n = 0 :M I
n.

Let J = (a1, . . . , as). Define

Nn =

⇢
M

0:MJ�n if n  0;
0 if n > 0.

Set N = �1
n=�1Nn. Then N is a module over R[X1, . . . , Xs], if Xi acts by

multiplication by ai. Then N satisfies conditions (1), (2) and (3) of Proposition 0.1,
so that N is an Artinian module over R[X1, . . . , Xs]. For n � 0, set

Kn =
�nX

i=�1

(N + 0 :M J
n) :M J

�n�i

0 :M J�i
.

Then Kn is a submodule of N , and K1 ◆ K2 ◆ K3 ◆ · · · . Thus there exists an
integer k such that for all n � k, Kk = Kn. In particular, the graded components
of Kk = Kn of degree i = �n yield that

�
N + 0 :M J

k
�
:M J

n�k = N + 0 :M J
n.

Finally,

N + 0 :M I
n ✓

�
N + 0 :M I

k
�
:M I

n�k

✓
�
N + 0 :M J

k
�
:M J

n�k

= N + 0 :M J
n

= N + 0 :M I
n
,

so that equality holds throughout.
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Corollary 8.3. Let R be a Noetherian ring, M a finitely generated R-module,
E an injective Artinian R-module, I an ideal, and u 2 R a non-zerodivisor on M .
Then there exists a positive integer k such that for all n � 1, any R-homomorphism
g : M/u

n
M = uM/u

n+1
M ! E with the property I

n
g = 0 can be extended to an

R-homomorphism g̃ : M/u
n+1

M ! E so that In+k
g̃ = 0.

Proof: Let f : M ! uM/u
n+1

M ! E be the composition. Let H = HomR(M,E).
As HomR( , E) is exact, H is Artinian and H = uH. In particular, there exists
f̃ 2 H such that f = uf̃ .
By Theorem 0.2, there exists an integer k such that for all n � k, 0 :H u+ 0 :H

I
n =

�
0 :H u+ 0 :H I

k
�
:H I

n�k. The assumption I
n
g = 0 implies that

f̃ 2 (0 :H u) :H I
n ✓

�
0 :H u+ 0 :H I

k
�
:H I

n ✓ 0 :H u+ 0 :H I
n+k

.

Let f 0 2 0 :H u and f
00 2 0 :H I

k+n such that f̃ = f
0 + f

00. Then f = uf̃ = uf
00.

As u
n+1

f
00 = u

n
f(M) = 0, then f

00 defines a map g̃ : M/u
n+1

M ! E which
extends g. Furthermore, Ik+n

g̃ = 0.

Finally we can prove that primary components of powers of an ideal contain
linearly growing powers of their corresponding associated primes:
Theorem 8.4. Let R be a Noetherian ring, I an ideal and M a finitely generated
R-module. Then there exists a positive integer k such that for all positive integers
n there exists a primary decomposition

I
n
M = N1 \N2 \ · · · \Nl

such that if P =
p
InM :R Ni, then P

kn
M ✓ Ni.

This result was first proved for M = R in , and the generalization to arbitrary
M was proved by Sharp in . The proof in used prime filtrations of quotients of a
ring by powers of an ideal. The proof below, due to Sharp, shows another useful
method of finding primary decompositions.

Proof of Theorem 0.4: Let S = R[It, t�1], K = MR[It, t�1]. Suppose that the-
orem holds for primary decompositions of (t�1)nK = t

�n
K, i.e., that there exists

a positive integer k such that for all positive integers n there exists a primary
decomposition

t
�n

K = N1 \N2 \ · · · \Nl

such that if Pi =
p
t�nK :S Ni, then P

kn

i
K ✓ Ni. By discussion above Proposi-

tion 0.4 and by Lemma 0.3, InM = t
�n

K\M = (N1\M)\(N2\M)\· · ·\(Nl\M)
is a primary decomposition of InM and the associated primes of InM are in the set
{Pi \R | i}. Then (Pi \R)knM ✓ P

kn

i
N \M ✓ Ni \M , so that the theorem also

holds for I and M . Thus without loss of generality is su�ces to prove the theorem
for the case when I is a principal ideal generated by a non-zerodivisor u on M .
For every injective module E, write it as E = �PEP , where P varies over distinct

prime ideals and EP is the direct sum of injective envelopes of R/P . Let ⇡P be the
natural projection E ! EP .
Now let E1 be the injective envelope of M/uM and i1 : M/uM ! E1 the natural

inclusion. Then E1 = �P (E1)P , where P varies over a finite set S of prime ideals
in R. As N is finitely generated and every element of (E1)P is annihilated by a
power of P , there exists an integer k such that P k

⇡P � i1 = 0. We may choose k to
work for all P 2 S.
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Apply Corollary 0.3 to module M , element u, I = P in S, and E = (E1)P . By
possibly increasing k, we may assume that k works for (E1)P as in the Corollary.
As S is a finite set, there exists a positive integer k as in the Corollary which works
for all (E1)P as P varies over elements of S. But then this same k works for all
finite direct sums (E1)nP , as P varies over elements of S.
We claim that for all n � 1 there exist an injective module En = (E1)n and

an inclusion in : M/u
n
M ! En such that for all P 2 S, P kn

⇡P � in = 0. This
already holds for n = 1. Suppose that it holds for some positive n. Consider the
commutative diagram:

0 �! M/u
n
M

u�! M/u
n+1 p�! �! 0

# in # i1

0 �! En �! En � E1 �! E1 �! 0

in which the rows are exact. By assumption, for all P 2 S and every summand
ER(R/P ) of En, P kn

⇡P � in = 0. By Corollary 0.3, there exists jP : M/u
n+1

M !
EP extending ⇡P � in such that P kn+k

jP = 0. Set j : M/u
n+1 ! En be the direct

sum of all the jP . Define in+1 : M/u
n+1

M ! En � E1 = (E1)n+1 = En+1 by
in+1(m+u

n+1
M) = j(m)+ i1 � p(m). By construction, P kn+k

⇡P � in+1 = 0 for all
P 2 S. This in+1 makes the diagram commute, and as i1 and in are injective, so
is in+1.
Finally, we prove the primary decomposition result. For each n � 1 and P 2 S,

set NnP = ker(⇡P � in). As in is an inclusion and En = �P2S(En)P , it follows that\

P

NnP = 0 in M/u
n
M . Also, by construction, P kn

M ✓ ker(⇡P � in) = NnP .

Note the that proof does not indicate how k depends on I. A constructive k was
achieved for monomial ideals by Hoa and Trung in .
There is a related result that the primary components of InM “do not grow too

small too slowly”, see , whose proof relies on a deep result of Izumi and Rees:

Theorem 8.5. (Swanson ) Let R be a Noetherian ring, I and J ideals in R.
Assume that for each n there exists kn such that I

n : J
1 ✓ I

kn and that the
kn may be chosen so that limn kn = 1. (In other words, assume that the I-adic
topology (topology defined by powers of I) is equivalent to the topology defined by
{In : J1}n.) Then there exists an integer k such that for all n, Ikn : J1 ✓ I

n.

In particular, the intersection of those primary components of Ikn which do not
contain any power of J is contained in I

n. In particular, if I is a prime ideal P ,
this says that whenever the P -adic topology is equivalent to the symbolic topology,
then there exists an integer k such that for all n, P (kn) ✓ P

n. The proof in this
generality gives no indication on how k depends on I. But here is a special case,
first proved by Ein, Lazarsfeld and Smith in in equicharacteristic 0, and later by
Hochster and Huneke in in characteristic p. Below is a basic version of their result
(but see the two papers for more general statements):

Theorem 8.6. (Ein, Lazarsfeld, Smith ; Hochster, Huneke ) Let R be a regular
ring containing a field, and P a prime ideal in R. Then for all n,

P
(n·htP ) ✓ P

n
.
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9. An algorithm for computing primary decompositions
Given an ideal in a computable ring, can one algorithmically determine its pri-

mary decomposition? This answer was already treated to some extent by Grete
Hermann in : she proved that there exists a function in n, k, d such that if I is a
not necessarily homogeneous ideal in a polynomial ring in n variables over a field,
if I is generated by k elements of degree at most d, then there exists a primary
decomposition of I such that the generators of its primary components are bounded
above by that function. Hermann’s function was doubly exponential in n. It is still
not known if a doubly exponential bound is indeed necessary.
Since then, several algorithms have been written for primary decompositions and

associated primes: Gianni, Trager and Zacharias , Eisenbud, Huneke, Vasconcelos ,
Wang , Shimoyama, Yokoyama . The best source of information on the algorithms is
Decker-Greuel-Pfister’s paper . Singular and Macaulay2 have an implementation
of the computation of primary decompositions of ideals in polynomial rings.
Below is an outline of the algorithm due to Gianni, Trager and Zacharias .

This algorithm is based on the theory of Gröbner bases in polynomial rings R =
A[X1, . . . , Xn], where A is a principal ideal domain such as Z or k[X0] for some field
k and variable X0. The first case of the computation of primary decompositions is
of course when n = 0. Then the problem reduces to the problem of factorization of
integers and polynomials. This is a non-trivial problem. There exist several fairly
e�cient algorithms for such factorization, due to Berlekamp, Lenstra, Lenstra, Lo-
vasz, Davenport, Trager, etc.
Here is a simplistic approach to the factorization problem in a few special cases.

To factor an integer n, one can by brute force check whether any integer between 2
and

p
n divides n and in this manner obtain a factorization. To factor a polynomial

in k[X] if k is a finite field one can again use brute force: there are only finitely many
polynomials in k[X] of bounded degree. However, these factorization methods are
not e�cient.
For more details on factorization, see the excellent book Modern Computer Al-

gebra by von zur Gathen and Gerhard. There is a nice tutorial on Berlekamp’s
algorithm on page 38 in . In these notes we ignore the di�culty of factorization
and instead assume:

Assumption 9.1. Let A be either Z or a polynomial ring in one variable over a
finitely generated field extension over a finite field or over Q. Thus A is a special
type of principal ideal domain. We assume that in all such principal ideal domains,
every element is algorithmically factorable into a product of primes.

One can show that for any principal ideal domain A as above, if K is a finitely
generated field extension of the field of fractions of A and X is a variable over
K, then also every element in K[X] is algorithmically factorable into a product
of primes. For notational purposes we call any principal ideal domain A with this
property computable.
The primary decomposition algorithm relies on induction on the number of vari-

ables. In particular, the following lemma will be useful:
Lemma 9.2. Let B be a Noetherian ring in which primary decompositions and
associated primes of ideals are computable. Let X1, . . . , Xn be variables over B,
C = B[X1, . . . , Xn], and I an ideal in C. Then there exist ideals I1, . . . , Is in C

such that I = I1 \ · · · \ Is and each Ij \ B is primary in B. Furthermore, these
ideals Ij are computable.
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Proof: Let K = I \B. Then K is an ideal in B, so it has a primary decomposition
K = K1 \ · · · \ Ks. We proceed by induction on s. If s = 1, there is nothing to
do. So assume s > 1. By assumption the radicals

p
Kj can be computed. By

reindexing we may assume that
p
K1 is minimal over K. By prime avoidance there

exists r 2 K2 \ · · · \ Ks \
p
K1, and one can actually compute such an element

in B. Now we switch to ideals in C. By Lemma 0.3, there exists m such that
I :C r

1 = I :C r
m and I = (I :C r

m)\ (I+(rm)). Set I 0 = I :C r
m, I 00 = I+(rm).

Then
I
0 \B = (I :C r

m) \B = I \B :B r
m = K1,

which is primary in B. Also, I 00 \B = (I + (rm)) \B is strictly larger than K, so
by Noetherian induction one can decompose I

00 as in the statement of the lemma,
whence one can decompose I.

We next review what is computable via Gröbner bases in the following context:
let B be a Noetherian unique factorization domain, X1, . . . , Xn variables over B

and C = B[X1, . . . , Xn].
(1) For each f 2 C, write f =

P
⌫
f⌫X

⌫ , a finite sum, with each f⌫ 2 B.
(2) Impose an order on the monomials in the Xi satisfying

(i) for all ⌫ 6= 0, X⌫
> 1,

(ii) if X⌫
> X

µ then for any ⇢, X⌫+⇢
> X

µ+⇢.
As every ideal in C is finitely generated, necessarily every set of monomials in C

has a least element.
One could take for example the lexicographic ordering:

X
⌫
> X

µ
, if the first non-zero entry in ⌫ � µ is positive,

the degree lexicographic ordering:

X
⌫
> X

µ
,

(
if |⌫| > |µ|;
or if |⌫| = |µ| and the first non-zero entry in ⌫ � µ is positive.

or the reverse lexicographic ordering:

X
⌫
> X

µ
,

(
if |⌫| > |µ|;
or if |⌫| = |µ| and the last non-zero entry in ⌫ � µ is negative.

(3) Under the given monomial ordering, let the initial term of f , in f , be f⌫X⌫

such that X⌫ is maximal among all monomials appearing in f with a non-
zero coe�cient. If in f = f⌫X

⌫ , set

lm f = X
⌫
, lc f = f⌫ .

These are called leading monomial and leading coe�cient of f . The initial
term, the leading monomial and the leading coe�cient of f are computable.

(4) For any ideal I in C, define the initial ideal in(I) of I to be {in f | f 2 I}.
Similarly, for any set G in C, define the initial ideal in(G) of G to be
{in f | f 2 G}.
WARNING: if I = (f1, . . . , fs), in(I) is in general strictly larger than
(in f1, . . . , in fs). See Exercise 9.41.

(5) A set {g1, . . . , gs} is said to be a Gröbner basis of an ideal I if g1, . . . , gs 2 I

and in(I) = (in g1, . . . , in gs).
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(6) For any f, g 2 C, the S-polynomial of f and g is

S(f, g) =
lcm(in f, in g)

in f
f � lcm(in f, in g)

in g
g.

The S-polynomial is computable.
(7) Let G = {f1, . . . , fs} be a subset of C and f 2 C. If in f is a multiple

of some in fj , say in f = m in fj , set f
0 = f � mfj . Then in f 0

< in f .
This step is called a reduction step of f with respect to G and f

0 is said
to be obtained from f by reduction. Repeat the reduction step on f

0, then
on the polynomial obtained from f

0 by reduction, etc. The reduction step
needs to be repeated only finitely many times before the zero polynomial is
obtained in the process, as under the ordering, every set of monomials has
a least element. Thus there exists f̃ 2 C such that f̃ is obtained from f by
applying reduction finitely many times, and either f̃ = 0 or in f̃ is not a
multiple of any in fj . Then f̃ is called a reduction of f with respect to G.
A reduction of f with respect to G is computable.
WARNING: f̃ is not uniquely determined. See Exercise 9.41.

(8) For any ideal I = (f1, . . . , fs) in C, a Gröbner basis of I is computable. In
particular, in I is computable. Namely, the algorithm goes as follows:
(i) Start with G = {f1, . . . , fs}.
(ii) For each pair f, g 2 G, compute S(f, g) and reduce it with respect to
G. If the reduction is not zero, add the element to G.
(iii) Repeat the previous step until all S-polynomials reduce to 0 with
respect to G.
The indicated algorithm does terminate as at each step the ideal in(G)
becomes strictly larger, and in a Noetherian ring, we cannot increase this
ideal indefinitely. Thus the algorithm terminates in finitely many steps.
This proves that a Gröbner basis and the initial ideal of I are both com-
putable.

(9) For any variables Y1, . . . , Ym over C, impose on C[Y1, . . . , Ym] a monomial
order such that for any f 2 C[Y1, . . . , Ym]\C, in f 62 C. (Many such orders
exist, for example, the lexicographic ordering Y1 > Y2 > · · · > Ym > X1 >

· · · > Xn.) Let G be a Gröbner basis of an ideal I in C[Y1, . . . , Ym]. For
any f 2 I \ C, as f 2 I, f can be written as f =

P
g2G

hgg for some
hg 2 C[Y1, . . . , Ym] such that for all g, 2 (hgh) 2 (f). But then by the
choice of the order, if hg 6= 0, then hg, g 2 C, so that f 2 (G \ C). As
G \ C ✓ I \ C, this proves that G \ C is a Gröbner basis of I \ C. Thus
in particular for any ideal I ✓ C[Y1, . . . , Ym], I \ C is computable.

(10) If I and J are ideals in C, then I \ J is computable. Namely, if Y is a
variable over C, then I \ J = (IY C[Y ] + J(Y � 1)C[Y ]) \ C, so that by
the previous case I \ J is computable.

(11) If I and J are ideals in C, then I :C J is computable. Namely, if J =
(f1, . . . , fs), then I :C J = \(I :C fj). By the previous case it su�ces to
prove that I :C f is computable for each f 2 C. We already know that
I \ (f) is computable. But then by using that I \ (f) = f(I : f), I : f is
computable as division of elements is computable.

(12) For any ideal I and element f in C, If \C is computable. There are several
ways to see this:
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(i) If \ C = I : f1. By Lemma 0.3, it su�ces to find an integer m such
that I : fm = I : fm+1. This integer exists as C is Noetherian.
(ii) Let Y be a variable over C. Then If \C = (IY C[Y ]+(fY �1)C[Y ])\
C, which is computable.

(13) For any principal prime ideal (p) in B and any ideal I in C, IB\(p) \ C is
computable. Namely, let G be a Gröbner basis of I. For each g 2 G,
write lc g = bgp

ng for some non-negative integer ng and some bg 2 B \ (p).
Set b =

Q
g
bg. Then Ib \ C is computable and Ib \ C ✓ IB\(p) \ C. We

want to prove equality in this inclusion. Let f 2 IB\(p) \C. To prove that
f 2 Ib\C, it su�ces to assume that among all elements in IB\(p)\C but not
in f 2 Ib\C, f has the least leading monomial. There exists c 2 B\(p) such
that cf 2 I. Then c in f = in(cf) is a multiple of in g = bgp

ngX
⌫ for some

g 2 G. As B is a unique factorization domain, bg in f is a multiple of in g =
bgp

ngX
⌫ . Say bg in f = m in g. Then lm f = lm(bgf) > lm(bgf �mg). As

bgf � mg 2 IB\(p) \ C, by the choice of f , bgf � mg 2 Ib \ C. Hence
bgf 2 Ib \ C, whence f 2 Ib \ C. Thus IB\(p) \ C is computable, and
equals Ib \ C as above.

With this background in Gröbner bases, the Gianni-Trager-Zacharias algorithm
goes as follows. Let A be a computable principal ideal domain. Let R =
A[X1, . . . , Xn], and I an ideal in R. We want to find a primary decomposition of I
and its associated primes.
Case n = 0: The primary decompositions and associated primes are computable

by the assumption.
Case n > 0, I\A = 0: By item (13) above, IA\{0}\R is computable and equals

Ia\R for some computable a 2 A. By Lemma 0.3 there exists a computable m such
that I : a1 = I : am and I = (I : am) \ (I + (am)). Then I : am = IRA\{0} \ R.
The ring RA\{0} has dimension strictly smaller than R, so a primary decomposition
and associated primes of I : am = IRA\{0} \ R are computable by induction. But
then by Lemma 0.3, a primary decomposition and associated primes of IRA\{0}\R

are computable. Thus it su�ces to find a primary decomposition and associated
primes of I + (am). But the contraction of this ideal to A falls into the next case.
Case n > 0, I \A 6= 0: By Lemma 0.2 we may assume that I \ A is primary.

As A is a principal ideal domain, I \ A is primary to a maximal ideal M . As A is
a principal ideal domain, there exists p 2 A such that M = pA. This breaks into
two cases, see below.
Case n > 0, I \A primary to a maximal ideal (p), dim(R/I) > 0: Let G

be a Gröbner basis G for I. For each j = 1, . . . , n, set

Gj = {g 2 G | in g = cjX
m

j
for some m 2 N0, cj 2 A}.

Then Gj is computable. Clearly Xj 2
p
in(I) if and only if Xj 2

p
in(Gj). These

equivalent conditions are computable. If X1, . . . , Xn 2
p
in I, then R/I is module-

finite over A/I\A (generated by finitely many monomials in the Xj), thus integral.
But then dim(R/I) = dim(A/I\A) = 0, contradicting the assumption. Thus under
the assumption one can compute an integer j such thatXj 62

p
in I. Set A0 = A[Xj ].

Then I \ A
0 is not zero-dimensional. By item (13) one can compute b 2 A

0 \ pA0

and an integer m such that IpA0 \ R = Ib \ R = I : bm. As IpA0 is an ideal in the

polynomial ring A
0
pA0 [X1, . . . ,

cXj , . . . , Xn] over a principal ideal domain A
0
pA0 , by

induction on dimension a primary decomposition and associated primes of IA0\pA0
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are computable. Then by Lemma 0.3, a primary decomposition and associated
primes of IA0\pA0 \ R are computable. By Lemma 0.3 it remains to compute a
primary decomposition and associated primes of I + (bm). By the assumption that
I \ A

0 is not zero-dimensional, since b 2 A[Xj ] \ pA[Xj ], it follows that I + (bm)
strictly contains I. If it is the whole ring, we are done, otherwise we either repeat
this case or the following case on this new ideal I+(bm). The repetition will happen
at most finitely many times by the Noetherian hypothesis.
Case n > 0, I \ A primary to a maximal ideal (p), dim(R/I) = 0: Set

R
0 = A[X1, . . . , Xn�1]. Then A/(I \ A) ✓ R

0
/(I \ R

0) ✓ R/I. As A/(I \ A) and
R/I are zero-dimensional and R,R

0 are finitely generated A-algebras, it follows that
dim(R0

/(I \ R
0)) = 0. By Lemma 0.2 we may assume that I \ R

0 is primary, to a
maximal ideal M . As R/MR is a principal ideal domain, I(R/MR) is a principal
ideal. From the given generators of I one can compute g 2 I such that g(R/MR) =
I(R/MR). Observe that g 62 MR. Then I ✓ gR + MR = gR + (

p
I \R0)R ✓p

I, whence
p
gR+ (I \R0)R =

p
I. By our factorization assumption, there are

computable elements g1, . . . , gs 2 R such that their images in R/MR are distinct

irreducible elements and g =
Q

g
kj

j
modulo MR. Observe that the ideals gjR+MR

are distinct maximal ideals in R and that g
lj

j
R+ I is primary to gjR+MR for all

lj 2 N. Furthermore, any prime ideal in R containing I contains M and g, hence is
one of the gjR+MR. Thus it remains to find the (gjR+MR)-primary component
of I. But this is just Ifj \ R, where fj =

Q
i 6=j

gi. Thus a primary decomposition
of I is computable.

10. Complexity of associated primes

There are aspects of complexity of associated primes and complexity of primary
decompositions other than their computability. This section describes some of
them.
For example, the main motivation for Theorem 0.4 came from the theory of tight

closure. Here is the set-up: let p be a prime integer and R a ring of characteristic
p. For any ideal I and any power q = p

e of p, define I
[q] to be the ideal (iq | i 2 I).

This ideal is called the eth Frobenius power of I. Hochster and Huneke developed
the theory of tight closure and proved many results in commutative algebra with
it. But one basic question about tight closure is still open: does tight closure
commute with localization? A partial answer to the question would be provided
with a positive answer to the following question:

Question 10.1. For every ideal I in a Noetherian ring of characteristic p, does
there exist an integer k such that for all q = p

e there exists a primary decomposition

I
[q] = q1 \ · · · \ ql

with
p
qi

k[q] ✓ qi for all i?

In case when I is one-generated, its Frobenius powers are ordinary powers, and
then the answer to the question above is yes by Theorem 0.4.
If R is a regular ring, the answer to the question is yes, as then the Frobenius

map is flat (see Kunz ). A set-back to finding an a�rmative answer to the question
above in general was provided by the following example of Katzman :
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Example 10.2. Let k be a field of positive characteristic p, t, x, y variables over k

and R = k(t)[x, y]/(xy(x� y)(x� ty)). Then
[

q

Ass(R/I
[q]) is an infinite set.

This is not giving a negative answer to the question. In fact, Smith and Swanson
showed in that Katzman’s ideal satisfies the condition in the question. Nevertheless,
Katzman’s example shows that primary decompositions of Frobenius powers are
fairly complex, and that resolving the question above will not be easy.
An example similar to Katzman’s, but over an integral domain, was provided by

Singh and Swanson :

Example 10.3. Let k be a field of positive characteristic p,

R =
K[r, t, u, v, w, x, y, z]�

u2x2 + v2y2 + tuxvy + rw2z2
� ,

and I = (x, y, z)R. Then R is an F-regular unique factorization domain, and the
set [

q

Ass
R

I [q]
=

[

q

Ass
R

(I [q])⇤

has infinitely many maximal elements. (Superscript ⇤ denotes tight closure, and
F-regularity is a notion from tight closure. I leave these terms undefined here.)

Thus even in very good rings associated primes of Frobenius powers run wild.
Another aspect of complexity is the degree of generators of primary components

of an ideal in a graded ring. Grete Hermann proved that in a polynomial ring in n

variables over a field, if an ideal I has k generators and all have degree at most d,
then the primary components of I are all generated in degrees which are at most
doubly exponential in n. Hermann proved a few other doubly exponential bounds,
such as for the ideal membership problem and the degrees of the generators of the
syzygy module. Mayr and Meyer proved that the doubly exponential degree bounds
are achieved for the ideal membership problem: let J(n, d) be the ideal generated
by the following polynomials in the polynomial ring in 10n+2 variables over a field:

c0i

�
s� fb

d

0i

�
, i = 1, 2, 3, 4;

sr � sr�1cr�1,1, r = 1, . . . , n,

fr � sr�1cr�1,4, r = 1, . . . , n,

fr�1cr�1,1 � sr�1cr�1,2, r = 1, . . . , n,

fr�1cr�1,4 � sr�1cr�1,3, r = 1, . . . , n,

sr�1 (cr�1,3 � cr�1,2) , r = 1, . . . , n,

fr�1 (cr�1,2br�1,1 � cr�1,3br�1,4) , r = 1, . . . , n,

fr�1 (cr�1,2br�1,1 � cr�1,3br�1,4) , r = 1, . . . , n,

fr�1cr�1,2cri (br�1,2 � bribr�1,3) , i = 1, . . . , 4, r = 1, . . . , n� 1,

fn�1cn�1,2 (bn�1,2 � bn�1,3) .

Note that the generators have degrees at most max{d + 2, 4, 5�n�2}. (Here, �P is
1 if P is true, and is 0 otherwise.) The degree 1 element sn � fn of S is in J(n, d),
and when written as a linear combination of the given generators, the coe�cient of
c04(s0 � f0b

d

01) has degree which is doubly exponential in n (see ).
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It is not yet known if for every primary decomposition of the Mayr-Meyer ideals,
the bound on the degrees of the generators of primary components is indeed doubly
exponential. It is known that the number of minimal components is nd2 + 20, and
that the number of embedded primes is least 31+15d+(d2�d)�n=2+(n�1)(d3�
d)�n>2 and possibly doubly exponential in n (see , ). Bayer, Huneke, and Stillman
asked whether the doubly exponential behaviour of the Mayr-Meyer ideals is due
to the structure of one component or to the number of components. One could
ask the same of the family of ideals J(n, d) + (cri, sr, fr)2, which have much higher
height than the J(n, d), yet the same doubly exponential behaviour.
And one more aspect of complexity of primary decompositions is the number of

associated or minimal primes over an ideal. Here is an example of permanental
ideals: let A be an n ⇥ n matrix. In a Laplace expansion of the determinant of A
change all the minus signs to plus. The obtained formula is the permanent of A.
Now let m and n be arbitrary positive integers and A an m⇥ n matrix of inde-

terminates over a field. It is well-known that the ideal generated by determinants
of all the r ⇥ r submatrices of A is a prime ideal. Not much is known for the
corresponding results for permanents. Here is a special, and a wild, case, reflect-
ing the computational complexity of permanents versus determinants via primary
decompositions and associated primes:

Proposition 10.4. (Laubenbacher-Swanson ) Let k be field of characteristic other
than 2. Let m,n � 2 be integers and A an m⇥ n matrix of indeterminates over k.
Let I be the ideal generated by the permanents of all the 2 ⇥ 2 submatrices of A.
Then the number of minimal primes over I is n�m�3 + m�n�3 +

�
n

2

��
m

2

�
. Also, I

has an embedded component if and only if m,n � 3, and the number of embedded
components is exactly one.

And yet another aspect of the complexity of associated primes has to do with local
cohomology: if R is a Noetherian ring, M a finitely generated module, and I an
ideal, when do the local cohomology modules Hi

I
(M) have finitely many associated

primes? If R is a regular ring containing a field, all such local cohomology modules
have only finitely many associated primes. This was proved by Huneke and Sharp
in case of positive characteristic, and by Lyubeznik otherwise. Lyubeznik also
proved that the local cohomology modules have finitely many associated primes if
R is an unramified regular local ring of mixed characteristic. Marley proved that
if R is a Noetherian local ring and M a finitely generated R-module of dimension
at most three, then any local cohomology module H

i

I
(M) has only finitely many

associated primes. Khashyarmanesh and Salarian and Brodmann and Lashgari
Faghani proved that if i is the smallest integer such that H

i

I
(M) is not finitely

generated, thenH
i

I
(M) has only finitely many associated primes. Singh constructed

the first example for which H
i

I
(M) does not have finitely many associated primes.

Katzman constructed such an example over a local ring containing a field, and Singh
and Swanson constructed an example over a local unique factorization domain.
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11. Exercises

Exercises have double numbers: the first number corresponds to the section with
that number, the second number simply counts the exercises. Exercises with first
number 0 cover some background.

0.1: Let P be a prime ideal, and q1, . . . , qs arbitrary ideals. If P contains
q1 \ · · · \ qs, prove that P contains one of the qi. If P = q1 \ · · · \ qs,
prove that P equals some qi.

0.2: Let I and J be ideals in a ring R. Prove that
p
I \ J =

p
I \

p
J .

0.3: Let I and J be ideals and x an element in a ring R. Prove that (I \ J) :
x = (I : x) \ (J : x).

0.4: Let I be an ideal and U a multiplicatively closed subset in a ring R.
Prove that

p
IU

�1
R =

p
IU�1R.

0.5: Let R be a ring, N ✓ M R-modules, and U a multiplicatively closed
subset of R. Assume that M is finitely generated over R or that N is
Noetherian. Prove that U�1(N :R M) = U

�1
N :U�1R U

�1
M .

0.6: Let R be a ring, N ✓ M R-modules, I an ideal in R, and U a multiplica-
tively closed subset of R. Assume that I is finitely generated or that N
is Noetherian. Prove that U�1(N :M I) = U

�1
N :U�1M U

�1
I.

0.7: (Prime Avoidance) Let R be a ring, P1, . . . , Ps ideals in R, at most two
of which are not prime ideals. Let I be an ideal such that I 6✓ Pi for
i = 1, . . . , s. Then I is not contained in P1 [ · · · [ Ps.
Furthermore, if R is graded by a totally ordered abelian monoid and
P1, . . . , Ps and I are homogeneous, then there exists a homogeneous ele-
ment r 2 I such that r 62 P1 [ · · · [ Ps.

2.8: Find an example of a primary ideal I such that for some integer n, In is
not primary.

2.9: Let R be a ring, P a prime ideal, M and M
0
R-modules, N a P -primary

submodule of M , and N
0 a P -primary submodule of M 0. Then N �N

0

is a P -primary submodule of M �M
0.

2.10: Let R be a Noetherian ring, P a prime ideal in R, and M an R-module.
Assume that P is minimal over 0 :R m for some m 2 M . Prove that
P = 0 :R n for some n 2 N .

2.11: Let R be the ring R[X,Y ]/(X2 � Y
2 � X

3) localized at (X,Y ), and S

the completion of R in the (X,Y )-adic topology. Then S is a faithfully
flat extension of R. Verify that there are prime ideals in R which are not
primary in S.

3.12: Let R be a Noetherian ring and M a finitely generated R-module. Prove
that the di↵erent notions of primes associated to M as in Remark 0.11
are all the same.

3.13: Let R be a Noetherian ring, and M an R-module (not necessarily Noe-

therian). Prove that AssR(M) = gAssR(M).
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3.14: Find a ring R and a module M such that the di↵erent notions of primes
associated to M (as in Remark 0.11) are all distinct.

3.15: Let R be a ring, M , M 0 both R-modules.
(i) Prove or disprove: Ass(M �M

0) = Ass(M) [Ass(M 0).
(ii) Assume that M,M

0 are contained in an R-module. Prove or dis-
prove: Ass(M +M

0) = Ass(M) [Ass(M 0).

3.16: Let R be a ring and M an R-module. An R-submodule N of M is said
to be irreducible if whenever N

0 and N
00 are R-submodules of M such

that N = N
0 \N

00, then either N = N
0 or N = N

00.
(i) Prove that every irreducible submodule of a Noetherian module is

primary.
(ii) Prove that every submodule of a Noetherian submodule can be

written as a finite intersection of irreducible submodules. (This
generalizes Theorem 0.4.)

3.17: Let R be a ring, I an ideal andX a variable over R. Let I = q1\· · ·\qs be
a (minimal, irredundant) primary decomposition. Prove that IR[X] =
q1R[X]\· · ·\qsR[X] is a (minimal, irredundant) primary decomposition.

3.18: Let R be a ring, I an ideal, J a finitely generated ideal in R, and P a
prime ideal. Prove that if P 2 AssR(R/(I : J)), then P 2 AssR(R/I).

3.19: (From Dan Katz) Let R be a Noetherian ring, and I an ideal containing
a non-zerodivisor. Let n0 be a positive integer such that for all n � n0,
I
n+1 : I = I

n.1 Prove that for all n � n0, AssR(R/I
n) ✓ AssR(R/I

n+1).

(Thus if you know that
[

n

AssR(R/I
n) is finite, then for all large n,

AssR(R/I
n) = AssR(R/I

n+1). Cf. Proposition 0.5 and Exercise 7.35.)

3.20: Find an example of an ideal I and a primary decomposition I = q1 \
· · · \ qs such that for some positive integer n, In 6= q

n

1 \ · · · \ q
n

s
.

3.21: Let R be a Noetherian ring, M a finitely generated R-module, and N an
R-module. Prove that

AssR HomR(M,N) = AssR(N) \ Supp
R
(M).

3.22: Let R be a ring, P a prime ideal, and ER(R/P ) the injective envelope of

R/P . Prove that gAssER(R/P ) = {P}.
3.23: Let R be a Noetherian ring and M a finitely generated R-module.

(i) Prove that there exists a filtration of R-modules

0 = M0 ✓ M1 ✓ · · · ✓ Mn�1 ✓ Mn = M

1 Such n always exists. A proof can be found in McAdam’s book , Lemma 1.1 (b), applied to
ideals which contain a non-zerodivisor. Namely, let S = grI(R) = R/I�I/I2�I2/I3� · · · . Then
S is a Noetherian N-graded ring. The ideal 0 :S I/I2 is finitely generated, in degrees at most some
integer l. For all n > l, (0 :S I/I2)\In/In+1 = 0. Conclude that for all n � l, (In+1 : I)\Il = In.
Now let x be a non-zerodivisor in I. Then for all n, In : I ✓ In : r. By the Artin-Rees lemma,
there exists an integer k such that for all n � k, In \ (r) ✓ rIn�k. As r is a non-zerodivisor,
for all n � k, In : r ✓ In�k. Hence for n � k + l, In+1 : I ✓ In+1 : r ✓ In+1�k ✓ Il, whence
In+1 : I ✓ (In+1 : I) \ Il = In.
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such that for all i = 1, . . . , n, Mi/Mi�1 is isomorphic to R/Pi for
some prime ideal Pi in R.

(ii) Prove that if P is associated to M , then P = Pi for some i.

3.24: (Yassemi ) Let R be a ring and M an R-module. Prove that gAssR(M)
is a finite set if and only if there exists a filtration of R-modules

0 = M0 ✓ M1 ✓ · · · ✓ Mn�1 ✓ Mn = M

such that for all i = 1, . . . , n, gAssR Mi/Mi�1 consists of one prime ideal
which is in addition weakly associated to M .

3.25: (Yassemi ) Let R be a ring, I a proper ideal, and M an R-module. Prove

that
[

n

gAssR(M/I
n
M) =

[

n

gAssR(I
n�1

M/I
n
M).

3.26: (Heinzer, Ratli↵, Shah ) Let (R,m) be a Noetherian local ring such that
m 2 AssR \MinR. Let S be the set of all m-primary components of (0)
which are not contained properly in any other m-primary component of
(0). Prove that S is an infinite set.

3.27: Let R be a ring, M,N R-modules, and P 2 AssR(M). Prove that
AssR(N/PN) ✓ AssR(M ⌦R N). (I saw this exercise in .)

3.28: (Ortiz, , cf. Theorem 0.2) Let R be a Noetherian ring, and M a finitely
generated R-module. For each P 2 AssR M , and each P -primary com-
ponent N of 0 in M , set

nilN (P ) = min{n |Pn ✓ N :R M},
nil(P ) = min{nilN (P ) |N is a P -primary component of 0}.

Prove that there exists a unique irredundant primary decomposition 0 =
s\

i=1

Ni of 0 in M such that

(i) For each i, with Pi =
p
Ni :R M , nilNi(Pi) = nil(Pi).

(ii) If 0 =
s\

i=1

N
0
i
is any other irredundant primary decomposition, then

after relabelling without loss of generality for each i = 1, . . . , s,
Pi =

p
N

0
i
:R M . If nilN 0

i
(Pi) = nil(Pi), then Ni ✓ N

0
i
.

4.29: Let R be a Noetherian ring and I an ideal in R. Prove that for any
x 2 R, Ass(R/I) ✓ Ass(R/(I : x)) [ Ass(R/(I + xR)). (Hint: use
Proposition 0.4.)

4.30: Let R be a Noetherian ring and 0 �! M
0 �! M �! M

00 �! 0 a short
exact sequence of finitely generated R-modules. Prove that

AssM 00 ✓ AssM [ {P 2 SpecR | depth
RP

M
0
P
= 1}.

5.31: (Krull’s intersection theorem) Let R be a Noetherian ring and I an ideal

in R. Prove that
\

n

I
n is the intersection of those primary components
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q of 0 which satisfy the property q + I = R. (Hint: you may need to use

that I
\

n

I
n =

\

n

I
n.)

5.32: (Yassemi ) Let R be a ring, S an R-algebra, and M an S-module. Prove
that {P \R | P 2 AssS(M)} ✓ AssR(M).

5.33: Let R be a ring and x a non-zerodivisor in R. Assume that 0 and (x)
have primary decompositions. If P 2 Ass(R/(x)) and y 2 P a non-
zerodivisor, then P is associated to some power of (y). If P is finitely
generated, then P is associated to (y).

5.34: Let R be a Noetherian Nn-graded ring generated over R0 by elements of
total degree 1. LetM be a finitely generated Nn-graded R-module. Prove
that there exists g0 2 Nn such that for all g 2 Nn, if g is componentwise
larger than g0, then AssR0 Mg = AssR0 Mg0 .

7.35: Let R be a Noetherian ring and I an ideal. Then
[

n

Ass(R/I
n) is a finite

set. (Hint: this of course follows from Proposition 0.5, which proves
more. Try a more elementary approach? Compare with the following
two exercises.)

7.36: Let R be a Noetherian ring of prime characteristic p and I an ideal of
finite projective dimension such that MinR/I = AssR(R/I). Prove that
for every q = p

e, AssR(R/I
[q]) = MinR/I, where I

[q] = (iq | i 2 I).

7.37: Let R be a Noetherian ring and I an ideal generated by a regular se-
quence. Prove that for all n, AssR(R/I

n) = AssR(R/I).

7.38: Let R be a ring, and I1, . . . , Is ideals in R. The multi-Rees algebra of
I1, . . . , Is is the subalgebra of R[t1, . . . , ts], where t1, . . . , ts are variables
over R, generated over R by all elements of the form aiti, as ai varies over
the elements of Ii. This algebra is also denoted R[I1t1, . . . , Ists]. The ex-
tended multi-Rees algebra of I1, . . . , Is is the subalgebra of R[ti, t

�1
i

| i =
1, . . . , s] generated over R by the t

�1
i

and all elements of the form aiti,
as ai varies over the elements of Ii. The extended Rees algebra is also
denoted R[It, t�1]. R[I1t1, . . . , Ists, t

�1
1 , . . . , t

�1
s

]
(i) Prove that for all non-negative integers n1, . . . , ns,

t
�n1
1 · · · t�ns

s
R[I1t1, . . . , Ists, t

�1
1 , . . . , t

�1
s

] \R = I
n1
1 · · · Ins

s
.

(ii) Assume that M is an R-module. If S denotes the (extended) Rees
algebra of I1, . . . , Is, prove that MS is an Ns-graded S-module. In
particular, S is a graded.

7.39: Let R be a Noetherian ring, I1, . . . , Is ideals, and M a finitely generated
R-module. Let S be the (extended) Rees algebra of I1, . . . , Is.

(i) Prove that
[

e

Ass(MS)e is a finite set, as e varies over s-tuples in

Ns.
(ii) Use the shorthand notation I

e = I
e1
1 · · · Ies

s
. Prove that

[

e

Ass(IeM)

is a finite set.
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(iii) Similarly, prove that
[

e,i

Ass(IeM/I
e
IiM) is a finite set.

(iv) Prove that Ass(IeM) is independent of e for e componentwise large
enough.

8.40: Let R be a Noetherian ring, I1, . . . , Is ideals and M a finitely generated
R-module. Then there exists a positive integer k such that for all positive
integers n1, . . . , ns there exists a primary decomposition

I
n1
1 M \ · · · \ I

ns
s

M = N1 \N2 \ · · · \Nl

such that for all i,
p
Ni : M

kn

M ✓ Ni.

9.41: Let R = Q[X,Y ] endowed with the lexicographic ordering. Let I =
(X2

, XY � Y
2).

(i) Prove that in(I) = (X2
, XY, Y

3).
(ii) Show that in(I) 6= (in(X2), in(XY � Y

2)) = (X2
, XY ).

(iii) Let G = {X2
, XY � Y

2}. Reduce X
2
Y with respect to G in two

di↵erent ways.

9.42: Let k be a perfect field, X1, . . . , Xn variables over k, R = k[X1, . . . , Xn].
Let I be a zero-dimensional ideal in R. For each j = 1, . . . , n, set
Fjk[Xj ] = I \ k[Xj ]. Let Gj be the square-free part of Fj . Prove thatp
I = I + (G1, . . . , Gn).

9.43: Let k be an infinite field, X1, . . . , Xn variables over k, and I a zero-
dimensional ideal in R = k[X1, . . . , Xn]. Assume that I is not primary.
(i) Prove that after a generic linear change of coordinates, i.e., after

a mapping Xj 7!
P

i
aijXi, with aij 2 k su�ciently general, I

contracted to k[X1] is not primary.
(ii) Give an example showing that without the generic linear change it

can happen that I \ k[Xj ] is primary for all j.
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Some solutions

2.8: There are many examples. Here is a large class of examples: let k be
a field, Xij indeterminates over k, where i = 1, . . . ,m and j = 1, . . . , n.
Let R = k[XIJ | i, j] and I an ideal generated by the determinants of
all the r ⇥ r submatrices of [Xij ]. Then I is always a prime ideal, but
powers of I are rarely primary. See Bruns-Vetter .

3.13: Use Exercise 2.10.

5.31: Set K =
\

n

I
n, L =

\

q

q, where q varies over all primary components

of 0 satisfying q + I 6= R, M =
\

q

q, where q varies over the rest of the

primary components. As M is a finite intersection, M + I = R, and
there exist m 2 M , i 2 I such that m + i = 1. Then for any x 2 L,
x = xm+xi = xi, and similarly for all positive integers n, x = xi

n 2 I
n.

Hence L ✓ K. As IK = K, by determinantal trick, there exists r 2 R

such that rK = 0 and r � 1 2 I. If r is in an associated prime ideal P
of 0, then from r � 1 2 I we deduce that P + I = R. Thus K ✓ 0 : r is
contained in the intersection of the primary components q of 0 for which
q + I 6= R, which proves that K 2 L, and hence K = L.

5.33: By Proposition 0.1 there exists a non-zerodivisor r such that P is minimal
over (x) : r. Then ry

n 2 (x) for some positive integer n, so there exists
s 2 R such that ry

n = sx. Set Q = (yn) : s. If z 2 P , then z
m
r = ax

for some a 2 R and m 2 N. Thus srz
m = asx = ary

n. As r is a
non-zerodivisor, szm = ay

n. Hence z is in the radical of (yn) : s = Q.
Conversely, let z be in (yn) : s. Write zs = ay

n for some a 2 R. Then
zsr = ay

n
r = asx. But s is also a non-zerodivisor, as sx = ry

n is a
product of non-zerodivisors. Thus rz = ax, so that z 2 (x) : r. This
proves that Q ✓ P , so that P is associated to (y).

7.35: Let S = R[It, t�1]. Then t
�1 is a non-zerodivisor in S. By Corollary 0.2,

Ass(S/(t�1)) = Ass(S/(t�n)) for all n 2 N. In particular,
[

n

Ass(S/(t�n)

is a finite set. But then by Lemma 0.3 and the fact that In = t
�n

S \R,[

n

Ass(R/I
n) is a finite set.
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Gröbner bases, 24, 25
Greuel, 24

Heinzer, 33
Hermann, 24, 29
Hoa, 23
Hochster, 23, 28
homogeneous, 14, 15
Huneke, 23, 28, 30

ideal membership problem, 29
initial ideal, 25
initial term, 25
injective envelope, 22, 32
irreducible, 32
irredundant primary decomposition, 7
Izumi-Rees, 23

Katz, 32

Katzman, 28–30
Khashyarmanesh, 30
Kirby, 20
Kunz, 28

Lashgari Faghani, 30
Laubenbacher, 30
Lazarsfeld, 23
leading coe�cient, 25
leading monomial, 25
lexicographic ordering, 25
local cohomology, 13, 30
localization, 4, 5, 9, 27, 31
Lyubeznik, 30

Marley, 30
Mayr-Meyer, 29

modification, 30
minimal component, 10
minimal primary decomposition, 7
monomial ideals, 16
multi-Rees algebra, 34

Nagata, 2
Nakayama’s lemma, 11

Ortiz, 18, 33

permanent, 30
Pfister, 24
polynomial extension, 5
primary decomposition, 6
primary ideal, 1
primary module, 3
prime avoidance, 14, 31

homogeneous, 31
principal ideal domain, 24
principal prime ideal, 27
procedure for calculating primary

decomposition, 7, 16, 27

radical, 1–5, 7, 10, 35
Ratli↵, 33
reduction step (Gröbner bases), 26
Rees algebra, 19, 34
reverse lexicographic ordering, 25

S-polynomial, 26
Salarian, 30
Shah, 33
Sharp, 22, 30
short exact sequence, 13, 33
Singh, 29, 30
Singular, 24
Smith, 23, 29
symbolic power, 3, 11

tight closure, 28

40



41

Trager, 27
Trung, 23

unique factorization domain, 29, 30
uniqueness of primary decomposition, 10

weakly associated prime, 8
witness, 14

Yao, 11
Yassemi, 33, 34

Zacharias, 27
Zariski, 2


