
Quilting semi-regular tessellations

Irena Swanson

August 26, 2010

This will be the first three sections of a chapter in the book ”Crafting
by Concepts”, edited by sarah-marie belcastro and Carolyn Yackel and pub-
lished by A K Peters.

Figure 1: The project for this chapter: The cheerful trip-around-the-world
pattern in 4.8.8 tessellation.
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1 Overview

There are whole-cloth quilts and patchwork quilts; there are monochromatic
quilts and multicolored quilts; there are functional bed quilts and wall quilts;
there are treasured never-used quilts and well-used quilts; there are quilts
with completely random and non-repeating patterns and there are quilts with
repetitions; and of course there are many more ways of looking at quilts.

There are uncountably many patterns, but life is short, so we cannot
make them all into quilts. One has to pick and choose a finite number (first
one, then another...). Below is a systematic reduction of possible patterns
to a doable finite number; in the process of this reduction we will learn
some mathematical concepts and even prove that the reduction is indeed
systematic. (If your resulting quilts are not seamed absolutely completely
perfectly, at least you can have the satisfaction that you were systematic in
choosing the quilt patterns!?)

We begin by restricting ourselves to the (smaller) infinite number of quilts
that have regularly repeating patterns, and that are composed entirely of
regular polygons: a regular polygon is a many-sided figure in which all interior
angles are the same and all sides have the same length. Every regular polygon
is convex, meaning that a needle whose ends are set inside the polygon also
has its entire length inside the polygon (see Figure 2). Among the regularly

Figure 2: A convex regular hexagon (left) and a non-convex hexagon (right).

repeating quilt patterns whose parts are composed of regular polygons we
will only examine those in which any two adjacent regular polygons meet
exactly edge-to-edge. But even with all of these restrictions, there are still
uncountably many different quilts that can be made, even if one does not
account for the infinite variety of fabrics, colors, and fabric embellishments!
We explain this in Section 2.

The mathematical goal of this chapter is to narrow down the quilt pat-
terns to the so-called semi-regular tessellations, as there are only finitely
many of those, and we may have some hope of making a quilt from each of
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these patterns before our time on earth runs out. This narrowing down will
comprise the bulk of Section 2, where we discover that there are no more
than twelve of the desired quilt patterns. In Section 2.5, we briefly discuss a
slightly more general class of quilt patterns about which very little is known.

Teachers of all levels will find useable ideas in Section 3. Quilting con-
cepts are used in elementary education more often than most other fiber arts
concepts. In this chapter we present some of those, but some more advanced
concepts arise as well, ranging from approximations of reals by rationals, to
continued fractions, to undergraduate research in k-uniform tessellations.

The sewing goal of this chapter is to give shortcut sewing instructions for
most of the semi-regular tesselation quilt patterns, and this will comprise the
bulk of Section ??. The advantage of the shortcut techniques is not just in
saved time but also in increased accuracy. Namely, fabric is stretchable, and
the more one handles it by sewing and ironing it, the more distortion can
occur in its size, especially along the edges, where it matters most, and the
resulting quilt may not lie flat. With the methods described in this chapter,
the pieces are often not cut until a later stage, which means that there are
fewer edges to distort, or the patterns are broken up into perhaps unusual but
stabler shapes, also contributing to less distortion in the intermediate stages.
A disadvantage of some of the presented techniques is that they use more
fabric, some for the tucks and some for leftovers for another quilt top. (For
years I have been making “left-over” quilts: they allow for greater freedom in
placing pieces and colors and can be more pleasing than the more laboriously
produced original quilts.)

Some of the described techniques are known among quilters, but most
of them are probably not. They are presented here in the order of increas-
ing difficulty. Readers are encouraged to experiment with these techniques,
and to begin by trying the bed-sized squares-and-octagons quilt project in
Sections ??. Avid quilters should dive in head first (after reading the intro-
ductory sections about specialized techniques).

2 Mathematics

The aim of this section is to review the basics of tessellations, and to sys-
tematically pare down the infinite list of tessellating choices to a finite list.
Much more on the subject of tessellations can be found in Grünbaum and
Shephard [5], especially in Chapter 2.
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2.1 Tessellations by Regular Polygons

A tiling or a tessellation of the plane is a countable collection of closed sets
such that each point of the plane is in one of the closed sets, but that no
point is in the interior of any two closed sets. A point may, of course, lie on
edges of two different closed sets.

For our tessellations, all closed sets will be convex regular polygons. We
also require that the intersection of any two distinct sets, if not empty, is
either a single point or an edge of each of the two shapes. Such tessellations
are called edge-to-edge. (This is in contrast to tessellations in which the
intersection of two closed sets might be a partial edge, such as when in a
square grid we shift alternate rows over by half the edge-distance.)

How many different regular polygon configurations can occur at a vertex
of an edge-to-edge tessellation? If an n1-gon, n2-gon, . . . , nr-gon, meet at
this vertex, the interior angles of the polygons have to add up to the full circle
because there are no overlaps in the polygons. This is expressed succinctly
in Theorem 2, which first needs the following lemma:

Lemma 1. A regular polygon with n sides has interior angles measuring
π n−2

n
radians (or 180− 360

n
degrees).

2π/n

α
α

α

Figure 3: The interior angle of a polygon has measure twice α.

Proof. Connect the vertices of the polygon to the center of the polygon. This
produces n congruent isoceles triangles, each of which has its two equal sides
incident at the center of the polygon. Each central angle is 2π/n radians. The
other angles in the triangles, labeled α in Figure 3, have measure exactly one
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half of the interior angle of the polygon. In other words, the sum of the two
non-central angles in each triangle equals the interior angle of the polygon.
Since the sum of all the angles in a triangle is π radians, we conclude that

the interior angle of a regular polygon with n sides equals π − 2π

n
= π

n− 2

n
radians.

From Lemma 1, Theorem 2 follows directly: add the angles around a
vertex and divide by π.

Theorem 2. A regular n1-gon, n2-gon, . . . , and an nr-gon meet at a vertex
without overlaps and without gaps if and only if

n1 − 2

n1

+
n2 − 2

n2

+ · · ·+ nr − 2

nr

= 2.

We say that a point in a tessellation has vertex configuration n1, . . . , nr

if regular n1-, . . . , nr-gons meet with their vertices at the point without any
overlaps and gaps (and the order in which the vertices meet is irrelevant).
In the next subsection we determine all possible vertex configurations (see
Theorem 3), and subsequently we examine when each vertex configuration
can be extended to a tessellation of the plane.

2.2 Possible Vertex Configurations n1, . . . ,nr

The goal is to find all integers r ≥ 3 and n1, n2, . . . , nr ≥ 3 that are solu-

tions to the equation
n1 − 2

n1

+
n2 − 2

n2

+ · · ·+ nr − 2

nr

= 2 from Theorem 2.

It turns out that there are only finitely many solutions, and we list them
below in Theorem 3. The list of course contains all the regular tessellations,
namely tessellations using only one regular polygon: the vertex configurations
are 3, 3, 3, 3, 3, 3 for equilateral triangles, 4, 4, 4, 4 for squares, and 6, 6, 6 for
hexagons. There are no regular tessellations using any other regular poly-
gons.

Theorem 3. The following is a complete list of integer solutions of the equa-

tion
n1 − 2

n1

+
n2 − 2

n2

+ · · · + nr − 2

nr

= 2, with n1, . . . , nr ≥ 3 and r ≥ 3,

written in lexicographic (dictionary) order:
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(a) 3, 3, 3, 3, 3, 3 (j) 3, 10, 15
(b) 3, 3, 3, 3, 6 (k) 3, 12, 12
(c) 3, 3, 3, 4, 4 (l) 4, 4, 4, 4
(d) 3, 3, 4, 12 (m) 4, 5, 20
(e) 3, 3, 6, 6 (n) 4, 6, 12
(f) 3, 4, 4, 6 (o) 4, 8, 8
(g) 3, 7, 42 (p) 5, 5, 10
(h) 3, 8, 24 (q) 6, 6, 6
(i) 3, 9, 18

Proof. We proceed using a case-by-case analysis.
First suppose that all except possibly one ni is 3. Namely, say n2 = n3 =

· · · = nr = 3. We would like to bound r. Thus

n1 − 2

n1

+
n2 − 2

n2

+ · · ·+ nr − 2

nr

= 2

becomes
n2 − 2

n2

+ · · ·+ nr − 2

nr

= 2− n1 − 2

n1

and then
3− 2

3
+ · · ·+ 3− 2

3
= 2− n1 − 2

n1

,

which simplifies to

1

3
+ · · ·+ 1

3
=

r − 1

3
= 2− n1 − 2

n1

.

Equivalently,
r − 1

3
= 2− n1 − 2

n1

=
n1 + 2

n1

,

so that (r−1)n1 = 3(n1+2). This means that either r−1 or n1 is an integer
multiple of 3. If r − 1 = 3a for some integer a, then 3an1 = 3(n1 + 2) gives
that n1(a − 1) = 2, whence n1 ≤ 2, which is a contradiction. So necessarily
n1 = 3a for some positive integer a. Then 3a(r − 1) = 3(3a + 2), so that
a(r − 1) = 3a + 2 and a(r − 4) = 2, which implies that 1 ≤ a ≤ 2. If a = 1,
necessarily r− 4 = 2 so that r = 6 and n1 = 3, and we get the configuration
of 6 regular triangles meeting at the vertex; and if a = 2, we get r = 5 and
n1 = 6, so that there are 4 = 5− 1 triangles and one hexagon meeting at the
vertex. This produces the solutions (a) and (b).
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It remains to determine all the solutions where at least two ni are strictly
bigger than 3.

So suppose that n1, n2 ≥ 4. For now, let us also suppose that n1 ≥ 13
(and later we will handle the cases where all ni are at most 12). Rewrite

n1 − 2

n1

+
n2 − 2

n2

+ · · ·+ nr − 2

nr

= 2

as
n3 − 2

n3

+ · · ·+ nr − 2

nr

= 2− n1 − 2

n1

− n2 − 2

n2

. (∗)

Note that n ≥ 3 implies that
1

n
≤ 1

3
, so −2

n
≥ −2

3
, and

n− 2

n
≥ 1

3
. The

left-hand side of (∗) has r − 2 terms, each of which is ≥ 1

3
, so we see that

r − 2

3
≤ n3 − 2

n3

+· · ·+nr − 2

nr

= 2−n1 − 2

n1

−n2 − 2

n2

=
2

n1

+
2

n2

≤ 2

4
+

2

13
=

17

26
,

so that r − 2 ≤ 51

26
, and since r is an integer, this means that r − 2 ≤ 1,

so that r ≤ 3, and thus necessarily r = 3. This means that there exists

an integer n3 ≥ 3 such that
n3 − 2

n3

=
2

n1

+
2

n2

holds. Also,
n3 − 2

n3

≤ 17

26
,

so that cross-multiplying and solving gives n3 ≤ 52

9
, whence n3 ≤ 5. Thus

it suffices to find all integer solutions n1 ≥ 13 and n2 ≥ 4 such that with

n3 ∈ {3, 4, 5}, n3 − 2

n3

=
2

n1

+
2

n2

. In case n3 = 3,
1

3
=

2

n1

+
2

n2

, so that

1

n1

=
1

6
− 1

n2

=
n2 − 6

6n2

and so n1 =
6n2

n2 − 6
=

6(n2 − 6)

n2 − 6
+

36

n2 − 6
= 6+

36

n2 − 6
,

from which we can read off the only possible positive integer solutions (with
n1 ≥ 13): (g) n1 = 42, n2 = 7, n3 = 3; (h) n1 = 24, n2 = 8, n3 = 3;
(i) n1 = 18, n2 = 9, n3 = 3; (j) n1 = 15, n2 = 10, n3 = 3. In case n3 = 4,

we similarly get n1 =
4n2

n2 − 4
= 4 +

16

n2 − 4
, with one allowed solution (m)

n1 = 20, n2 = 5, n3 = 4. Finally, in case n3 = 5, we get n1 =
10n2

3n2 − 10
≥ 13,

which yields 4 ≤ n2 ≤ 130

29
, so that n2 = 4, but then n1 =

10n2

3n2 − 10
is not an

integer, so the case n3 = 5 is not possible.
So far we have handled all the cases where all but one of the ni is 3, and

all the cases where at least two nj are strictly greater than 3 with at least
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one 13 or higher. It remains to examine all the possible integers r ≥ 3 and
n1, . . . , nr ≥ 3 with all ni ≤ 12 and satisfying n1−2

n1
+ n2−2

n2
+ · · ·+ nr−2

nr

= 2.
Say the ni are sorted in the order from the largest to the smallest.
We have found the solution n1 = 3: then r = 6 and all ni = 3.

If n1 = 4 (and all ni are either 3 or 4), the equation
r

∑

i=1

ni − 2

ni

= 2 forces

an even number of ni to be 4 (so that the fractions add to an integer). Clearly
at most four ni can be 4, in which case we get the vertex configuration (l)
4, 4, 4, 4, or else exactly two of the ni are 4, and the rest have to be 3. This
gives the vertex configuration (c) 3, 3, 3, 4, 4.

If n1 = 5 (and n1 ≥ ni for all i), similar denominator-clearing reason-
ing as above forces the number of 5-gons to be a multiple of 5, but this is
impossible—the interior angles add up to more than 2π. Similarly we can
eliminate the cases n1 = 7, n1 = 9, and n1 = 11.

If n1 = 6 (and n1 ≥ ni for all i), the equation
r

∑

i=1

ni − 2

ni

= 2 forces, as

above, all ni to not be 5. One can also easily verify that there is no possible
vertex configuration with two hexagons and one square at a vertex. We are
here assuming that at least two ni are 4 or greater. We have n1 = 6, and
we may, by possibly reindexing, assume that n2 ≥ 4. Since 5 is eliminated,

we either have n2 = 4 or n2 = 6. If n2 = 6, then

r
∑

i=1

ni − 2

ni

= 2 becomes

r
∑

i=3

ni − 2

ni

= 2− 6− 2

6
− 6− 2

6
=

2

3
. From this we get the possibilities r = 3,

n3 = 6, giving the vertex configuration (q) 6, 6, 6; and r = 4, n3 = n4 = 3,
giving the vertex configuration (e) 3, 3, 6, 6, and no other possibilities. The
remaining cases with n1 = 6 are with all other ni at most 4 and n2 = 4.

Then
r

∑

i=1

ni − 2

ni

= 2 becomes
r

∑

i=3

ni − 2

ni

= 2 − 4− 2

4
− 6− 2

6
=

5

6
. For

denominator clearing necessarily one ni has to be 3 and another ni must be
4, and this forces the vertex configuration (f) 3, 4, 4, 6.

A similar check produces the vertex configurations (o) 4, 8, 8 if n1 = 8; (p)
5, 5, 10 if n1 = 10; and (d) 3, 3, 4, 12, (k) 3, 12, 12, (n) 4, 6, 12 if n1 = 12.

The list in the theorem gives all the solutions to a vertex configuration
of an edge-to-edge tessellation using only regular polygons when we look at
one vertex at a time.
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2.3 Tessellating the Whole Plane

In this section we determine which vertex configurations from Theorem 3
extend to tessellations of the plane.

Consider strips made up of regular 3- and 4-gons as in Figure 4. The sides

Figure 4: Strips of triangles and strips of squares.

of the triangles and of the squares have equal lengths, so these strips can be
pasted together in any order by aligning the vertices to get edge-to-edge tes-
sellations. If we align only the strips of triangles, we get the constant vertex
configuration 3, 3, 3, 3, 3, 3; if we align only the strips of squares, we get the
constant vertex configuration 4, 4, 4, 4; if we alternate the rows of triangles
and of squares, we get the constant vertex configuration 3, 3, 3, 4, 4; but there
are also uncountably many other ways to arrange the strips (in correspon-
dence with binary representations of real numbers in the unit interval).

Partially in the interest of being able to make a series of quilts in a finite
amount of time, we now restrict our attention to tessellations with the same
set of polygons at each vertex. (This prohibits arbitrarily mixing strips of
squares and triangles.)

But even with this restriction, there are uncountably many quilts to make
from regular polygons in an edge-to-edge manner. Namely, consider the
strip of equilateral triangles and hexagons as in Figure 5. Such strips can

Figure 5: A strip of hexagons, with corner triangles

be stacked in two different ways that have the same vertex configuration.
See Figure 6. Thus even with this restriction we still get uncountably many
distinct tessellations. How can we eliminate the uncountability of options?
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Figure 6: Two stackings of a strip of hexagons

We make one final restriction on the type of tessellations: we require
that not only do the same polygons appear at each vertex, but that these
polygons appear in the same order when enumerated either clockwise or
counterclockwise. We call such tessellations semi-regular.

We establish new notation to record the polygons appearing in their order:
a vertex has the cyclic vertex configuration n1.n2. . . . .nr if either clockwise
or counterclockwise around the vertex, the regular polygons appear in the
order n1-gon through nr-gon. For example, in the tessellation on the left in
Figure 6, the cyclic vertex configuration of a vertex on the central horizontal
line is 3.3.6.6, 3.6.6.3, 6.6.3.3, or 6.3.3.6, and for a vertex between two hori-
zontal lines it is 3.6.3.6 or 6.3.6.3. It is standard to record the configurations
with the r-tuple that is the smallest in the lexicographic ordering. For the
two vertices above, one would thus record 3.3.6.6 and 3.6.3.6, respectively.
Thus, a tessellation is semi-regular if and only if all vertices have the same
cyclic vertex configuration.

2.4 Determining All Semi-Regular Tessellations

We just defined a tessellation to be semi-regular if the closed sets in the
tessellation are all regular polygons, the polygons meet edge-to-edge, and at
all vertices the cyclic vertex configurations are the same. Not all of the 17
vertex configurations on the list in Theorem 3 can be made into semi-regular
tessellations. In this section we review the list and determine which extend
to one or more semi-regular tessellations.

Clearly (a) 3, 3, 3, 3, 3, 3 makes the regular tessellation 3.3.3.3.3.3 by equi-
lateral triangles (and there is no choice for how the triangles are joined). See
the first tessellation in Figure 15.

Next on the list in Theorem 3 is 3, 3, 3, 3, 6, so the hexagon has to be
surrounded by triangles, as in Figure 7. Each of the triangles on the outside
has to share a vertex with another hexagon. Thus there are two distinct
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Figure 7: A hexagon surrounded by triangles

ways of continuing the construction with a hexagon at the rightmost vertex,
see Figure 8. Once the placement of the second hexagon is chosen, the rest

Figure 8: Two possible continuations of the hexagon-triangle combination

of the tessellation is uniquely determined: in Figure 9 there is an extension
of the first continuation; the extension of the other 3.3.3.3.6 continuation

Figure 9: A 3.3.3.3.6 semi-regular tessellation

produces a reflection of this one; the two tessellations are not identical, but
are isomorphic up to reflection.

The next vertex configuration on the list in Theorem 3 is 3, 3, 3, 4, 4. This
translates to possible cyclic configurations 3.3.3.4.4 and 3.3.4.3.4, and each
gives a uniquely determined semi-regular tessellation, see the bottom two
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leftmost tessellations in Figure 15. As discussed earlier, the 3.3.3.4.4 tessel-
lation exists and is uniquely determined by alternating square and triangle
strips. We need to verify that the 3.3.4.3.4 tessellation can be constructed
in only one way, and that it is given by the tessellation on the bottom left
in Figure 15 (in particular, that the partially depicted tessellation can be
extended to the whole plane). We start from scratch: because the vertex
configuration is 3.3.4.3.4, somewhere in the tessellation there are two equi-
lateral triangles sharing an edge, as seen in Figure 10. Since no vertex has

Figure 10: Building 3.3.4.3.4—start with two adjacent triangles

three triangles incident, these two triangles must be surrounded by squares,
as in Figure 11. No squares are adjacent, so we have no choice also in sur-

Figure 11: Building 3.3.4.3.4—squares surround the two starting triangles

rounding these last squares by triangles. Continue this process. The black
lines in Figure 12 are obtained with this process. How can we be sure that by
continuing this process, the entire plane will be tiled with the semi-regular
tessellation 3.3.4.3.4? Observe that the regions marked in red are copies of
the fundamental domain, and that a 90◦-degree rotated copy of a red square
precisely fills in the marked blue square. Thus if this part is forced and
possible, so is the rest of the plane tessellation.

We proceed to the vertex configuration 3, 3, 4, 12. Abstractly, the cyclic
vertex configurations could be 3.3.4.12 or 3.4.3.12. We first attempt to pro-
duce a 3.3.4.12. At each vertex there would be two adjacent triangles, and up
to reflection, a square and a dodecagon must be adjacent at one of the ver-
tices, as on the left in Figure 13. Because triangles must be adjacent at each
dodecagon vertex, this forces another triangle as on the right in Figure 13
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Figure 12: 3.3.4.3.4—two red squares and one blue square are marked above;
the center any red-square edge could have been the start of the construction
as in Figure 10. Rotate a red square by 90◦, translate, and obtain the blue
square.

Figure 13: Attempting to build 3.3.4.12
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in red color. This produces a 3.3.3... vertex, which is not allowed. Thus,
3.3.4.12 does not extend to a semi-regular tessellation. Also, 3.4.3.12 does
not produce a semi-regular tessellation, as the squares share edges only with
triangles, so a triangle-dodecagon-dodecagon vertex is forced as in Figure 14.

Figure 14: Attempting to build 3.4.3.12

Next on the list is the vertex configuration 3, 3, 6, 6. One can show as
above that 3.3.6.6 is not possible, as an attempt at construction forces some
vertices to be 3.6.3.6. But the semi-regular tessellation 3.6.3.6 is possible, as
shown on the right in Figure 6, or as in the second column and second row
in Figure 15.

The next on the list is 3, 4, 4, 6. There is no semi-regular tessellation
3.4.4.6, which can be seen using an argument similar to that used to prohibit
3.4.3.12. However, there is a unique semi-regular tessellation 3.4.6.4; see the
first entry in the second column of Figure 15.

The reader can verify that there are no semi-regular tessellations arising
from configurations (g) 3, 7, 42, (h) 3, 8, 24, (i) 3, 9, 18, and (j) 3, 10, 15. Con-
figurations (k) 3, 12, 12 and (l) 4, 4, 4, 4 give the unique semi-regular tessella-
tions depicted in the second column of Figure 15. The reader can straightfor-
wardly eliminate (m) 4, 5, 20 from the list of semi-regular tessellations, but
(n) 4, 6, 12 and (o) 4, 8, 8 give the unique semi-regular tessellations as the
first two tessellations in the last column in Figure 15. Similarly, the reader
can verify that (p) 5, 5, 10 produces no semi-regular tessellation, but that
(q) 6, 6, 6 gives the honeycomb semi-regular tessellation, depicted in the last
column of Figure 15.

We have thus (mostly) proved:

Theorem 4. There are only 12 semi-regular tessellations, up to translations
and rotations; and, there are only 11 semi-regular tessellations up to trans-
lations, rotations and reflections (3.3.3.3.6 has a distinct mirror image):
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(i) 3.3.3.3.3.3

(ii) 3.3.3.3.6

(iii) 3.3.3.4.4

(iv) 3.3.4.3.4

(v) 3.4.6.4

(vi) 3.6.3.6

(vii) 3.12.12

(viii) 4.4.4.4

(ix) 4.6.12

(x) 4.8.8

(xi) 6.6.6

All this is illustrated in Figure 15. Note that in the semi-regular tes-
sellation 4.6.12, if counting clockwise, some vertices have a square (4-gon)
followed by a hexagon followed by a dodecagon, and some have this order
if counting counterclockwise. For all other semi-regular tessellations, the
orientation of counting is irrelevant.

2.5 k-uniform tessellations

For any two vertices in a given semi-regular tessellation, it is possible to
send one to the other by translating, rotating and reflecting that maps the
remainder of the tessellation onto itself. More generally we have the following
definition:

Definition 5. A tessellation is called k-uniform if the vertices of the tes-
sellation can be divided into k non-empty disjoint sets V1, . . . , Vk such that
for any two vertices v and w there exists a rigid motion of the plane carry-
ing the tessellation to itself, and v to w, if and only if v and w are in the
same Vi. (A more technical way of saying this is that the symmetry group
of the tessellation has exactly k transitivity classes of vertices.)

With this terminology, we observe that all semi-regular tessellations are
1-uniform. Section 2.4 showed that there are exactly eleven 1-uniform edge-
to-edge tessellations of the plane formed by regular polygons.

Grünbaum and Shephard [5] state that there are exactly twenty 2-uniform
edge-to-edge tessellations of the plane formed by regular polygons. This was
proved by Krötenheerdt [6] in 1969. Some readers may wish to carry out a
proof of this case. Chavey [1] proved in the 1980s that there are exactly sixty-
one 3-uniform tessellations. More recently, Galebach [2] wrote a program to
compute the number of k-uniform edge-to-edge regular-polygon tessellations;
the program computes the number of 4-uniform tessellations to be 151, the
number for 5-uniform to be 332, and the number for 6-uniform to be 673
(after a month of computation). But there yet appears to be no proof of
these results, and no further numbers are known as of this writing. The
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3.3.3.3.3.3, 3(a) 4(i) 3.4.6.4, 3(f) 4(v) 4.6.12, 3(n) 4(ix)

3.3.3.3.6, 3(b) 4(ii) 3.6.3.6, 3(e) 4(vi) 4.8.8, 3(o) 4(x)

3.3.3.4.4, 3(c) 4(iii) 3.12.12, 3(k) 4(vii) 6.6.6, 3(q) 4(xi)

3.3.4.3.4, 3(c) 4(iv) 4.4.4.4, 3(l) 4(viii)

Figure 15: All the possible semi-regular tessellations: each tessellation is
identified with its cyclic vertex configuration, its letter on the list in Theo-
rem 3, and its roman numeral on the list in Theorem 4.
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good news for a quilter is that for each k, the number of such k-uniform
tessellations is finite—this is because there are only finitely many possible
symmetry groups—so that only finitely many quilts have to be made for
each k. The not so good news is that the number of quilts to be made is still
very large for one’s lifetime.

3 Teaching ideas

Semi-regular tessellations can be studied in a classroom at several levels.
Building tessellations both combinatorially and geometrically is highly illu-
minating. The explorations in Sections 3.1 and 3.2 can be done exhaustively
by elementary-school students or in a deeper way by more advanced students;
some of the aspects of these investigations will even be instructive to grad-
uate students. The questions in Section 3.3 ask the reader to determine the
finished size of the n-gons on a quilt top given the cut size of fabric n-gons,
and, conversely, the size n-gons one needs to cut in order to wind up with a
specific size n-gon on the quilt top. The results are used in in the planning
of the quilts in Section ??. The Pythagorean theorem and trigonometry are
needed to successfully complete these investigations. Section 3.4 uses contin-
ued fractions to find rational approximations to irrational fabric proportions.
It requires fairly good algebra skills but no concepts encountered after high
school. The research questions in Section 3.5 require excellent geometric and
organizational skills.

3.1 Exploring the Tessellations Geometrically

The goal of the quilting constructions given in Section ?? is to give ways to
create semi-regular tessellations efficiently and to minimize the propagation
of error. After all, when tessellating the plane, accuracy of the produced
regular polygons (most with irrational heights) is paramount, as is align-
ing edges and vertices precisely. The same issues arise when attempting to
construct the tessellations on paper or on a computer. Here are some ex-
ercises designed to explore building tessellations. For students using paper,
magnets or feltboard, stacks of regular n-gons are needed, at least one for
each of the various values of n. Suggested computer software includes Ge-
ogebra, Geometer’s Sketchpad, or even Adobe Illustrator; each has its own
challenges.
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For each semi-regular tessellation a student tries to create, the following
questions can be asked:

1. In the semi-regular tessellations, the only regular n-gons used are 3, 4,
6, 8, and 12-gons. Construct each of these shapes with a straightedge
and compass.

2. One way of drawing a semi-regular tessellation consisting only of squares
is to draw the squares one at a time and then align the edges, but
there is obviously a faster (and more precise!) way of drawing this
semi-regular tessellation—what is it?

3. Which semi-regular tessellations can be drawn more efficiently than one
shape at a time (apart from the 4.4.4.4 tessellation mentioned above)?
Discuss possibilities for shortcuts. Are there some parallel lines in the
design? Can some lines or edges be extended?

4. If you are using a computer program for drawing, what is the best
way to replicate a diagram? Should you make one line segment at a
time? Should you make all parallel line segments first? Is there some
other set of line segments to start with, such as all the lines coming
out of a vertex? How should these lines be made so that they are
accurate (i.e., of the right length and in the right locations relative to
each other)? Should you make regular polygons and then copy and
paste those together? (How would one do that?)

5. Suppose you were going to make a fancy floor (or a quilt) tiled with
your tessellation. Try coloring your tessellations with colors (or fabrics)
so that no two shapes sharing a whole edge have the same color. Which
of the semi-regular tessellations can be colored in this way using exactly
two colors? Which ones cannot be colored with two colors, but three
colors suffice? Do any of them need four or even more colors? (There is
a big theorem in mathematics saying that all tessellations by connected
pieces, semi-regular or not, can be colored using no more than four
colors. See [7].)

3.2 Exploring the Non-Tessellations

The following two problems encourage students to fill in the details of elimi-
nating vertex configurations that do not extend to tessellations of the plane.
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• In Theorem 3, seventeen potential semi-regular vertex configurations
are enumerated. According to Section 2, seven cyclic vertex configu-
rations cannot be realized as semi-regular tessellations. However, in
Theorem 4, we found eleven different semi-regular tessellations. Yet
17− 7 < 11. Explain what is going on here.

• The same drawing methods that were used for building the semi-regular
tessellations can also be used to help work through the proofs that some
cyclic vertex congurations from Theorem 3 do not yield semi-regular
tessellations. Show that the following vertex configurations do not yield
semi-regular tessellations: (g) 3, 7, 42, (h) 3, 8, 24, (i) 3, 9, 18, (j) 3,
10, 15, (m) 4, 5, 20, and (p) 5, 5, 10. Note that two different cyclic
vertex configurations may arise from (f ) 3, 4, 4, 6, but (only) 3, 4, 4,
6 is impossible. Show that.

3.3 The Size of the Shapes

Quilters, and tessellaters, have to make a lot of calculations while doing
their craft: what final size is needed, how many basic units, how much of
each fabric and color, etc. Much of that arithmetic is quite elementary, but
it can quickly get into harder mathematics. Prerequisites for this section are
the Pythagorean theorem and trigonometry and a willingness to get one’s
hands dirty. Depending on the audience, some teachers may want to break
down the questions for their students.

Question 1: If regular n-gons are to be cut from a strip of fabric (or
paper) of width h inches, what is the largest possible side length of the n-
gon? For example, if n = 3, then h denotes the height of the triangle, and
the answer is 2√

3
h. If n = 4, then certainly the answer is simply h. Answer

the question for n = 6, 8, 12.
One can also reverse the question:
Question 2: If we want the side length of a regular n-gon to be d inches,

what is the smallest width of a strip of fabric (of paper) from which we can
cut the n-gon?

Quilters have to be more careful than that, however! It is not enough to
cut a piece of fabric to the finished size; extra fabric is needed because seam
must be sewn on the interior of the fabric in order to hold. For quilting, it is
traditional to add a quarter-inch seam allowance to all edges. For example,
if the finished square is supposed to be 3 inches by 3 inches, one needs to
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cut the square of 3.5 inches by 3.5 inches of fabric, a quarter of an inch to
be eaten away by the seaming along each of the four sides.

The previous two questions can be rephrased for quilting purposes as
follows:

Question 1q: If regular n-gons are to be cut from a strip of fabric of
width h inches, and if 1

4
inch is reserved along each edge of the n-gon for seam

allowance, what is the largest possible finished side length of the n-gon? Do
this for n = 3, 4, 6, 8, 12. (The answers might not be unique; see Figure ??.)

Question 2q: If we want the finished side length of a regular n-gon to be
d inches, what is the smallest width of a strip of fabric from which we can cut
a polygon so that after subtracting 1

4
inch along each side for seam allowance

from this polygon we get the desired n-gon? Do this for n = 3, 4, 6, 8, 12.
For specific numerical values of h and d in the questions above, the “an-

swers” may be provided by geometric construction instead of numerically.
Namely, one may want to draw the finished and cut size on paper, then
transfer the drawn lengths as needed.

3.4 Approximating Fabric Proportions via Continued

Fractions

Quilting provides an excellent real-life application of continued fractions.
The presentation below can be used within a number theory course, or in
a recreational mathematics setting as early as middle school. In making
quilts, one often has a predetermined finished size, depending on the size
of the bed or on the size of the recipient, say. One also often starts with
a predetermined idea what the building blocks of the quilt would look like,
and then the mathematical input is to calculate how many of those building
blocks are needed to fill the desired finished size.

Specifically, suppose we want to tessellate a quilt with equilateral tri-
angles, each of side length d inches. How should we choose the number of
triangles per row, and number of rows in the quilt, so that the finished size
is as desired (or close enough)? For example, how should p, the number of
triangle side lengths in a row, and q, the number of rows in the quilt, be
chosen, so that the finished quilt is square?

The height of the quilt will be pd
√
3/2 inches and the width will be qd

inches. Because
√
3 is irrational, it is not possible to find positive integers

p and q such that the finished quilt would be square. However, with fabric
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stretchability, one can get close: If (p, q) is (7, 6) (see the example on the left

in Figure ??), then 7 ·
√
3

2
∼= 6.06218, which is very close to 6, and a quilt

with p = 7 and q = 6 looks square. Similarly, 15 ·
√
3

2
∼= 12.9904 so (15, 13)

is a good approximation, and 97 ·
√
3

2
∼= 84.0045, so (97, 84) is even closer

to square. But how were these pairs (p, q) arrived at? Trial and error are
trumped by the systematic method introduced next.

Definition 6. A continued fraction is an expression such as

x = a0 +
1

a1 +
1

a2+
1

a3+
1

a4+
1

...

,

where a0 is an integer, and all other ai are non-negative integers. If an = 0
for some n > 0, then all subsequent ai are also 0.

Let’s compute an example, say for x = 2√
3

∼= 1.15470053837925. (The

motivation for this x is that for a square quilt we want the ratio p
√
3

2
: q to be

(close to) 1, i.e., we want p : q to be (close to) 2√
3
.) The largest integer smaller

than or equal to x is 1. Thus we set a0 = 1. So we will want to write x =
1 + 1

something
, and solving gives something = 1/(x− 1) ∼= 6.46410161513775.

We then have to write something as a1 +
1

something else
. The largest integer

less than or equal to something is 6, so we set a1 = 6, and by solving we

find something else =
1

1

x−1
− 6

∼= 2.15470053837925, whence we set a2 = 2.

Note that the part to the right of the decimal point has appeared before!
Exercise: The two quantities above look similar. Prove that indeed they

are the same. Namely, prove that

2√
3
− 1 =

1
1

2
√

3
−1

− 6
− 2.

This justifies that all further a2n+1 are 6, and all a2n are 2. One way to
notate this continued fraction is as 2/

√
3 = [1; 6, 2, 6, 2, 6, 2...]. Just as we

take decimal truncations of decimal expansions of real numbers, similarly we
can take truncations of continued fractions:

1. The truncation [1; 6] = 1 + 1

6
of 2/

√
3 = [1; 6, 2, 6, 2, 6, 2...] gives 7/6

(hence the pair (7, 6)).
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2. The truncation [1; 6, 2] = 1 + 1

6+
1

2

of [1; 6, 2, 6, 2, 6, 2...] gives 15/13.

3. [1; 6, 2, 6] = 1 + 1

6+
1

2+ 1
6

= 97

84
.

4. [1; 6, 2, 6, 2] = 209

181
, etc.

In general, the continued fraction of any real number x is obtained as
follows: set a0 to be the largest integer less than or equal to x; a0 is the floor
of x, denoted ⌊x⌋. Notice that x−a0 ≥ 0. Let a1 = ⌊1/(x−a0)⌋. To continue,
let b1 = 1/(x− a0) and bn = 1/(bn−1 − an−1). Then an = ⌊1/(bn−1 − an−1)⌋.
If at any point a denominator is zero, stop—x is a rational number.

If x = [a0; a1, a2, a3, . . .] is a continued fraction expansion of a real num-
ber x, let a truncated continued fraction [a0; a1, a2, a3, . . . , an] be written as
p

q
with integers p and q having no common factor. In a number theory class

one may want to prove the following fact, but some may want to take it on
faith: for any rational r

s
and 0 < s ≤ q,

|x− [a0; a1, a2, a3, . . . , an]| ≤
∣

∣

∣
x− r

s

∣

∣

∣
.

In other words, the truncated continued fractions are the best rational ap-
proximations if the denominators of the rational approximations do not ex-
ceed the denominator of the truncated continued fraction approximation.

Further questions:

1. What if we wanted the finished quilt to be rectangular, with ratio 7 : 5
of height to width? What would be a good number q of rows with each
row p triangle side lengths in width? Verify your answers numerically.
(Hint: Do a continued fraction expansion of 7·2

5
√
3
.)

2. What if we modify the layout of the quilt and have q rows of equilateral
triangles, each p/2 triangle side lengths wide?

3. How can continued fractions be used for tessellations with hexagons,
or the other semi-regular tessellations? (You will need the calculation
results from Subsection 3.3.)

4. Compute a few terms of the continued fraction of π, and compute its
first few truncated continued fractions approximations. (Of course, you
cannot get all the terms of the continued fractions, and since you have
only a limited access to the real value of π, you cannot compute very
many parts of the continued fraction.)
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3.5 k-uniform tessellation projects

Just as we derived from scratch all the possible 1-uniform tessellations, one
could determine from scratch all the possible 2-uniform tessellations, and
higher as well. A big part of this discovery is keeping track of the discover-
ies, especially when the number of possible tessellations gets beyond twenty.
Other possible searches might be for those k-regular tessellations that use
only squares and triangles, or some other small combination of shapes.
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