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Abstract This expository paper contains history, definitions, constructions,
and the basic properties of Rees valuations of ideals. A section is devoted to
one-fibered ideals, that is, ideals with only one Rees valuation. Cutkosky [5]
proved that there exists a two-dimensional complete Noetherian local inte-
grally closed domain in which no zero-dimensional ideal is one-fibered. How-
ever, no concrete ring of this form has been found. An emphasis in this paper
is on bounding the number of Rees valuations of ideals. The last section is
about the Izumi–Rees Theorem, which establishes comparability of Rees val-
uations with the same center. More on Rees valuations can be done via the
projective equivalence of ideals, and there have been many articles along that
line. See the latest article by Heinzer, Ratliff, and Rush [11], in this volume.

All rings in this paper are commutative with identity, and most are Noethe-
rian domains. The following notation will be used throughout:

- Q(R) denotes the field of fractions of a domain R.
- For any prime ideal P in a ring R, κ(P ) denotes the field of fractions

of R/P .
- If V is a valuation ring, mV denotes its unique maximal ideal, and v denotes

an element of the equivalence class of valuations naturally determined
by V .

- We say that a Noetherian valuation is normalized if its value group is a
subset of Z whose greatest common divisor is 1.

- If R is a ring and V is a valuation overring, then the center of V on R is
mV ∩ R.

- A valuation ring V (or a corresponding valuation v) is said to be divisorial

with respect to a subdomain R if Q(R) = Q(V ) and if tr.degκ(p)κ(mV ) =
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ht p−1, where p = mV ∩R. It is a fact that every divisorial valuation with
respect to a Noetherian ring R is essentially of finite type over R.

- If I is an ideal in a ring R, the I-adic order is the function ordI : R →
Z≥0 ∪ {∞} given by

ordI(x) = sup{n ∈ Z : x ∈ In}.

- If R is a domain and v is a valuation on Q(R), we allow v to be defined
on all of R by setting v(0) = ∞.

- For any Noetherian valuation v that is non-negative on a domain R, and
for any ideal I in R, v(I) is min {v(r) : r ∈ I}.

Many of the omitted proofs can be found in Chapter 10 in [17].

1 Introduction

David Rees was the first to systematically study the valuations associated to
an ideal that were later called Rees valuations. Rees proved their existence,
uniqueness, he proved that they determine the integral closures of the powers
of the given ideal, and over the years he and others proved many applications.

Recall that if I is an ideal in a ring R, we denote by I the integral closure
of I, namely,

I = {r ∈ R : rn+a1r
n−1+· · ·+an = 0 for some positive n and some aj ∈ Ij}.

It is well-known that this equals

I =
⋂

V

IV ∩ R,

as V varies over the valuation rings that are R-algebras, or alternatively, as
V varies over the valuation rings between R/P and Q(R/P ), and P varies
over the set Min(R) of minimal prime ideals in R. In case R is Noetherian,
the valuation rings may all be restricted to be Noetherian valuations rings.
If R/I is Artinian, by the descending chain property, there exists a finite
set S of valuation rings such that I =

⋂
V ∈S IV ∩R. Finiteness of the needed

set of valuations is a desirable property in general, as it simplifies existence
proofs and algorithmic computations. Rees valuations aim for more: there
are finitely many valuations that suffice in the sense above not just for I but
also for I, I2, I3, I4, . . . simultaneously. Here is a formal definition:

Definition 1.1. Let R be a ring and I an ideal in R. A set of Rees valuation

rings of I is a set {V1, . . . , Vs} consisting of valuation rings, subject to the
following conditions:

1. Each Vi is Noetherian and is not a field.
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2. For each i = 1, . . . , s, there exists a minimal prime ideal Pi of R such that
Vi is a ring between R/Pi and Q(R/Pi).

3. For all n ∈ N, In = ∩s
i=1(I

nVi) ∩ R.
4. The set {V1, . . . , Vs} satisfying the previous conditions is minimal possible.

By a slight abuse of notation, the notation RV (I) stands for a set of
Rees valuation rings of I – even though the set is in general not uniquely
determined. (Uniqueness is discussed in Section 2.)

For each valuation ring there is a natural corresponding equivalence class
of valuations. A set of representatives of valuations for a set of Rees valuation
rings is called a set of Rees valuations. Typically, we take the normalized
representatives.

By the standard abuse of notation, each valuation v is defined on the
whole ring R and takes on in addition the value ∞, with {r ∈ R : v(r) = ∞}
being a prime ideal. If a valuation vi corresponds to a Rees valuation ring Vi,
then {r ∈ R : vi(r) = ∞} is precisely the minimal prime ideal Pi of R as in
condition 2. above. With this notation, condition 3. translates to:

In = {r ∈ R : v1(r) ≥ nv1(I), . . . , vs(r) ≥ nvs(I)} for all n ≥ 0.

All Rees valuations are constructed as localizations of the integral clo-
sures of finitely many finitely generated R-algebras contained in Q(R), as we
explain in Section 2. One idea of where Rees valuations might be found is con-
tained in the following observation: If {V1, . . . , Vs} is a set of Rees valuation
rings of I (unique or not), then for all n,

In =

s⋂

j=1

(InVj ∩ R)

is a (possibly redundant) primary decomposition of In, and thus

⋃

n≥1

Ass(R/In) ⊆ {{r ∈ R : rVj 6= Vj} : j = 1, . . . , s} (1)

= {mVj
∩ R : j = 1, . . . , s} (2)

is a finite set.

It is straightforward to verify that for all ideals I, RV (I) = RV (I).
A basic property of Rees valuations of an ideal is that they localize, in

the sense that for any multiplicatively closed set W in R, RV (W−1I) =
{V ∈ RV (I) : mV ∩ W = ∅}. This follows in a straightforward way from the
definitions.

How do Rees valuations behave under extending the ideal to an overring?
Let R → S be a ring homomorphism of rings such that S is either faithfully
flat over R or S is integral over R. Then for any ideal I in R, I = IS ∩ R
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(proofs can be found in Propositions 1.6.1 and 1.6.2 of [17]). If Rees valuations
exist for IS, this implies that

RV (I) ⊆ {V ∩ Q(R) : V ∈ RV (IS)}.

If S is the integral closure of the Noetherian domain R in its field of fractions,
even equality holds, i.e., RV (I) = {V ∩ Q(R) : V ∈ RV (IS)} = RV (IS).
Furthermore, if (R, m) is a Noetherian local ring and I is an m-primary ideal

of I, then IR̂ is the integral closure of IR̂, whence also in this case, RV (I) =

{V ∩ Q(R) : V ∈ RV (IR̂)}. If in addition R̂ is a domain, no two Noetherian

valuations on Q(R̂) centered on mR̂ contract to the same valuation on Q(R),

so in that case the numbers of Rees valuations of I and of IR̂ are the same if
I is m-primary. More generally, Katz and Validashti [21, Theorem 5.3] proved
the following:

Theorem 1.2. (Katz and Validashti [21, Theorem 5.3]) Let I be an ideal
in a Noetherian local ring (R, m) that is not contained in any minimal prime

ideal. Let w be a Rees valuation of IR̂ with center mR̂, and let Q be the
corresponding minimal prime ideal in R̂ such that w is a valuation on κ(Q).
Then w restricted to κ(Q ∩ R) is a Rees valuation of I with center m. The
function

w 7→ w|κ({r∈R:w(r)=∞})

from Rees valuations of IR̂ with center on mR̂ to Rees valuations of I with
center on m is a one-to-one and onto function.

The results above were in the direction of where to search for Rees valu-
ations of a given ideal; the following result searches for an ideal for which a
given valuation is a Rees valuation:

Proposition 1.3. Let R be a Noetherian domain. Let V be a divisorial val-
uation ring with respect to R. Then there exists an ideal I in R, primary to
P = mV ∩ R, such that V is one of its Rees valuation rings.

Conversely, let J be an ideal and W a Rees valuation ring of J . Set P =
mW ∩ R and assume that RP is formally equidimensional. Then W is a
divisorial valuation ring with respect to R and RP .

(A proof can be found for example in [17, Propositions 10.4.3 and 10.4.4].)
For this reason, on Noetherian locally formally equidimensional domains,

the Rees valuations of non-zero ideals are the same as the divisorial valuations
with respect to R.
Examples

1. A maximal ideal m in a regular ring has only one Rees valuation, namely
the m-adic valuation. The m-adic valuation ring equals R[mx ]

(x)R[m
x

]
for

any x ∈ m \ m
2.
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2. Let R = k[X1, . . . , Xd] be a polynomial ring over a field k. For any
monomial ideal I in R, the convex hull of the set {(a1, . . . , ad) ∈ Nd :
Xa1

1 · · ·Xad

d ∈ I} in Rd is called the Newton polyhedron of I, and is
denoted NP(I). The Newton polyhedron of I contains the information on
the integral closure of I:

I = (Xa1

1 · · ·Xad

d | (a1, . . . , ad) ∈ NP(I) ∩ Nd).

By Carathéodory’s Theorem the convex hull is bounded by the coordinate
hyperplanes and by finitely many other faces/hyperplanes, each of the form
c1X1 + · · · + cdXd = 1 for some ci ∈ Q. The corresponding hyperplane
bounding the Newton polyhedron of In has the form c1X1+· · ·+cdXd = n.
Thus

In = (Xa1

1 · · ·Xad

d : c1a1 + · · · + cdad ≥ n,

as (c1, . . . , cd) varies over the hyperplane coefficients as above).

For each such irredundant bounding hyperplane c1X1 + · · · + cdXd = 1,
define a monomial valuation v : R → Q by v(Xa1

1 · · ·Xad

d ) = c1a1 +
· · · + cdad and by v(

∑n
i=1 mi) = min {v(mi) : i = 1, . . . , n}, where the

mi are products of non-zero elements of k with distinct monomials. By
above, these valuations are the Rees valuations of I. (Hübl and the author
generalized this in [16] to all ideals generated by monomials in a regular
system of parameters.)

3. In particular, in a polynomial ring k[X1, . . . , Xn], every ideal of the form
(Xa1

1 , . . . , Xam
m ) has only one Rees valuation.

4. The above can easily be worked on the monomial ideal (X, Y ) in the
polynomial ring R = k[X, Y, Z] over a field k, to get that the only Rees
valuation of (X, Y ) is the monomial valuation v1, which takes value 1 on
X and Y and value 0 on Z.
Similarly, the only Rees valuation of (X, Z)k[X, Y, Z] is the monomial
valuation v2 taking value 1 on X and Z and value 0 on Y .
The valuations v1 and v2 are not the only Rees valuations of the prod-
uct of the two ideals (X, Y ) and (X, Z), by the following reasoning:
v1((X, Y )(X, Z)) = 1 since v1(XZ) = 1, and similarly v2((X, Y )(X, Z)) =
1. However, v1(X) = v2(X) = 1 as well, but X 6∈ (X, Y )(X, Z).

Related to the last example is the following:

Proposition 1.4. (Cf. Muhly–Sakuma [29]) For any non-zero ideals I and J
in a Noetherian domain R, RV (I)∪RV (J) ⊆ RV (IJ). If I is locally principal
or if R is Noetherian locally formally equidimensional of dimension at most 2,
then RV (I) ∪ RV (J) = RV (IJ).

The example above the proposition shows that the inclusion RV (I) ∪
RV (J) ⊆ RV (IJ) may be proper.
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On page 3 it was mentioned that RV (I) = RV (J) if the integral closures
of I and J coincide. It is similarly clear that for ideals I ⊆ J , I = J if and
only if for every Rees valuation ring V of I, IV = JV . It is not much harder
to prove that for every positive integer n, RV (I) = RV (In). Furthermore,
if Im = Jn for some positive integers m, n, then RV (I) = RV (J). However,
the converse may fail, namely RV (I) = RV (J) does not imply that Im = Jn

for some positive integers m, n. For example, let I = (X2, Y )5 ∩ (X, Y 2)4

and J = (X2, Y )4 ∩ (X, Y 2)5, and use the monomial ideal method above
for finding the Rees valuations. The two ideals I and J have the same two
monomial Rees valuations, yet the integral closures of powers of I do not
coincide with the integral closures of powers of J .

We recall some more vocabulary: an ideal J is a reduction of an ideal I if
J ⊆ I and J = I. The first crucial paper on reductions is [31], by Northcott
and Rees.

2 Existence and uniqueness

There is the question of existence and uniqueness of Rees valuation rings.
For the zero ideal in a domain, any one Noetherian valuation ring V be-
tween R and Q(R) is the Rees valuation ring. Thus we have existence but
not uniqueness in this case.

The first case of the existence and uniqueness of Rees valuations was
proved by David Rees in [32], for zero-dimensional ideals in equicharacter-
istic Noetherian local rings. The second case was proved by Rees in [34] for
arbitrary ideals I in Noetherian domains for which the following Artin–Rees-
like assumption holds: there exists an integer t such that for all sufficiently
large n, It+n+1 ∩ In ⊆ In+1. Neither of the two cases of existence in [32]
and [34] is covered by the other. The general existence theorem, for all ide-
als in Noetherian rings, was proved by Rees in [35]. Uniqueness was proved
in [32]. Here is a summary general result (for a proof, see for example [17,
Theorems 10.1.6 and 10.2.2]):

Theorem 2.1. (Existence and uniqueness of Rees valuations) Let R be a
Noetherian ring. Then for any ideal I of R, there exists a set of Rees valuation
rings, and if I is not contained in any minimal prime ideal of R, then the set
of Rees valuation rings is uniquely determined.

The main case of the proof of the existence is actually when R is a Noethe-
rian domain and I is a non-zero principal ideal. In that case, by the Mori–
Nagata Theorem, the integral closure R of R is a Krull domain, so that the
associated primes of InR, as n varies, are all minimal over I, there are only
finitely many of them, and the localizations of R at these primes are Noethe-
rian valuation domains. These finitely many valuation rings are then the Rees
valuation rings of IR, and hence of I.
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The reduction of the existence proof in general to the non-zero principal
ideal case is via the extended Rees algebra R[It, t−1] (cf. [17, Exercise 10.6]):

RV (I) = {V ∩ Q(R) : V ∈ RV (t−1R[It, t−1])}.

The reduction to the domain case relies on the fact that the integral closure
of ideals is determined by the integral closures when passing modulo the
minimal primes.

It turns out that in a Noetherian ring, all minimal prime ideals play a role
in the Rees valuations of all ideals of positive height, in the sense that for
every ideal I of positive height and every P ∈ Min(R) there exists a Rees
valuation v of I such that {r ∈ R : v(r) = ∞} = P . But even more is true
(and does not seem to be in the literature):

Proposition 2.2. Let R be a Noetherian ring and I an ideal in R not con-
tained in any minimal prime ideal. For each P ∈ Min(R), let TP be the set
of Rees valuations of I(R/P ). By abuse of notation, these valuations are also
valuations on R, with {r ∈ R : v(r) = ∞} = P . Then ∪P TP is the set of
Rees valuations of I.

Proof. The standard proofs of the existence of Rees valuations show that
RV (I) ⊆ ∪P TP . We need to prove that no valuation in ∪P TP is redundant.

Let Q ∈ Min(R) and v ∈ TQ. By the minimality of Rees valuations of
I(R/Q), there exist n ∈ N and r ∈ R such that for all w ∈ TQ \ {v},
w(r) ≥ nw(I), yet r 6∈ In(R/Q) (i.e., v(r) < nv(I)). Let r′ be an element
of R that lies in precisely those minimal prime ideals that do not contain r.
Then r + r′ is not contained in any minimal prime ideal, for all w ∈ TQ \ {v},
w(r + r′) ≥ nw(I), and v(r + r′) < nv(I)). Let J ′ be the intersection of all
the minimal primes other than Q, let J ′′ be the intersection of all the centers
of w ∈ TQ, and let s ∈ J ′∩J ′′ \Q. By assumption on r, there exists a positive
integer k such that for all w ∈ TQ \ {v},

v(s)

v(I)
−

w(s)

w(I)
+ 1 < k

(
w(r + r′)

w(I)
−

v(r + r′)

v(I)

)
.

Note that for all w ∈ ∪P 6=QSP , w(s) = ∞. Thus for all w ∈ ∪P TP \ {v},
v(s)
v(I) −

w(s)
w(I) + 1 < k

(
w(r+r′)

w(I) − v(r+r′)
v(I)

)
. Then with m = ⌊ v(s(r+r′)k)

v(I) ⌋, s(r +

r′)k 6∈ Im+1, yet for all w ∈ ∪P TP \ {v}, w(s(r + r′)k) ≥ (m + 1)w(I). This
proves that v is not redundant. ⊓⊔

How does one construct the Rees valuation rings in practice? The steps
indicated above of computing the integral closure of R[It, t−1] require an ad-
ditional variable over R, and afterwards one needs to take the intersections of
the obtained valuation rings with Q(R). There is an alternative construc-

tion that eliminates these two steps of extending and intersecting, namely a
construction using blowups: if I = (a1, . . . , ar), then
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RV (I) =
r⋃

j=1

RV

(
ajR

[
I

aj

])
.

Just as the first construction, this one also reduces to the case of principal
ideals. As announced, this construction avoids introducing a new indeter-
minate and then intersecting the valuation rings with a field, but it instead
requires the computation of r integral closures of rings. This can also be com-
putationally daunting. If there is a way of making r smaller, the task gets a
bit easier. Since RV (J) = RV (I) whenever I = J , one can replace I in this
alternative construction with J , if J has fewer generators than I. A standard
choice for J is a minimal reduction of I, or even a minimal reduction of a
power of I. It is known that in a Noetherian local ring R, every ideal has a
power that has a reduction generated by at most dimR elements. In case the
residue field is infinite, the ideal itself has a reduction generated by at most
dimR elements (see [31] or [17, Propositions 8.3.7, 8.3.8]).

Even better, if R contains an infinite field, or if R is local with an infinite
residue field, there exists a “sufficiently general” element a ∈ I such that
RV (I) = RV (aR[ I

a ]). In fact, RV (I) = RV (aR[ I
a ]) whenever aV = IV for

all V ∈ RV (I). Unfortunately, the “sufficient generality” is not so easily
determined, and might be doable only after the Rees valuations have already
been found.

Sally proved a determinate case when only one affine piece of the blowup
suffices for finding the Rees valuations:

Theorem 2.3. (Sally [40, page 438]) Let (R, m) be a Noetherian formally
equidimensional local domain of dimension d > 0, and let I be an m-primary
ideal minimally generated by d elements. Then for any a ∈ I that is part of
a minimal generating set, any Rees valuation ring V of I is the localization
of the integral closure of R[ I

a ] at a height one prime ideal minimal over a.

Similarly, if x1, . . . , xr is a regular sequence in a Noetherian domain R, then
for every Rees valuation ring V of I = (x1, . . . , xr), and for every i = 1, . . . , r,
xiV = IV , and V is the localization of the integral closure of S = R[ I

xi
] at a

height one prime ideal containing xi.
Thus there are occasions when the alternative construction of Rees valua-

tions using blowups only requires the computation of the integral closure of
one ring, and sometimes this one ring is known a priori.

There is yet another construction of Rees valuations, this one via the
(ordinary) Rees algebra R[It]: the set of Rees valuation rings of I equals the
set of all R[It]P ∩ Q(R), as P varies over the prime ideals in R[It] that are
minimal over IR[It].

A consequence of this formulation is a criterion for recognizing when the
associated graded ring and the associated “integral” graded ring are reduced:

Theorem 2.4. (Hübl–Swanson [15]) If R is integrally closed, then grI(R) is
reduced if and only if all the powers of I are integrally closed and if for each
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(normalized integer-valued) Rees valuation v of I, v(I) = 1. Also, R/I ⊕
I/I2 ⊕ I2/I3 ⊕ · · · is a reduced ring if and only if for each (integer-valued)
Rees valuation v of I, v(I) = 1.

Here is an example illustrating this result. Let X, Y, Z be variables over C,
and R = C[X, Y, Z]/(X2 + Y 3 + Z5). Then R is an integrally closed domain.
By Flenner [8, 3.10], R is a rational singularity ring, so that by Lipman [22],
all the powers of the maximal ideal m = (X, Y, Z)R are integrally closed, and
the blowup rings in the construction of Rees valuations of m are integrally
closed. As X ∈ (Y, Z)R, it follows that RV (m) = RV ((Y, Z)), and by Sally’s

Theorem 2.3 above, RV (m) = RV (Y R[ (Y,Z)
Y ]). Certainly X

Y is integral over

R[ (Y,Z)
Y ], so that RV (m) = RV (Y R[ (X,Y,Z)

Y ]). By the cited Lipman’s result,

with X ′ = X
Y and Z ′ = Z

Y ,

R

[
(X, Y, Z)

Y

]
∼= R

[
m

Y

]
∼=

C[X ′, Y, Z ′]

((X ′)2 + Y + Y 3(Z ′)5)

is integrally closed, and there is only one minimal prime over (Y ), namely
(X ′, Y ), so that m has only one Rees valuation. Locally at (X ′, Y ), the max-
imal ideal is generated by X ′, so that if v is the natural corresponding val-
uation, v(X ′) = 1, v(Z ′) = 0, from Y (1 + Y 2(Z ′)5) = −(X ′)2 we get that
v(Y ) = 2, hence v(X) = v(X ′)+ v(Y ) = 3, v(Z) = v(Z ′)+ v(Y ) = 2, whence
v(m) ≥ 2. Notice that gr

m
(R) = R/m ⊕ m/m

2 ⊕ · · · ∼= C[x, y, z]/(x2) is not
reduced.

The listed constructions of Rees valuations above give several methods for
finding the unique set. All the methods require passing to finitely generated
ring extensions, then taking the integral closure of the ring, followed by find-
ing minimal primes over some height one ideals. The whole procedure may be
fairly challenging: the integral closures of rings and primary decompositions
of ideals are in practice hard to compute.

The following theorem gives a method for finding the centers of the Rees
valuations without going through the full construction of the valuations. Re-
call (see [31]) that the analytic spread of an ideal I in a Noetherian local
ring (R, m) is the Krull dimension of (R/m) ⊕ (I/mI) ⊕ (I2/mI2) ⊕ · · ·. If
R/m is infinite, this number is the same as the number of generators of any
ideal minimal reduction of I, and in general, there always exists a power of
I with a reduction generated minimally by this number of elements.

Theorem 2.5. (Burch [1], McAdam [25]) Let R be a Noetherian ring, I an
ideal in R and P a prime ideal in R. If the analytic spread of IRP equals
dim(RP ), then P is the center of a Rees valuation of I. If R is locally formally
equidimensional and P is the center of a Rees valuation of I, then the analytic
spread of IRP equals dim(RP ).

I end this section with another example of where Rees valuations appear.
In [37], Rees defined the degree function of an m-primary ideal I in (R, m)
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as follows: for any x ∈ m such that dim(R/(x)) = dim(R) − 1, set dI(x) =
eR/(x)(I(R/(x))), i.e., dI(x) is the multiplicity of the ideal I in the ring R/(x).
Rees proved that for all allowed x,

dI(x) =
∑

v∈RV′(I)

d(I, v)v(x)

for some positive integers d(I, v) depending only on I and v, where RV ′(I)
is the set of those Rees valuations of I that are divisorial with respect to R.
(Rees avoided the name “Rees valuation”.)

3 One-fibered ideals

Definition 3.1. An ideal I is called one-fibered if RV (I) has exactly one
element.

By the constructions of Rees valuations, this means that I is one-fibered
if and only if the radical of t−1R[It, t−1] is a prime ideal, which holds if and
only if the radical of IR[It] is a prime ideal.

Zariski [43] proved that if (R, m) is a two-dimensional regular local ring,
then for every divisorial valuation v on R that is centered on m, there exists
an ideal I such that v is the only Rees valuation of I. Namely, by Proposi-
tion 1.3, v is a Rees valuation of some ideal I of height two. This ideal may be
assumed to be integrally closed, since RV (I) = RV (I). Zariski proved that in
a two-dimensional regular local ring the product of any two integrally closed
ideals is integrally closed, and each integrally closed ideal factors uniquely (up
to order) into a product of simple integrally closed ideals. Then by Propo-
sition 1.4, v is a Rees valuation of some simple integrally closed ideal I of
height two. It is a fact that a simple integrally closed m-primary ideal in a
two-dimensional regular local ring has only one Rees valuation, so v is the
only Rees valuation of I.

Lipman [22] generalized Zariski’s result to all two-dimensional local ratio-
nal singularity rings, and Göhner [G] proved it for two-dimensional complete
integrally closed rings with torsion class group. Muhly [28] showed that there
are two-dimensional analytically irreducible local domains for which Zariski’s
conclusion fails. Recall that a Noetherian local ring (R, m) is analytically

irreducible if the m-adic completion of R is a domain.
More strongly, Cutkosky [5] proved that there exists a two-dimensional

complete integrally closed local domain (R, m) in which every m-primary
ideal has at least two Rees valuations. However, no concrete example of such
a ring with no one-fibered zero-dimensional ideals has been found. One of the
quests, alas unfulfilled, of the following section, is to find such a ring.
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We discuss in this section what, if any, restrictions on the ring does the
existence of a one-fibered ideal impose, and we also discuss various criteria
for one-fiberedness.

Theorem 3.2. (Sally [40]) Let (R, m) be a Noetherian local ring whose m-
adic completion is reduced (i.e., R is analytically unramified), and that
has a one-fibered m-primary ideal I. Then R is analytically irreducible, i.e.,
the m-adic completion of R is a domain.

Katz more generally proved in [20] that if (R, m) is a formally equidimen-
sional Noetherian local ring, then for any m-primary ideal I, the number of
Rees valuations is bounded below by the number of minimal prime ideals in
the m-adic completion of R. Thus if R has a one-fibered m-primary ideal,
then R̂ has only one minimal prime ideal. The converse fails by Cutkosky’s
example [5] mentioned earlier in this section.

By the more recent work of Katz and Validashti, see Theorem 1.2, if (R, m)
is a Noetherian local ring of positive dimension, the number of Rees valuations
of an m-primary ideal I is the same as the number of Rees valuations of IR̂.
By Proposition 2.2, the number of Rees valuations of IR̂ is at least the
number of the minimal primes in R̂, so that if R has a one-fibered ideal,
the completion must have only one minimal prime ideal. If in addition the
completion is assumed to be reduced, this forces the completion to be a
domain, thus proving Theorem 3.2.

Another proof of Theorem 3.2, without assuming Theorem 1.2 and Propo-
sition 2.2, goes as follows: Rees proved in [36] that since R is analyti-

cally unramifed, there exists an integer k such that for all n, In+k ⊆ In.
Let V be the Rees valuation ring of I, and let r be an integer such that
IV = m

r
V . As I is m-primary, m is the center of V on R. Then for all n,

m
r(n+k) ⊆ m

r(n+k)
V V ∩ R = In+kV ∩ R = In+k ⊆ In ⊆ m

n, so that the
m-adic completion of R is contained in the mV -adic completion of V . But the
latter is a domain since V is regular.

An arbitrary Noetherian local ring may have a zero-dimensional one-
fibered ideal, yet not be analytically irreducible or even analytically unram-
ified (of course the example is due to Nagata, see [17, Exercise 4.11]): Let
k0 be a perfect field of characteristic 2, let X, Y, X1, Y1, X2, Y2, . . . be vari-
ables over k0, let k = k0(X1, Y1, X2, Y2, . . .), f =

∑∞
i=1(XiX

i + YiY
i), and

R = k2[[X, Y ]][k][f ]. Then R is an integrally closed Noetherian local domain
whose completion R̂ is isomorphic to k[[X, Y, Z]]/(Z2). The integral closures
of powers of (X, Y )R are contracted from the integral closures of powers of
(X, Y )R̂, hence clearly (X, Y )R has only one Rees valuation.

As proved in Fedder–Huneke–Hübl [7, Lemma 1.3], the following are equiv-
alent for an analytically unramified one-dimensional local domain R:

1. The integral closure R of R is local.
2. R has a non-zero one-fibered ideal.
3. Every non-zero ideal in R is one-fibered.
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How does one find one-fibered ideals in arbitrary Noetherian local do-
mains? In case R̂ is a domain, R has a one-fibered m-primary ideal if and
only if the integral closure of R̂ has a one-fibered zero-dimensional ideal (see
Sally [40, page 440]).

If (R, m) is a Noetherian local analytically irreducible domain, and I an
m-primary ideal, then I is one-fibered if and only if there exists an integer b
such that for all positive integers n and all x, y ∈ R, xy ∈ I2n+b implies that
either x or y lies in In (see Hübl–Swanson [15]). A question that appeared in
the same paper and has not yet been answered may be worth repeating:

Question. Let I be an m-primary ideal in an analytically irreducible Noethe-
rian local domain (R, m). Suppose that for all n ∈ N and all x, y such that
xy ∈ I2n, either x or y lies in In. Or even suppose that for all x ∈ R such
that x2 ∈ I2n, necessarily x ∈ In. Are all the powers of I then integrally
closed?

Another criterion of one-fiberedness was observed first by Sally [7, page
323] in dimension one, and the more general case below appeared in [14, page
3510]:

Theorem 3.3. Let (R, m) be a Noetherian d-dimensional analytically unram-
ified local ring, and let l be a positive integer satisfying the following:

If f ∈ m \ In, then there exist g2, . . . , gd ∈ I such that In+l ⊆
(f, g2, . . . , gd), and for all Rees valuations v of I, v(In+l) ≥ v(f).

Then I is one-fibered.

Remark 3.4. Lipman [22] proved that the quadratic transformations of two-
dimensional rational singularity rings are integrally closed. However, this does
not mean that the maximal ideal has only one Rees valuation. For example,

let c ≥ 3 and take R to be the localization of C[X,Y,Z]
(X2+Y 2+Zc) at (X, Y, Z). By

Flenner [8, 3.10], R is a rational singularity ring. The quadratic transfor-

mation S = R[x
z , y

z ] is isomorphic to a localization of C[Z,A,B]
(A2+B2+Zc−2) and is

integrally closed, so that the primes in S minimal over ZS are (Z, A + iB),
(Z, A − iB). By the blowup construction of Rees valuations, this says that
(X, Y, Z) has at least two Rees valuations. In fact, since (Y, Z) is a minimal
reduction of (X, Y, Z), Sally’s result [40, page 438] shows that (X, Y, Z) has
exactly two Rees valuations, the two arising from the two obtained prime
ideals.

Muhly and Sakuma [29, Lemma 4.1] proved the following result on one-
fibered ideals I1, . . . , Ir in a two-dimensional universally catenary Noetherian
integral domain R: If for j = 1, . . . , r, RV (Ij) = {Vj}, and the corresponding
valuations v1, . . . , vr are pairwise not equivalent, then det(vi(Ij)i,j) 6= 0. Here
is a sketch of the proof. Let A be the r × r matrix (vi(Ij)i,j). Suppose that
detA = 0. Then the columns of A are linearly dependent over Q, and we can
find integers a1, . . . , ar, not all zero, such that for all i,

∑
j ajvi(Ij) = 0. By

changing indices, we assume that a1, . . . , at,−at+1, . . . ,−ar are non-negative
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integers. Let I = Ia1

1 · · · Iat

t , J = I
−at+1

t+1 · · · I−ar
r for some positive integer

t < r. By Proposition 1.4, RV (I) = {V1, . . . , Vt}, RV (J) = {Vt+1, . . . , Vr}.
Since for all i = 1, . . . , r, vi(I) = vi(J), we have In = Jn for all n, so I and
J have the same Rees valuations, which is a contradiction.

4 Upper bounds on the number of Rees valuations

The main goal of this section is to bound above the number of Rees valuations
of ideals in an arbitrary Noetherian local ring (R, m), and to find m-primary
ideals with only one Rees valuation, if possible.

If R is a one-dimensional Noetherian semi-local integral domain, then it
follows easily from the constructions of Rees valuations that {RP : P ∈
MaxR} = ∪IRV (I) is finite, as I varies over all the ideals of R. Thus the
total number of Rees valuations of all possible ideals in a one-dimensional
Noetherian semi-local ring is finite, and this number is a desired upper bound
on the number of Rees valuations of any one ideal.

In higher dimensions, there is no upper bound on the number of all possible
Rees valuations of ideals. For one thing, there are infinitely many prime ideals
of height one, and each one of these has at least one Rees valuation centered
on the prime itself. But more importantly, even if we restrict the ideals to
m-primary ideals, there is no upper bound on the number of Rees valuations:

Proposition 4.1. Let (R, m) be a Noetherian local domain of dimension
d > 1. Let (x1, . . . , xd) be an m-primary ideal. Then ∪nRV (xn

1 , x2, . . . , xd)
is not a finite set. Furthermore, there is no upper bound on |RV (I)| as I
varies over m-primary ideals.

Proof. The last statement follows from the first one, by Proposition 1.4.
Suppose that the set S of all Rees valuations of (xn

1 , x2, . . . , xd), as n
varies, is finite. Let N be a positive integer such that for all v ∈ S, Nv(x1) ≥
v(x2), . . . , v(xd). Then for all n ≥ N , the integral closure of (xn

1 , x2, . . . , xd)
is independent of n, whence xN

1 ∈ (xn
1 , x2, . . . , xd). Let ′ denote the images

modulo (x2, . . . , xd). Then in the one-dimensional Noetherian ring R′, x′
1 is

a parameter, and x′N
1 ∈ (x′

1)
n for all n ≥ N . We may even pass to the

completion of R′ and then go modulo a minimal prime ideal to get a one-
dimensional complete Noetherian local domain A and a parameter x such that
for all n ≥ N , xN ∈ (xn). Since A is analytically unramified, by Rees [36]
there exists an integer l such that for all n ≥ l, (xn) ⊆ (xn−l). Thus xN ⊆
∩n≥N,l(x

n−l) = (0), which is a contradiction. ⊓⊔

As already mentioned, a maximal ideal in a regular ring has only one Rees
valuation. For zero-dimensional monomial ideals (in polynomial or power
series rings, or even zero-dimensional monomial ideals in a regular system
of parameters in a regular local ring), the number of Rees valuations is ex-
actly the number of bounding non-coordinate hyperplane faces of the Newton
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polyhedron. By Carathéodory’s Theorem, each of these hyperplanes is deter-
mined by d = dimR of the exponent vectors of the generators of I. With
this geometric consideration one obtains a very crude upper bound on the
number of Rees valuations of a zero-dimensional monomial ideal in terms of
its generators:

|RV (I)| ≤

(
number of generators of I

dim(R)

)
.

In practice, this upper bound is much too generous. I thank Ezra Miller
for providing the following much better upper bound: the number of Rees
valuations of I is at most




2

(
1 + m +

(
m+1

2

)
+

(
m+2

3

)
+ · · · +

(m−1+ d−1

2
d−1

2

))
; if d is odd;

(m−1+ d
2

d
2

)
+ 2

(
1 + m +

(
m+1

2

)
+

(
m+2

3

)
+ · · · +

(m−1+ d−2

2
d−2

2

))
; if d is even,

where n is the number of generators of I and m = n−d−1. In particular, for
fixed d, this upper bound on the number of Rees valuations of monomial ideals
in d variables is a polynomial in the number of generators of degree ⌊d/2⌋.
This follows among others from the Upper Bound Theorem for simplicial
complexes.The relevant ingredients using Hilbert functions can be found in
Lemma 16.19, Exercise 14.34, and Definition 16.32 in [18].

In general, however, the number of Rees valuations is not a function of the
number of generators: at least when R is a polynomial ring over an infinite
field (see [24]), or if (R, m) is a Noetherian local ring with infinite residue
field (see [31]), every ideal I has a minimal reduction J generated by dim(R)
elements, we already know that RV (I) = RV (I) = RV (J) = RV (J), yet the
number of Rees valuations is unbounded when the ring dimension is strictly
bigger than one.

We now concentrate on finding upper bounds on the number of Rees val-
uations of ideals in Noetherian local rings. Let (R, m) be a Noetherian local

ring. For every ideal I in R, I = IR̂ ∩ R, so that the number of Rees valu-
ations of IR̂ is an upper bound on the number of Rees valuations of I. By
Proposition 2.2, it then suffices to find an upper bound on the number of
Rees valuations of I(R̂/Q) for each Q ∈ Min(R̂) (and adding them), so find-
ing bounds on the number of Rees valuations of I reduces to the ring being a
complete local domain. These reductions preserve the property of ideals be-
ing primary to the maximal ideal. As established on page 8, we may replace
I by its power, and in particular, by a power that has a d-generated reduc-
tion, where d is the dimension of the ring. (Or alternatively, we could first
pass in the standard way to R[X ]mR[X], which is a faithfully flat extension
of (R, m) with an infinite residue field, to have the existence of d-generated
reductions for all m-primary ideals.) We have thus reduced to finding upper
bounds on the number of Rees valuations of a d-generated m-primary ideal
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in a complete Noetherian local domain (R, m) of dimension d. To simplify
matters, we now restrict our attention to the case where R contains a field.
In that case, by the Cohen Structure Theorem, there exists a regular local
subring A = k[[X1, . . . , Xd]] of R, with k ∼= R/m a field and X1, . . . , Xd

variables over k, such that R is module-finite over A and such that JR = I,
where J = (X1, . . . , Xd)A. If the field of fractions of R is separable over that
of A, there exists an element z ∈ R such that A[z] ⊆ R is a module-finite
extension of domains with identical fields of fractions. Necessarily A[z] is a
hypersurface ring, and the Rees valuations of JA[z] are the Rees valuations of
JR = I (see page 4). Under the separable assumption we have thus reduced
to finding upper bounds on the number of Rees valuations of the parameter
ideal (X1, . . . , Xd) in the complete local hypersurface domain

R =
A[Z]

(Zn + a1Zn−1 + · · · + an)
=

k[[X1, . . . , Xd, Z]]

(Zn + a1Zn−1 + · · · + an)
,

where ai ∈ A. Since without loss of generality z may be replaced by any A-
multiple of z, we may assume that z is in the integral closure of I, so that we
may assume that ai ∈ J iA for all i. We can even control the degree n: since
1 = eA((X1, . . . , Xd)A) = eR(I) [R/m : k]/[Q(R) : Q(A)] = eR(I)/n, we get
n = eR(I). Now we handle the general case, not assuming that R is separable
over A. By the standard field theory, there exists a purely inseparable field
extension k′ of k and a positive integer m such that the field of fractions

of B[R] = R[k′][X
1/pm

1 , . . . , X
1/pm

d ] is finite and separable over the field of

fractions of B = k′[X
1/pm

1 , . . . , X
1/pm

d ]. Note that B[R] is a module finite
(hence integral) extension of R, and by page 4, an upper bound on the set
of Rees valuations of IB[R] is an upper bound on the set of Rees valuations
of I. Thus it suffices to replace R by B[R]. The field of fractions of this
ring is separably generated over that of B, and the extension B ⊆ B[R]
has the same form as the extension A ⊆ R, so we are in the situation as
above. In this case, the degree of the integral extension from B to B[R] is
[Q(B[R]) : Q(B)] = eB[R] (IB[R])[k′ : k] = eR(I) [Q(B[R]) : Q(R)].

In summary, in all cases of Noetherian local rings containing a field, we
reduce the computation of the bounds on the number of Rees valuations of I
to the computation of upper bounds on the number of Rees valuations of the
ideal (X1, . . . , Xd)R in the domain

R =
k[[X1, . . . , Xd, Z]]

(Zn + a1Zn−1 + · · · + an)
,

where ai ∈ (X1, . . . , Xd)
ik[[X1, . . . , Xd]]. We can even control the degree n

as eR(I) if R is separably generated over k, say in characteristic 0.

Proposition 4.2. With notation as above,

|RV ((X1, . . . , Xd)R)| ≤ n.
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Proof. Let S = R[X2

X1
, . . . , Xd

X1
]. Then

S ∼=
k[[X1, . . . , Xd, Z]][T2, . . . , Td]

(Zn + b1Zn−1 + · · · + bn, X1T2 − X2, . . . , X1Td − Xd)
,

for some bi ∈ X i
1k[[X1, . . . , Xd, ]][T2, . . . , Td]. By Theorem 2.3, all the Rees

valuations of (X1, . . . , Xd)R are of the form (S)P , where S is the integral
closure of S, and P is a height one prime ideal in S containing X1.

Let P be such a prime ideal, and let p = P ∩ S. Since R is formally
equidimensional, by the Dimension Formula, ht(p) = ht(P ) = 1. Necessarily
p is a prime ideal in S minimal over X1S, hence p = (X1, . . . , Xd, Z). Thus
it suffices to prove that the number of prime ideals in (S)S\p that contract
to p in S is at most n. By [17, Proposition 4.8.2], it suffices to prove that

the number of minimal primes in the completion Ŝp of Sp is at most n.
Let T = k[[X1, . . . , Xd]][

X2

X1
, . . . , Xd

X1
], and let q = (X1, . . . , Xd)T . Then Tq

is a regular local ring of dimension 1, and the maximal ideal is generated
by X1. The q-adic completion of Tq is Tq[[Y ]]/(X1 − Y ), which is a regular

local ring of dimension 1 with maximal ideal generated by Y . But Ŝp is
Tq[Z][[Y ]]/(Zn + b1Z

n−1 + · · · + bn, X1 − Y ), which has at most n minimal
primes. ⊓⊔

Here is a table for the number of Rees valuations of the maximal ideal
in R = k[[X,Y,Z]]

(Xa+Y b+Zc)
(with 2 ≤ a ≤ b ≤ c) that illustrates the proposition

above, showing that the number of Rees valuations of (X, Y, Z) is at most a.
By page 6, it suffices to bound the number of Rees valuations of the ideal

(X, Y, Z) in the ring R = C[X,Y,Z]
(Xa+Y b+Zc) . Some of the calculations below were

done with Anna Guerrieri.

a, b, c #RV (X, Y, Z)
2, 2, 2 1
2, 2, c ≥ 3 1 if k = R, 2 if k = C

2, 3, c ≥ 3 1
2, 4, 4 1
2, 4, c ≥ 5 1 if k = R, 2 if k = C

2, 5, c ≥ 5 1
2, 6, 6 1
2, 6, c ≥ 7 1 if k = R, 2 if k = C

3, 3, 3 1
3, 3, c ≥ 4 2 if k = R, 3 if k = C

On the list above, do all of the rings have an (X, Y, Z)-primary ideal with
only one Rees valuation? Can one find examples that are generated by mono-
mials in X, Y, Z? This is indeed the case:

Proposition 4.3. Let R = C[[X,Y,Z]]
(Xa+Y b+Zc) or R = C[X,Y,Z]

(Xa+Y b+Zc) , with 2 ≤ a ≤

b ≤ c integers. Then the ideal (Xa, Y b, Zc) has exactly one Rees valuation.
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Proof. By page 4, it suffices to prove the proposition for the ideal I =

(Xa, Y b, Zc) in the ring R = C[X,Y,Z]
(Xa+Y b+Zc) . Let S be obtained from R by

adjoining a (bc)th root x of X , an (ac)th root y of Y , and an (ab)th root

z of Z. Then S = C[x,y,z]
(xabc+yabc+zabc)

and IS = (xabc, yabc, zabc)S. By reduc-

tions on page 4, it suffices to prove that IS has only one Rees valuation. But
RV (IS) = RV (IS) = RV ((x, y, z)abcS) = RV ((x, y, z)S), so it suffices to
prove that the ideal (x, y, z) in the ring S = C[x, y, z]/(xd + yd + zd) has only
one Rees valuation. Since (x, y) is a reduction of (x, y, z), by Theorem 2.3,
all the Rees valuations of (x, y, z) are of the form T ′

P , as P varies over the
height one prime ideals in T ′ that are minimal over xT ′, where T ′ = S[y/x].
Since clearly z/x is integral over T ′, all the Rees valuations of (x, y, z) are
of the form TP , as P varies over the minimal prime ideals over Y T , and
T = S[y/x, z/x]. Note that

T ∼=
C[x, y, z, U, V ]

(xU − y, xV − z, 1 + Ud + V d)
.

By the Jacobian criterion, T is an integrally closed domain, so that each Rees
valuation corresponds to a prime ideal in T minimal over xT , but xT is a
prime ideal. ⊓⊔

5 The Izumi–Rees Theorem

The Izumi–Rees theorem is a very powerful and possibly surprising theorem,
saying that all divisorial valuations over a good ring R with the same center
are comparable, in the sense that if v and w are such valuations, there exists
a constant C such that for all x ∈ R, v(x) ≤ Cw(x). Since over good rings
divisorial valuations are the same as Rees valuations (of possibly different
ideals), this theorem enables us to compare Rees valuations with the same
center. The surprising part of the Izumi–Rees Theorem is the contrast with
the fact that if v and w are any two non-equivalent integer-valued valuations
on a field K (such as on Q(R)), then for any integers n, m ∈ Z there exists
x ∈ K such that v(x) = n and w(x) = m. The difference between this result
and the Izumi–Rees Theorem is that the former takes elements from the field
of fractions, but the Izumi–Rees Theorem only from the (good) subring.

Izumi [19] characterized analytically irreducible local domains, in the con-
text of analytic algebras, without passing to the completion of the domains.
Rees [38] generalized Izumi’s result to the following two versions:

Theorem 5.1. (Rees [38, (C)]) A Noetherian local ring (R, m) is analytically
irreducible if for a least one m-primary ideal I, and only if, for all m-primary
ideals I, there exist constants C and C′, depending only on I, such that

ordI(xy) − ordI(y) ≤ C ordI(x) + C′, for all non-zero x, y ∈ R.
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Theorem 5.2. (Rees [38, (E)]) Let (R, m) be a complete Noetherian local
domain and let v, w be divisorial valuations centered on m. Then there exists
a constant C such that for all non-zero x ∈ R, v(x) ≤ Cw(x).

Rees’s proof first reduces to the proof in Krull dimension two, and then
uses the existence of desingularizations and intersection numbers of m-adic
valuations: in case the intersection number [v, w] of v and w is non-zero, the
constant C in Rees’s theorem may be taken to be C = −[w, w]/[v, w].

A stronger version of Theorem 5.2 was stated in Hübl–Swanson [15]: when-
ever (R, m) is an analytically irreducible excellent local domain and when-
ever v is a divisorial valuation centered on m, there exists a constant C such
that for all divisorial valuations w centered on m and all non-zero x ∈ R,
v(x) ≤ Cw(x). In recent conversations with Shuzo Izumi, we removed the
excellent assumption above, analytically irreducible assumption suffices.

A version of the Izumi–Rees Theorem for affine rings, with explicit bounds
for comparisons of valuations in terms of MacLane key polynomials, was
given by Moghaddam in [27].

One of the consequences of the Izumi–Rees Theorem is a form of control
of zero divisors modulo powers of ideals:

Theorem 5.3. (Criterion of analytic irreducibility [15, Theorem 2.6]) Let
(R, m) be a Noetherian local ring. The following are equivalent:

1. R is analytically irreducible.
2. There exist integers a and b such that for all n ∈ N, whenever x, y ∈ R

and xy ∈ m
an+b, then either x ∈ m

n or y ∈ m
n.

3. For every m-primary ideal I there exist integers a and b such that for all
n ∈ N, whenever x, y ∈ R and xy ∈ Ian+b, then either x ∈ In or y ∈ In.

In [42], the author used the Izumi–Rees Theorem to prove the following:
Let R be a Noetherian ring and I, J ideals in R such that the topology
determined by {In : J∞}n is equivalent to the I-adic topology. Then the two
topologies are equivalent linearly, i.e., there exists an integer k such that for
all n, Ikn : J∞ ⊆ In. In particular, if I is a prime ideal for which the topology
determined by the symbolic powers is equivalent to the I-adic topology, then
there exists an integer k such that I(kn) ⊆ In. However, one cannot read k
from the proof.

Subsequently, Ein, Lazarsfeld, and Smith in [6], and Hochster and Huneke
in [12] proved that in a regular ring containing a field, the constant k for the
prime ideal I may be taken to be the height of I. (The two papers [6] and
[12] prove much more general results.)

In short, the Izumi–Rees Theorem has proved to be a powerful tool for
handling powers of ideals.

Rond used the Izumi–Rees Theorem in a very different context: he proved
in [39] that the Izumi–Rees Theorem is equivalent to a bounding of the Artin
functions by a special upper bound of a certain family of polynomials. Also,
Rond used the Izumi–Rees Theorem to bound other Artin functions.
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6 Adjoints of ideals

In this final section I present yet another construction that is related to Rees
valuations, and I end with an open question.

As already mentioned, Ein, Lazarsfeld and Smith [6] proved that for
any prime ideal P in a regular ring containing a field of characteristic 0,
P (nh) ⊆ Pn for all integers n, where h is the height of P . Hochster and
Huneke [12] extended this to regular rings containing a field of positive prime
characteristic, but no corresponding result is known in mixed characteristic.
Hochster and Huneke used tight closure, and Ein, Lazarsfeld and Smith used
the multiplier ideals. A possible approach to proving such a result in mixed
characteristic is to use the adjoint ideals. The adjoint and multiplier ide-
als agree whenever they are both defined. However, the theory of multiplier
ideals has access to powerful vanishing theorems, whereas adjoint ideals do
not.

Definition 6.1. (Lipman [23]) Let R be a regular domain with field of frac-
tions K. The adjoint of an ideal I in R is the ideal

adj I =
⋂

V

{r ∈ K : rJV/R ⊆ IV },

where V varies over all the divisorial valuations with respect to R, and JV/R

denotes the Jacobian ideal of the essentially finite-type extension R ⊆ V .

The adjoint adj I is an integrally closed ideal in R containing the integral
closure of I, and hence containing I. Also, adj(I) = adj(I), and if x ∈ R,
then adj(xI) = x · adj(I). In particular, the adjoint of every principal ideal is
the ideal itself.

In general, adjoints are not easily computable. One problem is the apparent
need to use infinitely many valuations in the definition. The emphasis in the
rest of this section is on limiting the number of necessary valuations, and the
connection with Rees valuations.

Howald [13] proved that if I is a monomial ideal in k[X1, . . . , Xd], then
adj I = (Xe : e ∈ Nd, e + (1, . . . , 1) ∈ NP◦(I)), where NP◦(I) is the interior
of the Newton polyhedron of I. Hübl and Swanson [16] extended this to all
ideals generated by monomials in an arbitrary permutable regular sequence
X1, . . . , Xd in a regular ring R such that for every i1, . . . , is ∈ {1, . . . , d}, the
ring R/(Xi1 , . . . , Xis

) is a regular domain. Furthermore, [16] proved that for
such I, adj I =

⋂
V {r ∈ K : rJV/R ⊆ IV }, where V varies only over the finite

set of Rees valuations of I.
In addition, [16] proved that for all ideals I in a two-dimensional regular

local ring, adj I =
⋂

V {r ∈ K : rJV/R ⊆ IV }, where V varies only over the
finite set of Rees valuations.

However, in general, Rees valuations do not suffice for computing the ad-
joints of ideals, see [16].
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Question. Given an m-primary ideal I in a regular local ring (R, m), does
there exist a finite set S of valuations such that the adjoint of all the (integer)
powers of I can be computed by using only the valuations from S?

If there is such a set S, by [16] it always contains the set of Rees valuations
of I. In general, S contains other valuations as well. There is as yet no good
criterion on what the other needed valuations might be.

Acknowledgements I thank Masataka Tomari and Dan Katz for their in-
sight, Ezra Miller for providing a polynomial upper bound on the number of
Rees valuations of monomial ideals, and the referee for all the suggestions.
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(1981), 35–44.
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