
Introduction

These notes were written to accompany my ten lectures on tight closure
at the Institute for Studies in Theoretical Physics and Mathematics (IPM),
School of Mathematics, in Tehran, Iran, in January 2002. The participants
ranged from researchers with knowledge in tight closure to graduate students
new to tight closure and research in general. My goal was to introduce
the theory of tight closure and show its utility and beauty through both
its early and its recent applications. I worked through some more technical
aspects of tight closure, for example test elements, because the theory of test
elements is central to many applications, and furthermore, because it uses
and develops some beautiful commutative algebra. Throughout I tried to
emphasize the beauty of the commutative algebra as developed through tight
closure, as well as the need to understand various aspects of commutative
algebra to work in the area of tight closure (such as the need to understand
excellent rings, Cohen-Macaulay rings, asymptotic properties of (Frobenius)
powers of ideals, local cohomology, homology theory, etc.).

All this of course points to the depth and the acuity of the two originators
of the theory, namely of Melvin Hochster and Craig Huneke. They started
the theory in the mid 1980s. They took several standing proofs in commu-
tative algebra, such as the proofs of the homological conjectures-theorems,
the proof of Hochster and Roberts [HR1] that the ring of invariants of a re-
ductive group acting on a polynomial ring is Cohen-Macaulay, and Huneke’s
proof [Hu1] about integral closures of the powers of an ideal, and from these
standing proofs Hochster and Huneke pulled the essential ingredients to de-
fine a new notion. Not only were they then able to reprove all the mentioned
theorems more quickly, but they were able to easily prove greater general-
izations, and many new theorems as well. Among the first new theorems
were new versions of the Briançon-Skoda theorem, and new results on the
Cohen-Macaulayness of direct summands of regular rings, the vanishings of
some Tor maps, etc. The new notion was worthy of a name, and Hochster
and Huneke called it tight closure.

Tight closure continues to be a good tool in commutative algebra as
well as in algebraic geometry. Hochster and Huneke themselves have pub-
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lished several hundred pages on tight closure, all the while developing beau-
tiful commutative algebra. The theory of tight closure has also grown due
to the work of Ian Aberbach, Nobuo Hara, Mordechai Katzman, Gennady
Lyubeznik, Anurag Singh, Karen Smith, Kei-Ichi Watanabe, and other peo-
ple. My early research was also in tight closure, as a result of which I
became interested in asymptotic properties of powers of ideals. My work on
asymptotic properties uses the techniques of tight closure, but not necessar-
ily involve the statements about tight closure.

The extensive tight closure bibliography at the end of these notes is
meant to facilitate finding more details and further information. But most
of the material for these notes is taken from [HH2], [HH4], [HH9], [HH14],
[HH15], [Hu3] and [Sm1], and with major input also from [ElSm], [Ho1],
[Hu2], [K1], [Ku1], [Ku2], [Sm13]. The sections of these notes roughly follow
my lectures, although some sections took more than one lecture. In partic-
ular, the long section onn test elements (Section 6) took about 2 lectures.

I thank IPM for hosting these talks. I thank the many participants who
came through snow and dense traffic, made comments, asked questions, ex-
plained to me their work, asked for more... My stay in Iran was made
very pleasant and worthwhile by all of them. I especially thank Kamran
Divaani-Aazar and Siamak Yassemi for organizing the workshop and for or-
ganizing my mathematical activities in Iran, as well as for introducing me to
non-mathematical Iran. The ten days of my lectures on tight closure were
interspersed with talks on commutative algebra by Rahim Zaare-Nahandi,
Kamran Divaani-Aazar, Kazem Khashyarmanesh, Hassan Haghighi, Leila
Khatami, Javad Asadollahi, and Tirdad Sharif, and I thank them all for
their nice talks. I also thank Mohamad-Taghi Dibaei, Kamran Divaani-
Aazar, Hassan Haghighi, Leila Khatami, Tirdad Sharif, Siamak Yassemi,
and Hossein Zakeri for their participation in the workshop, and for their
personal warmth. I am grateful to Craig Huneke and Melvin Hochster for
teaching me about tight closure, and to Steve and Simon Swanson for putting
up with my yet another absence. Finally, many thanks go also to Kamran
Divaani-Aazar and Siamak Yassemi for the helpful feedback and proofread-
ing of these notes.



1. Tight closure

Throughout these notes all rings are Noetherian commutative with 1 6= 0.
In this first lecture I will introduce the basics, as well as indicate the early
applications of tight closure.

Definition 1.1: For any ring R, R◦ denotes the subset of R consisting of
all the elements which are not contained in any minimal prime ideal of R.
When R is an integral domain, then R◦ = R \ {0}.

During most of my talks, and in particular in the first seven sections
of these notes, all the rings will have positive prime characteristic p. This
means that Z/pZ is a subring of such a ring.

Definition 1.2: Let R be a ring and let I be an ideal of R. An element x
of R is said to be in the tight closure, I∗, of I, if there exists an element
c ∈ R◦ such that for all sufficiently large integers e, cxp

e ∈ (ip
e |i ∈ I).

First of all, we establish some notation: the ideal (ip
e |i ∈ I) is denoted

by I [pe] and is called the eth Frobenius power of I. Then name follows
because of the Frobenius functor x 7→ xp, which is a morphism over rings
of characteristic p. The eth iterate of the Frobenius functor takes x to xp

e
.

In particular, if I = (a1, . . . , ar), then I [pe] = (ap
e

1 , . . . , a
pe

r ).

To simplify notation, we will write q to stand for a power pe of p. Then
I [pe] = I [q].

For any ideals I and J , I [q] + J [q] = (I + J)[q], I [q]J [q] = (IJ)[q]. Also, if
n is any positive integer, (In)[q] = (I [q])n.

Now back to the definition of tight closure: one is expected to solve
infinitely many equations in infinitely many unknowns:

cxq = be1a
q
1 + · · · + bera

q
r, for all q >> 0,

and this is highly nontrivial in general.
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Example: Let R = Z/pZ[x, y, z]/(x3 + y3 + z3), p a prime integer. Then
x2 ∈ (y, z)∗. Here is a proof. Note that x ∈ R◦, so that x6 ∈ R◦. For all
q ≥ p, write q = 3n+δ for some non-negative integers n, δ, with δ ∈ {0, 1, 2}.
Then

x6x2q ∈ x6−2δx6n+2δR = x6(n+1)R ⊆ (y3, z3)2(n+1)R =
2n+2∑

i=0

y3iz3(2n+2−i)R.

But every summand lies in I [q], for otherwise there exists an index i such
that 3i ≤ q − 1 and 3(2n + 2 − i) ≤ q − 1, so that (by adding) 6n + 6 ≤
2q − 2 = 6n+ 2δ − 2, but this is a contradiction.

(Verify that x 6∈ (y, z)∗ when p is different from 3.)
One cannot claim that the definition of tight closure is “pretty”, and

it is quite hard to work with. However, tight closure appears naturally in
many contexts, and the techniques of tight closure were used well before
tight closure was defined (and then Hochster and Huneke extracted the gist
of several proofs):

• (Kunz [Ku1]) Let R be a ring of positive prime characteristic p. Then
the Frobenius homomorphism F is flat over R if and only if R is a
regular ring. Kunz did not use tight closure, but this fact about the
Frobenius homomorphisms that he proved is used a lot in tight closure.
Also, Kunz proved in [Ku2] that if R is module-finite over the subring
{rp|r ∈ R}, then R is an excellent ring.

• Peskine and Szpiro [PS] proved that applying the Frobenius functor to
bounded acyclic complexes of finitely generated free modules preserves
acyclicity. They applied this to prove several homological conjectures
in characteristic p. Rudiments of tight closure show in their proofs.

• (Hochster-Roberts [HR1]) Rings of invariants of reductive groups act-
ing on regular rings are Cohen-Macaulay.

• (Huneke [HU1]) Let R be a Cohen-Macaulay local ring containing a
field, I = (x1, . . . , xd), where x1, . . . , xd form a system of parameters.
Then In ∩ In−1 = In−1I for all n ≥ 1.

• (Skoda-Briançon [SB], Lipman-Sathaye [LS], Lipman-Teissier [LT], Rees-
Sally [RS]) Briançon-Skoda theorems (In ⊆ I for good n.) The proof
of Lipman and Sathaye [LS] does not use the techniques of tight clo-
sure, but is a rich source of “test” elements, and helped tremendously
in the development of the theory of tight closure.
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• If S is an integral domain which is a module-finite overring over a ring
R, then for any ideal I in R, IS ∩R ⊆ I∗.

• (Persistence of tight closure) If S is an R-algebra, then under some
conditions on R, for any ideal I in R, I∗S ⊆ (IS)∗. This is not
obvious if R◦ does not map to S◦.

• (Colon capturing) Let x1, . . . , xn generate an ideal of height n (so
x1, ldots, xn are parameters). Then under some conditions on R
(such as module-finite over a regular domain A containing the xi),
(x1, . . . , xn−1)R :R xn ⊆ ((x1, . . . , xn−1)R)∗.

• (Hochster [Ho3]) Big Cohen-Macaulay algebras exist.

• (With a few more definitions) Tight closure has had applications to
rational singularities, multiplier ideals, symbolic powers of (prime) ide-
als, Kodaira vanishing theorem... (See [Sm5], [Sm7], [Sm9], [Sm11],
[Ha4], [HuSm2], [HH14], [ELSm], [W5]...)

In these notes and lectures we will touch on some of these aspects of
tight closure, but first we need to get the basics down.

Proposition 1.3: Let R be a ring, x an element and I an ideal of R. Then
x ∈ I∗ if and only if for all minimal primes P of R, the image of x modulo
P is in the tight closure of IR/P .

Proof: Let P1, . . . , Pr be all the minimal primes of R (R is Noetherian). If
x ∈ I∗ then there exists c ∈ R, c not in any Pi, such that for all q >> 0,
cxq ∈ I [q]. Then for each Pi, the image of c in R/Pi is in (R/Pi)

◦, and
cxq + Pi ∈ I [q] + Pi. Thus the image of x modulo Pi is in the tight closure
of IR/Pi.

Conversely, assume that for each i = 1, . . . , r, the image of x modulo Pi
is in the tight closure of IR/Pi. Let ci ∈ R \ Pi such that for all q >> 0,
cix

q ∈ I [q] + Pi. By Prime Avoidance there exists di ∈ R which is not an
element of Pi but is in every other minimal prime of R. Then dicix

q ∈
I [q] +

∏
j Pj ⊆ I [q] +

√
0. Set c =

∑
dici. Then c ∈ R◦ and cxq ∈ I [q] +

√
0

for all q >> 0. As R is Noetherian, there exists q ′ such that (
√

0)q
′

= 0.
Hence for all q >> 0,

cq
′

xqq
′ ∈ I [qq′],

which proves that x ∈ I∗.
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The proposition above simplifies a lot of the theory and concrete com-
putations, as it says that it (often) suffices to study tight closure in integral
domains. Next we will verify that tight closure is indeed a closure operation.

Proposition 1.4: Let I and J be ideals of R.

(i) I∗ is an ideal and I ⊆ I∗.

(ii) If I ⊆ J , then I∗ ⊆ J∗.

(iii) I∗ = I∗∗.

(iv) (I ∩ J)∗ ⊆ I∗ ∩ J∗ (strict inclusion a possibility).

(v) (I + J)∗ = (I∗ + J∗)∗.

(vi) (I · J)∗ = (I∗ · J∗)∗.

(vii) (0)∗ =
√

0. Also, for every ideal I, I∗ is the natural preimage of the
tight closure of IR/

√
0 in /

√
0.

(viii) If I is tightly closed, so is I : J .

(ix) The intersection of tightly closed ideals is tightly closed.

(x) I ⊆ I∗ ⊆ I ⊆
√
I.

(xi) If R is a regular ring, then every ideal is tightly closed.

(xii) In an integrally closed domain, every principal ideal is tightly closed.

Proof: Clearly I∗ is closed under multiplication by elements of R. If x, y ∈
I∗, then there exist elements c, d ∈ R◦ such that for all q >> 0, cxq, dyq ∈
I [q]. Hence cd(x+ y)q ∈ I [q], cd ∈ R◦, and so x+ y ∈ I∗. The rest of (i) and
(ii) is trivial.

If x ∈ (I∗)∗, there exists an element c ∈ R◦ such that for all q >> 0, cxq ∈
(I∗)q. As R is a Noetherian ring, as established in the previous paragraph
there exists an element d ∈ R◦ such that for all q >> 0, d(I∗)[q] ⊆ I [q].
Hence

cdxq ∈ I [q]

for all q >> 0, which proves (iii).

Then (iv) is obvious. Examples of strict inequalities can be given once
we build up more examples from theory (rather than hard computation).
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To prove (v) and (vi), let � stand for either + or ·. By (ii) then (I �J)∗ =
(I∗ � J∗)∗. If x ∈ (I∗ � J∗)∗, there exists an element c ∈ R◦ such that for all
q >> 0, cxq ∈ (I∗ � J∗)[q]. As in the proof of (iii), there exists an element
d ∈ R◦ such that for all q >> 0, d(I∗)[q] ⊆ I [q] and d(J∗)[q] ⊆ J [q]. Then

dcxq ∈ d(I∗ � J∗)[q] = d
(
(I∗)[q] � (J∗)[q]

)
⊆ I [q] � J [q] = (I � J)[q],

whence x ∈ (I � J)∗.
For every x ∈

√
0, there exists an integer n such that xn = 0. Hence for

all q >> 0, xq ∈ (0), so that x ∈ (0)∗. The second part of (vii) is equally
easy.

If I is tightly closed and J is an arbitrary ideal, let x ∈ (I : J)∗. Then
there exists an element c ∈ R◦ such that for all q >> 0, cxq ∈ (I : J)[q].
Then cxqJ [q] ⊆ I [q]. As I is tightly closed, this implies that xJ ⊆ I, or that
x ∈ I : J . Thus I : J is tightly closed, proving (viii).

Let I = ∩Ii, where each Ii is tightly closed (i.e., I∗i = Ii). Let x ∈ I∗.
Then there exists an element c ∈ R◦ such that for all q >> 0, cxq ∈ I [q].

Then cxq ∈ I [q]
i for all i and all q >> 0, so that x ∈ I∗i = Ii for all i, whence

x ∈ I. This proves (ix).
For (x), to prove that I∗ ⊆ I, recall that I is uniquely determined by

all the DVRs V which are R-algebras and contain R/P for some minimal
prime ideal P of R:

I = ∩V {r ∈ R | rV ⊆ IV }.
If cxq ∈ I [q], then cxqV ⊆ I [q]V = IqV . By assumption cV 6= 0V . But then
cxqV ⊆ IqV for all q >> 0 implies that xV ⊆ IV , which proves (x).

The inclusion cxq ∈ I [q] implies that c ∈ I [q] : xq. If R is a regular ring,
by a result of Kunz I [q] : xq equals (I : x)[q]. Thus if cxq ∈ I [q] for all q >> 0,
then c ∈ ∩q>>0(I : x)q. After localizing at each maximal ideal, as c is not
in any minimal prime ideal, this implies that locally I : x is the whole ring,
so that x ∈ I. Thus in a regular ring I∗ = I.

Finally, for any element x in a ring, (x) ⊆ (x)∗ ⊆ (x), and in an integrally
closed domain, (x) = (x).

Thus in regular rings tight closure is (much) smaller than the integral
closure. For example, (x2, y2) contains (x, y)2), which in turn strictly con-
tains (x2, y2) = (x2, y2)∗. Thus tight closure gives a “tighter” fit over ideals,
hence the name of the closure.

Properties (i), (ii), (iii), (vii), (viii), (x), (xi) above, as well as “colon
capturing” and “persistence” (to be seen in later sections), are the most
crucial properties of tight closure which give it its power. See the results
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and their proofs below for evidence of this. (Side remark: and try to find a
mixed characteristic notion with these properties. Cf. [Ho7], [Mc2], [Mc3].)

Remark 1.5: Let J ⊆ I be ideals in R. Then I∗ need NOT be the preimage
of the tight closure of IR/J in R/J ! For example, if m is a maximal ideal
in R and J ⊆ I both m-primary ideals, the tight closure of IR/J is mR/J ,
but in general the tight closure of I is much smaller than m.

And here is another natural way in which tight closure arises:

Theorem 1.6: Let R ⊆ S be a module-finite extension of integral domains.
Then for any ideal I of R, (IS)∗ ∩R ⊆ I∗. Furthermore, if T is an integral
domain which is an integral extension of R, then for every ideal I of R,
IT ∩R ⊆ I∗.

Proof: Let x ∈ (IS)∗∩R. Then there exists c ∈ S◦ such that for all q >> 0,
cxq ∈ I [q]S. Let r be the rank of S as an R-module, i.e., r = dimQ(R)(S ⊗R

Q(R)). Then 0 −→ Rr −→ S is exact, and there exists a non-zero element
d of S such that dS ⊆ Rr. Then for all q >> 0, dcxq ∈ I [q]Rr ∩R = I [q]. As
dc is non-zero, it has a non-zero multiple in R, so without loss of generality
dc ∈ R. Hence x ∈ I∗.

The second part follows as there exists a module-finite extension S of R
inside T such that IT ∩R = IS ∩R.



2. Briançon-Skoda theorem, rings of invariants...

Briançon-Skoda theorem started in complex analysis: it is straightfor-
ward to prove that whenever f is a convergent power series in n variables
x1, . . . , xn over C, if f(0) = 0, then

f ∈
(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)
.

Thus according to the theory of integral closures of ideals, there exists an

integer k such that f k ∈
(
∂f
∂x1

, . . . , ∂f∂xn

)
. Analysts wanted to know if there

is in general an upper bound on k, independent of f . A simple example of
this result is when f is a homogeneous polynomial of degree d. Then it is
easy to prove the following Euler’s formula:

df = x1
∂f

∂x1
+ x2

∂f

∂x2
+ · · · + xn

∂f

∂xn
,

so that for f homogeneous, k can be taken to be 1. In 1974, Briançon and
Skoda [SB] proved that k can always be taken to be n.

Here is an example showing that in general k cannot be taken to be
smaller than n. Let R = Q{x, y}, f = x3y2 + y5 + x7. The Jacobian ideal

J =
(
∂f
∂x ,

∂f
∂y

)
is generated by 3x2y2 + 7x6 and 2x3y + 5y4. All these f

and its partial derivatives are polynomials, so we can use finite methods for
computation. The computer program Macaulay2 [GS] shows that J : x10

contains 1715 ∗ 9 ∗ x ∗ y − 49 ∗ 54, which is a unit in R, so that JR is the
same as the ideal after coloning out with this unit. The ideal J : x10 in the
polynomial ring is computed by Macaulay2 to be (x3y+5/2y4, x2y3, y6, x6 +
3/7x2y2), an ideal primary to (x, y)Q[x, y], from which it can be computed
that f 6∈ J but f 2 ∈ J .

The proof of Briançon and Skoda was analytic, relying on some deep
results of Skoda. Lipman and Teissier [LT] wrote that an absence of an
algebraic proof of this algebraic statement was for algebraists “something of
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a scandal – even an insult – and certainly a challenge”. In 1981, Lipman and
Teissier in one paper [LT], and Lipman and Sathaye in another [LS], proved
a generalized Briançon-Skoda theorem algebraically. Rees and Sally [RS]
proved another generalization, again algebraically, but with a very different
proof, in 1988, and at about the same time, Hochster and Huneke [HH4] gave
the shortest proof via tight closure. These four proofs are all very different.
All the algebraic versions of the Briançon-Skoda theorem imply the analytic
result of Briançon and Skoda, but the other versions are all different. The
tight closure version is limited to rings containing fields, whereas the other
versions work over all regular rings.

Here is the tight closure version for rings in positive prime characteris-
tic p:

Theorem 2.1: (Briançon-Skoda theorem, due to Hochster-Huneke [HH4])
Let R be a Noetherian ring of positive prime characteristic p, and I an ideal
generated by at most n elements. Then for all m ≥ 0, Im+n ⊆ (Im+1)∗.

In particular, if R is a regular ring, then for all m ≥ 0, Im+n ⊆ Im+1.

Proof: Modulo each minimal prime ideal P , I is generated by at most n
elements, and if x ∈ Im+n, then x is still in the integral closure of the image
of Im+1. If we can prove that x is in the tight closure of the image of Im+n

modulo each minimal prime, we would be done. So we may assume that R
is an integral domain.

If n = 0, as (0) is a prime ideal, the theorem follows trivially. So we may
assume that n > 0.

Let x ∈ Im+n. By the theory of the integral closures of ideals, there
exists an integer l such that for all k ≥ 1,

(Im+n + xR)k+l = I(m+n)k(Im+n + xR)l ⊆ I(m+n)k.

If I = (a1, . . . , an), then I(m+n)k ⊆ (ak1 , . . . , a
k
n)
m+1. Proof of this fact: it

suffices to prove that ab11 a
b2
2 · · · abnn , with

∑
bi = (m + n)k, is contained in

(ak1 , . . . , a
k
n)
m+1. Let ci = b bik c. Then ci + 1 > bi/k, so that

∑
(ci + 1) >∑

bi/k = m+ n, and
∑
ci = (

∑
(ci + 1)) − n > m. It follows that

ab11 a
b2
2 · · · abnn ∈ (ac11 a

c2
2 · · · acnn )kR ⊆ (ak1 , . . . , a

k
n)
m+1.

Thus (Im+n + xR)k+l ⊆ (ak1 , . . . , a
k
n)
m+1. Set c = xl ∈ R◦. Then when

k = q,
cxq ∈ (aq1, . . . , a

q
n)
m+1 = (I [q])m+1 = (Im+1)[q],

so that x ∈ (Im+1)∗.
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This raises some questions: in what rings is every ideal tightly closed?
How difficult is it to find the element c for each tight closure containment?
What is the proof in characteristic 0? We’ll get to some partial answers
soon.

Note that whenever I has an l-generated reduction, the Briançon-Skoda
theorem says that

Im+l ⊆ (Im+1)∗.

In particular, in a polynomial ring k[x, y], k a field of arbitrary characteristic,
every ideal has a two-generated reduction after passing to the faithfully flat
extension k[x, y] and localizing, so that for any elements f, g, h ∈ k[x, y],
f2g2h2 ∈ (f3, g3, h3). (Here, I = (f 3, g3, h3), m = 0, l = 2.) Hochster posed
a challenge to find an elementary proof for this.

Corollary 2.2: For any element x ∈ R, (x) = (x)∗.

Proof: By the Briançon-Skoda theorem, with n = m = 1, (x) ⊆ (x)∗, and
the other inclusion always holds.

In particular, in every integrally closed domain, every principal ideal is
tightly closed.

Further generalizations of the Briançon-Skoda theorem can be found in
[AHu1], [AHu2], [AHuT], [Sw1], [Sw2].

Definition 2.3: If every ideal in a ring R is tightly closed, then R is said
to be weakly F-regular. If every localization of R is weakly F-regular,
then R is said to be F-regular.

It is suspected that tight closure commutes with localization (I will talk
about this problem in greater detail). If that is so, then weakly F-regular is
the same as F-regular. Unfortunately, for now we have to make a distinction
between these two notions (and a few others, such as strong F-regularity).

It is known that weak F-regularity equals F-regularity for uncountable
affine algebras (Murthy), for Gorenstein and Q-Gorenstein rings ([HH4],
[AKM]), and for rings of dimension at most 3 which are images of Gorenstein
rings ([Wi]). We will prove later that a weakly F-regular Gorenstein ring is
F-regular (see Theorem 3.3).

Proposition 2.4: A weakly F-regular ring is reduced and normal.

Proof: As
√

0 = (0)∗ = (0), R is reduced. Let r, s ∈ R with s ∈ R◦, and
assume that r

s is integral over R. Then r ∈ sR, so that by Corollary 2.2,
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r ∈ (s)∗ = (s), so that r
s ∈ R.

Proposition 2.5: Let (R,m) be a Gorenstein local ring. Then R is weakly
F-regular if and only if every parameter ideal in R is tightly closed. Fur-
thermore, R is weakly F-regular if and only if one parameter ideal in R is
tightly closed.

Proof: Assume that some parameter ideal (x1, . . . , xd) in R is tightly closed.
As the xi form a regular sequence, then also (xt11 , . . . , x

td
d ) is tightly closed

for all ti ≥ 1 (proof by induction). Let I be an m-primary ideal. Choose t
such that J = (xt1, . . . , x

t
d) ⊆ I. By the Gorenstein property, J : (J : I) = I.

But then if J is tightly closed, so is I = J : (J : I). This proves that every
m-primary ideal is tightly closed. But since every ideal is the intersection
of m-primary ideals, thus the intersection of tightly closed ideals, it follows
that every ideal is tightly closed.

Theorem 2.6: A direct summand of a (weakly) F-regular domain is
(weakly) F-regular.

More generally, if A is a direct summand of R, A◦ ⊆ R◦, and R is
(weakly) F-regular, then A is also (weakly) F-regular.

Proof: Note that it is enough to prove the weak F-regularity part. By
the direct summand assumption there exists an A-module homomorphism
ϕ : R→ A such that ϕ composed with the inclusion i is the identity function
on A.

Let I be an ideal in A, and x ∈ I∗. Then there exists c ∈ A◦ = A \ {0}
such that for all q >> 0, cxq ∈ I [q]. As c ∈ R◦, this says that x ∈ (IR)∗ =
IR. But then x = ϕ ◦ i(x) ∈ ϕ(IR) = Iϕ(R) = I.

The next goal is to prove that direct summands of good rings are Cohen-
Macaulay, but for that we will need the following useful theorem which also
shows how tight closure arises naturally in many contexts:

Theorem 2.7: (Colon capturing) Let R be a Noetherian equidimensional
local ring of positive prime characteristic which is a homomorphic image of
a local Cohen-Macaulay ring S. Then for any part of a system of parameters
x1, . . . , xn,

(x1, . . . , xn−1) :R xn ⊆ (x1, . . . , xn−1)
∗.

Proof: Write R = S/Q, where Q is an ideal of S of height m. Then there
exist preimages x′i in S of the xi and elements y1, . . . , ym ∈ Q such that
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x′1, . . . , x
′
n, y1, . . . , ym generate an ideal in S of height m + n (to prove this

use Prime Avoidance) and such that there exists c in S not in any mini-
mal prime ideal over Q and an integer k with cQk ⊆ (y1, . . . , ym) (because
of equidimensionality). Let r ∈ S such that the image of r in R lies in
(x1, . . . , xn−1) :R xn. Thus we can write rxn =

∑n−1
i=1 rix

′
i + y for some

ri ∈ S and y ∈ Q. Hence for all q ≥ 1, rqxqn =
∑n−1

i=1 r
q
i x

′
i
q + yq. For any q

such that q ≥ k, cyq =
∑

j sjyj for some sj ∈ S. Thus for all q >> 0,

crqxqn =
n−1∑

i=1

crqi x
′
i
q
+
∑

j

sjyj .

As x′1, . . . , x
′
n, y1, . . . , ym is a regular sequence in S, this says that for all

q >> 0, crq ∈ (x′1
q, . . . , x′n−1

q) + (y1, . . . , ym) (in S). Let d be the image of
c in R. Then by the choice of c, d ∈ R◦, so that the image of r in R lies in
(x1, . . . , xn−1)

∗, as was to be proved.

Theorem 2.8: A direct summand of a regular ring is Cohen-Macaulay.

Proof: Let A ⊆ R be rings, A a direct summand of R as an A-module, and
R a regular ring. There exists an A-module homomorphism ϕ : R→ A such
that ϕ composed with the inclusion is the identity function on A. Everything
remains unchanged under localization at multiplicatively closed subsets of
A, so without loss of generality A is a local ring with maximal ideal m. As
R is regular, it is reduced, so A is reduced. Then

A ⊆ R = R/P1 ×R/P2 × · · · ×R/Pk,

where P1, . . . , Pk are all the minimal prime ideals of R. Each R/Pi is a reg-
ular domain. We claim that A is a direct summand of some direct summand
S of R for which A◦ ⊆ S◦. Suppose not. Then, by possibly renumbering
the Pi, there exists a ∈ A◦ ∩ P1. Set S = R/P2 × · · · × R/Pk, a proper
regular summand of R, and ψ the restriction of ϕ to S. Let j be the com-
position of the inclusion i of A in R with the natural surjection π of R
onto S. If for some non-zero b ∈ A, j(b) = 0, then i(b) ∈ ∩j>1Pj , so that
ab = ϕ ◦ i(ab) = ϕ(ai(b)) = ϕ(0) = 0, contradicting the assumptions that
b is non-zero, a ∈ A◦, and A is reduced. Thus necessarily j is an injection.
Furthermore, for any b ∈ A,

aψ ◦ j(b) = ψ ◦ j(ab) = ψ ◦ π ◦ i(ab) = ϕ ◦ i(ab) = ab,

so that as a is a non-zerodivisor on A, ψ ◦ j(b) = b.
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Thus by induction on k we may assume that R is a regular integral do-
main and A◦ ⊆ R◦. Then by Theorems 4.5 and 2.6, A is an F-regular integral
domain. So every principal ideal is tightly closed, so that by Corollary 2.2,
every principal ideal is integrally closed.

Let x1, . . . , xn be a part of a system of parameters in A. Assume that
x ∈ (x1, . . . , xn)

∗. As A◦ ⊆ R◦,

x ∈ ((x1, . . . , xn)R)∗ = (x1, . . . , xn)R,

so that x = ϕ ◦ i(x) ∈ ϕ((x1, . . . , xn)R) = (x1, . . . , xn). This proves
that every parameter ideal is tightly closed in A. In particular, by The-
orem 2.7, (x1, . . . , xn−1) :A xn = (x1, . . . , xn−1), which proves that A is
Cohen-Macaulay.

In particular, a ring of invariants of a linearly reductive linear alge-
braic group over a field K acting K-rationally on a K algebra R is a direct
summand of R. Thus if R is a polynomial ring, the ring of invariants is
Cohen-Macaulay.

Definition 2.9: For every power q of p, define Rq to be the subring of R
consisting of the qth powers of all the elements of R. If R is a reduced ring,
define R1/q to be the set of all elements in an algebraic closure of the total
field of fractions of R whose qth power lies in R.

There are obvious Frobenius morphisms R → Rq and R1/q → R. The
relation of R to Rq is the same as the relation of R1/q to R, except that the
latter relation was defined only for reduced rings.

Kunz proved in [Ku2] that if R is module-finite over some Rq, then R is
excellent.

There is another notion that is often the same as (weak) F-regularity:

Definition 2.10: A ring is said to be F-finite if R is module-finite over
Rp. An F-finite reduced ring R of characteristic p is said to be strongly
F-regular if for every c ∈ R◦ there exists an integer e such that the R-linear
map R→ R1/q mapping 1 to c1/q splits as a map of R-modules.

Proposition 2.11: If R is strongly F-regular, so is every localization of
R. If R1/p is module-finite over R, then the strongly F-regular locus of R is
open. If for some c ∈ R◦, the R-linear map R → R1/q mapping 1 to c1/q

splits as a map of R-modules, then the R-linear map R→ R1/q′ mapping 1
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to c1/q
′

splits as a map of R-modules for all q ′ ≥ q. If for every prime ideal
P , RP is strongly F-regular, then R is strongly F-regular.

Proof: The last part follows as SpecR is quasi-compact. Now assume that
for some c ∈ R◦, the R-linear map R → R1/q mapping 1 to c1/q splits as a
map of R-modules. Let f : R1/q → R split the inclusion 1 to c1/q. Then for
any q′ = pe

′

, the map

R1/qq′ f1/q′

−−−→R1/q′ F e′

−−−→R

splits the map R→ R1/qq′ mapping 1 to c1/qq
′

.
The rest of the proof is straightforward commutative algebra.

Proposition 2.12: Let R be a reduced ring. If R is strongly F-regular, it
is F-regular.

Proof: After localizing, the hypotheses remain unchanged. So it suffices
to prove that every ideal in R is tightly closed. Let I be an ideal in R,
x ∈ I∗. Then there exists c ∈ R◦ such that for all q >> 0, cxq ∈ I [q].
Thus c1/qx ∈ IR1/q. By the strongly F-regular assumption, for all q >> 0,
there exists an R-module map ψq : R1/q → R mapping c1/q to 1. Hence
x ∈ IR.



3. The localization problem

As mentioned already, it is not known whether tight closure commutes
with localization. There are no counterexamples, and there are many special
cases in which commutation has been proved. It is known that tight closure
commutes with localization in F-regular rings, on principal ideals (since tight
closure is the same as the integral closure), on ideals generated by regular
sequences (Hochster-Huneke [HH9, Theorem 4.5]), on ideals generated by a
system of parameters in an excellent semi-local domain (Smith via plus clo-
sure [Sm1]), for ideals of finite phantom projective dimension in an excellent
semi-local domain (Aberbach [A2], based on Smith’s result), in affine rings
which are quotients of a polynomial ring over a field by a monomial or a bi-
nomial ideal (Smith [Sm13]), in all Artinian and all 1-dimensional rings (ex-
ercise), in weakly F-regular (Q)-Gorenstein rings (Aberbach-MacCrimmon
[AM]), on Katzman’s example below (Smith-Swanson [SmSw]), etc. Here I
want to present some of what is known.

First of all, if R is a ring, S a multiplicatively closed subset, I an ideal of
R, and x ∈ I∗, then x

1 ∈ (S−1I)∗. This follows as c ∈ R◦ and cxq ∈ I [q] for

all q >> 0 imply that c
1 ∈ S−1R◦ = (S−1R)◦ and cxq

1 ∈ S−1I [q] = (S−1I)[q]

for all q >> 0.

But the other inclusion, namely (S−1I)∗ ⊆ S−1(I∗), does not follow so
easily. See further discussion below of the associated problems. First I want
to present some positive results.

To see if tight closure commutes with localization on an ideal I in a ring
R, it suffices to check that tight closure commutes with localization at prime
ideals. Namely, if S is a multiplicatively closed subset and x ∈ (S−1I)∗ ∩R
with x 6∈ S−1(I∗), we have seen that there exists c ∈ R◦ such that for all
q >> 0, cxq ∈ S−1I [q]. For each such q there exists sq ∈ S such that csqx

q ∈
I [q]. Then it is straightforward to prove that an ideal P maximal with respect
to the property of containing I∗ : x and being disjoint from all the sq is a
prime ideal. By replacing S with R \ P yields x ∈ (S−1I)∗ ∩ R \ S−1(I∗).
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Thus if tight closure does not commute with localization on an ideal I, it
does not commute with localization at a prime ideal on I.

Special case is localization at maximal ideals, for very special ideals:

Proposition 3.1: Let R be a Noetherian ring of positive prime char-
acteristic p and let I be an ideal primary to a maximal ideal M . Then
(IRM )∗ ∩R = I∗ and thus I∗RM = (IRM )∗.

Proof: Let x ∈ R such that x
1 ∈ (IRM )∗. Then there exists c ∈ (RM )◦ ∩R

such that for all q >> 0, cxq

1 ∈ I
[q]
M . Let d ∈ R be an element which is in

precisely those minimal prime ideals of R which do not contain c. Then d
1 is

nilpotent in RM , and by replacing it by its own power we may assume that
it is actually zero. Then c′ = c+ d is an element of R◦ and thus

c′xq ∈ I
[q]
M ∩R = I [q].

The last equality uses the fact that I is primary to the maximal ideal M .
But this says that x ∈ I∗.

Thus tight closure commutes with localization on ideals primary to a
maximal ideal: if the multiplicatively closed subset contains elements of the
maximal ideal, then both the localization of the tight closure and the tight
closure of the localization blow up to the whole ring; the case when the
multiplicatively closed subset contains no elements of the maximal ideal is
handled by the proposition above.

Another corollary of the proposition gives more indications of how tight
closure behaves under localization:

Corollary 3.2: Let R be a Noetherian ring of positive prime characteristic
p. The following statements are equivalent:

(i) R is weakly F-regular.

(ii) For every maximal ideal M , every M -primary ideal is tightly closed.

(iii) For every maximal ideal M , RM is weakly F-regular.

Proof: If R is weakly F-regular, every ideal in R is tightly closed. In
particular, for every maximal ideal M and every M -primary ideal I, I = I ∗.
This proves that (i) implies (ii).

Next we assume (ii). By the previous proposition, for every maximal
ideal M and every M -primary ideal I, IRM ∩ R = I = I∗ = (IRM )∗ ∩ R,
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hence IRM = (IRM )∗. Thus in RM , every zero-dimensional ideal is tightly
closed. But in a Noetherian local ring, every ideal is the intersection of zero-
dimensional ideals, and since each one of the intersectands is tightly closed,
so is every ideal. Thus RM is weakly F-regular. Thus (iii) holds.

By the previous proposition (iii) implies (ii). Finally, (ii) implies (i)
as every ideal in a Noetherian ring is the intersection of ideals primary to
maximal ideals.

Warning: this does not imply that localization at the maximal ideals
makes tight closure commute with localization!

However, with some extra assumptions (existence of a test element,
among others), localization at the maximal ideals makes tight closure com-
mute with localization. (Discussion of test elements is postponed until Sec-
tion 6.)

In weakly F-regular Gorenstein rings tight closure does commute with
localization, due to the following result (and the fact that strong F-regularity
implies F-regularity):

Theorem 3.3: Let R be a Gorenstein ring. If R is weakly F-regular, it is
F-regular.

Proof: Let S be a multiplicatively closed subset of R. We need to prove
that S−1R is weakly F-regular. As every ideal is the intersection of ideals
primary to a maximal ideal, by Proposition 1.4 it suffices to prove that every
ideal primary to a maximal ideal in S−1R is tightly closed. By Corollary 3.2
it then suffices to prove that every localization of S−1R at a maximal ideal
is weakly F-regular.

In other words, the theorem is proved if we can show that for any prime
ideal P of R, RP is weakly F-regular. Let M be maximal ideal containing
P . By Corollary 3.2, RM is weakly F-regular. Without loss of generality we
may assume that R = RM .

By Proposition 2.5 it suffices to prove that some parameter ideal in RP

is tightly closed. Let h be the height of P and d the height of M . We can
find a system of parameters x1, . . . , xd of R such that x1, . . . , xh is a system
of parameters in RP . We will prove that (x1, . . . , xh)RP is tightly closed.

If x ∈ ((x1, . . . , xh)RP )∗ ∩ R, then there exists c ∈ R◦ such that for
all q >> 0, cxq ∈ (xq1, . . . , x

q
h)RP ∩ R. Let P1, . . . , Pk be the prime ideals

in R different from P and minimal over (x1, . . . , xh). Let j be an integer
such that for all i = 1, . . . , k, P j

i is contained in the Pi-primary component of

(x1, . . . , xh). Then for all q, (P j
i )

[q] is contained in the Pi-primary component
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of (xq1, . . . , x
q
h). As R is Gorenstein, all the zerodivisors modulo (xq1, . . . , x

q
h)

lie in P , P1, . . . , Pk, so that

cxq((P1 · · ·Pk)j)[q] ⊆ (xq1, . . . , x
q
h).

Thus x(P1 · · ·Pk)j is contained in (x1, . . . , xh)
∗, so by weak F-regularity

x(P1 · · ·Pk)j ⊆ (x1, . . . , xh), so that x ∈ (x1, . . . , xh)RP .

But even more holds:

Theorem 3.4: Let R be a Gorenstein ring. If R is weakly F-regular and
F-finite, it is strongly F-regular.

Proof: By Corollary 3.2 the hypotheses localize at maximal ideals, and it
suffices to prove that R is strongly F-regular after localizing at maximal
ideals. Thus without loss of generality we may assume that R is local,
Gorenstein, and weakly F-regular. Weak F-regularity implies that R is
reduced.

Let c ∈ R◦. Let x1, . . . , xd be a system of parameters in R. Let u be
the socle element for this system of parameters. Then for infinitely many q,
uc1/q 6∈ (x1, . . . , xd)R

1/q for otherwise for all q >> 0, cuq ∈ (x1, . . . , xd)
[q],

so that u ∈ (x1, . . . , xd)
∗ = (x1, . . . , xd), contradiction.

Let q be one of these infinitely many q for which uc1/q ∈ (x1, . . . , xd)R
1]q.

Let n ∈ N. Let i : R → R1/q be the inclusion r 7→ rc1/q. Tensor i with
R/(xn1 , . . . , x

n
d ) to get

in :
R

(xn1 , . . . , x
n
d )R

→ R1/q

(xn1 , . . . , x
n
d )R

1/q
, r 7→ rc1/q.

This is an inclusion for some q >> 0. For otherwise the socle element
(x1 · · · xd)n−1u of R

(xn
1 ,...,x

n
d )R maps to 0. Hence

(x1 · · · xd)n−1uc1/q ∈ (xn1 , . . . , x
n
d )R

1/q,

whence uc1/q ∈ (x1, . . . , xd)R
1/q, contradiction. Thus as R

(xn
1 ,...,x

n
d )R is self-

injective, there exists fn : R1/q

(xn
1 ,...,x

n
d )R1/q → R

(xn
1 ,...,x

n
d )R such that fn ◦ in is the

identity map. We get a composition

R
i−→ R1/q surj−−−→ R1/q

(xn
1 ,...,x

n
d )R1/q

fn−→ R
(xn

1 ,...,x
n
d )R

r 7→ rc1/q 7→ rc1/q + (xn1 , . . . , x
n
d )R

1/q 7→ r + (xn1 , . . . , x
n
d ),

and all these maps are compatible to give
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R
i−→ R1/q −→ R̂

r 7→ rc1/q 7→ (r, r, r, . . .),

so that the image is actually in R ⊆ R̂. Now the theorem follows by [Ho1].

By Corollary 2.2, tight closure commutes with localization on all princi-
pal ideals. More generally:

Theorem 3.5: (Hochster and Huneke [HH9, Theorem 4.5]) Tight closure
commutes with localization on all ideals generated by a regular sequence.

Proof: Let I = (x1, . . . , xn), where x1, . . . , xn form a regular sequence. Let
S be a multiplicatively closed set.

First of all, as the powers of I have only finitely many associated primes,
there exists s ∈ S contained in all the (finitely many) associated primes of
all those Im which intersect S. It is known that there exists an integer k
such that for all m ≥ 1, Im : s∞ = Im : skm. (Possibly s = 1.) By replacing
s with sk without loss of generality k = 1.

Claim: ∪w∈S(I [q] : w) = I [q] : s(n+1)q. Certainly the right-hand side is
contained in the left-hand side. To prove the other inclusion, let x ∈ I [q] : w
for some w ∈ S. Then by the choice of s, sqx ∈ Iq = I [q] + Iq. Assume that
shx ∈ I [q] + Ih for some h ≥ q. Write shx =

∑
i aix

q
i +

∑
ν aνx

ν for some
multi-indices ν = (ν1, . . . , νn) with 0 ≤ νi < q,

∑
νi = h, and ai, aν ∈ R.

Then

wshx =
∑

i

waix
q
i +

∑

ν

waνx
ν =

∑

i

bix
q
i

for some bi ∈ R. Since the xi form a regular sequence, this says that
waν ∈ I. Hence saν ∈ I, whence sh+1x ∈ I [q] + Ih+1. In particular, this
holds for h = q(1 + n). But then I [q] + Ih+1 ⊆ I [q], which proves the claim.

Now let x ∈ (S−1I)∗. Then for some c ∈ R◦ and each q >> 0, there
exists wq ∈ S, such that wqcx

q ∈ I [q]. By the claim above, sq(n+1)cxq ∈ I [q],
whence sn+1x ∈ I∗, and so x ∈ S−1I∗.

Thus tight closure commutes with localization in many cases. What is
then the difficulty of tight closure commuting with localization? Let I be
an ideal in R, S a multiplicatively closed subset in R, and x ∈ (S−1I)∗ ∩R.
Then there exists c ∈ R◦ (not just in (S−1R)◦ ∩R – we have seen this trick
in the proof of Proposition 3.1) such that for all q >> 0, cxq

1 ∈ I [q]S−1R.

Then for each q >> 0, there exists sq ∈ S satisfying sqcx
q ∈ I [q].



The localization problem 21

If sq is not a zero-divisor modulo I [q], then cxq ∈ I [q], and if this happens
for all q >> 0, then x ∈ I∗, whence x

1 ∈ S−1(I∗).
This, of course, is a very special case. In general sq is a zero-divisor

modulo I [q]. For example, if S = {1, s, s2, s3, . . .}, then sq = snq for some
integer nq. If there exists an integer C such that nq ≤ Cq, then c(sCx)q ∈
sqcx

qR ⊆ I [q], whence sCx ∈ I∗ and x ∈ S−1(I∗).
This brings to the following question:

Question 3.6: Let I be an ideal in a Noetherian ring of positive prime
characteristic p. Does there exist an integer C such that for all q ≥ 1, there
exists a primary decomposition of I [q]:

I [q] = Qq1 ∩Qq2 ∩ · · · ∩Qqkq

such that for all i = 1, . . . , kq,
√
Qqi

C[q] ⊆ Qqi.

Proposition 3.7: Let I be an ideal for which the answer to this question
is yes. Let S be any multiplicatively closed subset in R which intersects
non-trivially only finitely many of the associated primes of all the I [q]. Then
S−1(I∗) = (S−1I)∗.

Proof: We have shown that there exists c ∈ R◦ such that for each q >> 0,
there exists sq ∈ S satisfying sqcx

q ∈ I [q]. Let s ∈ S be an element of all
the possible finitely many associated prime ideals of all the I [q]. By the
assumption sCq lies in every primary component of I [q] that it can, and is a
non-zerodivisor modulo the other components. But sq is a non-zerodivisor
modulo these same components, so that sCqcxq ∈ I [q]. Thus sCx ∈ I∗, so
that x ∈ S−1(I∗).

Not much is known about the answer to the question raised above, and
it seems to be a very hard question. The corresponding answer is true for
ordinary (rather than Frobenius) powers of ideals and for monomial ideals
in a polynomial ring modulo a monomial ideal (Swanson, Heinzer, Sharp,
Smith...a [Sw3], [HSw], [SmSw], [Sh]). Ordinary powers of ideals are easier
to work with as they determine finitely generated, Noetherian, Rees alge-
bras, but there is no corresponding “Frobenius Rees algebra”. Furthermore,
Katzman found an example of an ideal I for which the set of associated
primes of all the I [q] is infinite:

Example: (Katzman [K1]) Let k be a field of positive prime characteristic
p, t, x, y indeterminates over k, and R = k[t, x, y]/(xy(x+ y)(x+ ty)). Then
∪q Ass(R/(xq, yq)) is an infinite set. Here is a quick sketch of the proof:
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for each q ≥ 1, define τq = 1 + t+ t2 + · · · + tq−2, and Gq = x2yq−1. Then
τqGq ∈ (xq, yq)R, butGq is not in (xq, yq)R. Thus τq is a zero-divisor modulo
a Frobenius power of (x, y)R, and the different τq determine infinitely many
associated prime ideals. Thus ∪q Ass(R/(xq, yq)) is an infinite set.

Here is another “example” of an ideal illustrating that the set of associ-
ated primes of quasi-Frobenius powers can be infinite (due to Hochster):
let R = Z[x, y] and I the ideal (x, y)R. We take its generators to be
x, y, and (redundantly) x + y. Then for any prime integer p, p divides
(x+ y)p−xp− yp, so that p is a zero-divisor modulo (xp, yp, (x+ y)p). Thus
∪pAss(R/(xp, yp, (x+y)p)) and ∪nAss(R/(xn, yn, (x+y)n)) are infinite sets,
where p varies over all prime and n over all positive integers.

Apart from the obvious modifications of these two examples, there are no
other known examples of an ideal for which the set of all associated primes
of all the Frobenius powers if an infinite set. If you find another example,
does Question 3.6 have an affirmative answer? (Katzman’s example does,
due to Smith-Swanson [SmSw]).

More on Katzman’s example: note that modulo each minimal prime,
the ring is an integrally closed domain and the image of each Iq = (xq, yq)
is a principal ideal. Thus modulo each minimal prime ideal, each Iq is
integrally and tightly closed. Thus for all q, Iq = I∗q , whence we know that
∪q Ass(R/(xq, yq)∗) is a finite set. Thus perhaps the following is a better, or
a more reasonable, question:

Question 3.8: Let I be an ideal in a Noetherian ring of positive prime
characteristic p.

(i) Does there exist an integer C such that for all q ≥ 1, there exists a

primary decomposition of (I [q])∗:

(I [q])∗ = Qq1 ∩Qq2 ∩ · · · ∩Qqkq

such that for all i = 1, . . . , kq,
√
Qqi

C[q] ⊆ Qqi.

(ii) Is the set ∪q Ass(R/(I [q])∗) a finite set?

One may be able to prove that tight closure commutes with localization
with a different approach. For example, the following is due to Smith:

Theorem 3.9: (Smith [Sm13]) Let R be a ring with the property that
for every minimal prime ideal P of R, R/P has a module-finite extension
domain in which tight closure commutes with localization. Then tight closure
commutes with localization in R.
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In particular, if tight closure commutes with localization in each R/P ,
as P varies over the minimal prime ideals of R, then tight closure commutes
with localization in R.

Proof: Let S be a multiplicatively closed subset of R, I an ideal in R, and
x ∈ R such that x

1 ∈ (S−1IR)∗. Then there exists c ∈ R ∩ (S−1R)◦ such

that for all q >> 0, cxq

1 ∈ S−1I [q]. By the same tricks established earlier,
we may actually assume that c ∈ R◦.

Let P be a minimal prime ideal of R, and let A be a module-finite
extension domain of R/P in which tight closure commutes with localization.
Then for all q >> 0,

cxq

1
+ S−1P ∈ S−1I [q] + S−1P ⊆ S−1I [q]A.

Thus x + P ∈ (S−1IA)∗. As tight closure commutes with localization in
A, then x + P ∈ S−1(IA)∗. Thus for some s ∈ S, sx + P ∈ (IA)∗ ∩ R/P .
By Theorem 1.6, this intersection is contained in the tight closure of IR/P .
Thus as R has only finitely many minimal prime ideals, for some s ∈ S, sx
lies in the tight closure of the image of I modulo each prime ideal, so that
sx lies in the tight closure of I. Thus x ∈ S−1I∗.

A similar proof shows that if for every minimal prime ideal P of R,
R/P has an integral weakly F-regular extension domain, then tight closure
commutes with localization in R.

Corollary 3.10: (Smith [Sm13]) Let k be a field (arbitrary characteristic!),
x1, . . . , xn variables over k, J an ideal in k[x1, . . . , xn] generated by mono-
mials and binomials, and R = k[x1, . . . , xn]/J . Then tight closure commutes
with localization in R.

Note that Katzman’s example falls into this category.

Proof: Let k be a finite field extension of k such that in k[x1, . . . , xn],
the minimal prime ideals over the extension of J are all binomial ideals
(Eisenbud-Sturmfels [ES]). Suppose that tight closure commutes with local-
ization in R = k[x1, . . . , xn]/J . Let I be an ideal of R, S a multiplicatively
closed subset of R, and x ∈ (S−1IR)∗. Then x ∈ (S−1IR)∗ (observe that
R◦ ⊆ R

◦
by faithful flatness). Thus by the assumption, x ∈ S−1((IR)∗).

Hence for some s ∈ S, sx ∈ (IR)∗. Then by Theorem 1.6, sx ∈ I∗, whence
x ∈ S−1I∗. Thus tight closure commutes with localization in R if it does so
in R.

By the previous theorem and the assumption on R, without loss of gen-
erality J is a binomial prime ideal. Such a ring is isomorphic to a subring of
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a polynomial ring k[y1, . . . , ym] generated by monomials in the yi. In other
words, such a ring is a monomial algebra. Its normalization is module-finite
over it and also a monomial algebra. So by the previous theorem it suffices
to prove that tight closure commutes with localization on normal monomial
algebras. But a normal monomial algebra is a direct summand of some
polynomial overring. Then by Theorem 2.6, all these rings are F-regular,
hence tight closure commutes with localization on them.

Yet another approach to the problem of commutation of tight closure
with localization in quotients of polynomial rings is using the Gröbner basis
approach. Katzman explored this approach:

Question 3.11: (Katzman [K4]) Let R = k[x1, . . . , xn], and I and J ideals
in R. Does there exist an integer C such that for all q ≥ 1, every element of
a minimal reduced Gröbner basis of J + I [q] under the reverse lexicographic
order has xn degree at most Cq?

Katzman proved that an affirmative answer would imply that tight clo-
sure commutes with some localizations on R/J . Katzman proved that the
question above has an affirmative answer when J is generated by monomi-
als, or when J is generated by binomials and I by monomials. Very special
cases have been proved also by Hermiller and Swanson.



4. Tight closure for modules

As a general rule, in commutative algebra a lot of better light can be
shed onto ideals if one studies more general modules. Thus we look also at
tight closure for modules, not just ideals. Throughout this section, rings are
Noetherian of prime characteristic p. We first need more facts about the
iterated Frobenius functor F e, e ∈ N.

Definition 4.1: Let R be a Noetherian ring of positive prime character-
istic p. Let S denote R viewed as an R-algebra via the eth power of the
Frobenius endomorphism r 7→ rp. Then the functor F e is simply S⊗R , a
covariant right-exact functor from R-modules to S-modules. Sometimes it
will be necessary to make the ring explicit, and then we will write F e

R instead
of F e.

Recall that always q = pe.
Of course, every S-module is also an R-module, so another application of

the iterated Frobenius functor is possible. Historically, Peskine and Szpiro
were the first to explore these functors in greater depth.

Examples:

(i) Let ϕ : Rn → Rm be an R-module homomorphism given by the matrix
ϕ = (rij). Then F e(ϕ) : F e(Rn) → F e(Rm) can be viewed as the map
from Sn to Sm, or even from Rn to Rm, given by the matrix (rqij).

(ii) Thus by the right exactness of F e, for any ideal I in R, F e(R/I) =
R/I [q].

(iii) Note that F e transforms free modules into free modules, projective
modules into projective modules, flat modules into flat modules.

(iv) Recall the Buchsbaum-Eisenbud exactness criterion: a bounded com-
plex of finitely generated free modules can be written as

G : 0 → Gn
ϕn−→Gn−1

ϕn−1−−−→Gn−2 · · ·G1
ϕ1−→G0 → 0.
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The Buchsbaum-Eisenbud criterion says that G is exact if and only
if for all i, rank (Gi) = rank (ϕi) + rank (ϕi+1), and the depth of the
ideal of minors of ϕi of size rank(ϕi) is at least i.

Then it is clear that the Frobenius functor maps finite acyclic com-
plexes of finitely generated free modules into finite acyclic complexes of
finitely generated free modules. Thus if I is an ideal of finite projective
dimension, so is the ideal I [q]. Furthermore, Ass(R/I) = Ass(R/I [q]).

For any R-module M , F e(M) = S ⊗R M has the following R-module
structure: r(s⊗m) = (rs) ⊗m but (s⊗m)r = (srq) ⊗m.

There is a canonical map M → F e(M) taking m 7→ 1 ⊗ m. We de-
note this image also as mq (without necessarily attaching meaning to the
exponential notation!). If M is a submodule of a free R-module, then for
m = (r1, . . . , rk), m

q = (rq1, . . . , r
q
k), and the rqi have the usual meaning.

With this, for all m,n ∈M and r ∈ R, (m+ n)q = mq + nq, (rm)q = rqmq.

Definition 4.2: When N ⊂M are R-modules, then N
[q]
M denotes

Kernel(F e(M) → F e(M/N)) = Image(F e(N) → F e(M)).

When the context makes M understood, we will write N [q] instead of N
[q]
M .

With this notation, the previously used I [q] is really I
[q]
R .

Definition 4.3: Let N ⊆ M be modules over a ring in positive prime
characteristic p. An element x ∈ M is in the tight closure N ∗

M of N if

there exists c ∈ R◦ such that for all q >> 0, cxq ∈ N
[q]
M . When the ambient

M is understood, we will often write N ∗ instead of N ∗
M .

If N = N∗, then N is tightly closed.

It is clear that with set-up as in the definition, x ∈ N ∗
M if and only

if x + N ∈ 0∗M/N . In particular, one may always translate a tight closure
problem to the problem when N is the zero submodule, or, by reversing this
step, to the problem when M is a free R-module.

As for the ideal notion, tight closure of modules also is a closure operation
which produces a submodule:

Proposition 4.4: Let R be a Noetherian ring of positive prime character-
istic p, N,L ⊂M R-modules, I an ideal in R, x ∈M .

(i) N∗
M is a submodule of M containing N .
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(ii) If M is finitely generated, then (N ∗
M )∗M = N∗

M .

(iii) If N ⊆ L ⊆M , then N ∗
M ⊆ L∗

M and N∗
L ⊆ N∗

M .

(iv)
√

(0)M ⊆ N ∗
M .

(v) (N ∩ L)∗ ⊂ N∗ ∩ L∗.

(vi) (N + L)∗ = (N∗ + L∗)∗.

(vii) (IN)∗ = (I∗N∗)∗.

(viii) (N :M I)∗ ⊆ N∗ :M I, (N :R L)∗ ⊆ N∗ :R L. Thus if N is tightly
closed, so is every colon module and ideal of the given forms.

(xi) x ∈ N ∗
M if and only if for every minimal prime ideal P of R, the image

of x in the R/P -module M/PM lies in the tight closure of the image
of N/PM ∩N in M/PM .

Proof: The basic proofs are omitted here, I only present the proof of (xi) that
for modules also one can always safely assume that the ring is an integral
domain. Without loss of generality M is a free R-module.

If x ∈ N∗
M , then there exists c ∈ R◦ such that for all q >> 0, cxq

is in the kernel of F e
R(M) to F eR(M/N). Then certainly cxq is in the im-

age of F eR(N/(PM ∩ N)) → F eR(M/PM), and even cxq is in the image
of F eR/P (N/(PM ∩ N)) → F eR/P (M/PM), so that x + PM is in the tight

closure of the image N/(PM ∩N) of N in M/PM .

Now assume that modulo each minimal prime ideal P of R, the image
of x in the R/P -module M/PM lies in the tight closure of the image of N .
Thus for each P , there exists cP ∈ R\P such that for all q >> 0, cPx

q lies in
the image of F eR/P (N/(PM ∩N)) → F eR/P (M/PM), or in other words, cPx

q

lies in the image of F e
R(N) in F eR/P (M/PM) = F eR(M)/F eR(PM). Let dP be

an element of every other prime of R (other than P ). Then dP cPx
q lies in the

image of F eR(N) in F e
R/

√
0
(M/

√
0M). Then by setting c =

∑
P dP cP ∈ R◦,

for all q >> 0, cxq lies in the image of F e
R(N) in F e

R/
√

0
(M/

√
0M). In other

words, cxq lies in N
[q]
M +

√
0F e(M). If (

√
0)[q

′] = (0), then cq
′

xqq
′

lies in

N
[qq′]
M , which proves (xi).

How do the notions of (weak) F-regularity, which we saw in the context
of ideals, translate into modules?
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Theorem 4.5: Let R be a ring of characteristic p such that every ideal is
tightly closed. Then every submodule of every finitely generated R-module is
tightly closed.

Proof: Let N ⊆ M be finitely generated R-modules and let x ∈ M \ N .
We will show that x is not in N ∗

M . We may replace N with any maximal
submodule of M not containing x. There exists a maximal ideal m of R such
that x is not in Nm. Thus by Nakayama’s lemma, x 6∈ (N +mxR)m, so that
by maximality of N then mx ⊆ N . Thus (xR +N)/N ∼= R/m.

Note that locally at m and globally, x+N is in every non-zero submodule
of M/N , so that ((x) +N)/N ∼= R/m ⊆M/N is an essential extension.

If x ∈ (N +m
kM)m for all k, then x ∈ Nm, contradiction, so there exists

an integer k such that x 6∈ (N + m
kM)m. But then again by maximality of

N , (N + m
kM)m = Nm, so that by maximality m

kM ⊆ N .
Recall that by Proposition 2.4, R is a normal ring. Then by a result

of Hochster on approximately Gorenstein rings [Ho1], there exists an m-
primary ideal Q ⊆ m

k ⊆ Ann(M/N) which is irreducible. The ring R/Q is
Artinian Gorenstein, so self-injective, and M/N is an essential extension of
R/m as an R/Q-module. Thus M/N is a subset of R/Q. Then it suffices to
prove that the ideal (0) in R/Q is tightly closed, or that Q is tightly closed
in R. But this was the assumption.

In analogy with the ideal version in Proposition 3.1, one can prove also for
modules that whenever N ⊆ M is such that some power of some maximal
ideal m of R annihilates M/N , then (Nm)∗Mm

= (N∗
M )m. The proof is

omitted here (it is easy).
Similarly, if R ⊆ S is a module-finite extension of Noetherian domains,

then
(N ⊗R S)∗M⊗RS

∩M = N∗
M .

Definition 4.6: Let N ⊆ M be R-modules. The finitistic tight closure
N∗fg
M of N in M is the union of all (L∩N)∗L, as L varies over all the finitely

generated R-submodules of M . The absolute tight closure N ∗abs
M of N in

M is the set of all elements x ∈M such that for some module L containing
M , x ∈ N∗fg

L .

All these closures of modules are modules. Clearly N ∗fg
M ⊆ N∗abs

M , and

when M is finitely generated, N ∗
M = N∗fg

M . It is suspected (but not known)
that all these closures are the same.

Here is a good place to mention a generalization of the Buchsbaum-
Eisenbud criterion for exactness in terms of tight closure. But first a defini-
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tion:

Definition 4.7: Let R be a Noetherian ring, and G a complex of finitely
generated R-modules. Then G has phantom homology at the ith spot
if the module of cycles Zi = kernel(Gi → Gi−1) is contained in the tight
closure of the module of the boundaries Bi = image(Gi+1 → Gi) in Gi, i.e.,
if Zi ⊆ (Bi)

∗
Gi

. If Gi = 0 for all i < 0 and G has phantom homology at all
i > 0, then G is called phantom acyclic.

Now the generalization of the Buchsbaum-Eisenbud exactness criterion
to the phantom acyclicity criterion:

Theorem 4.8: (Hochster-Huneke [HH4]) Let R be a Noetherian ring in
positive prime characteristic p, and let

G : 0 → Gn
ϕn−→Gn−1

ϕn−1−−−→Gn−2 · · ·G1
ϕ1−→G0 → 0,

be a complex of finitely generated free R-modules. Let (ϕi)red denote the
map ϕi⊗RR/

√
(0). Then G is phantom if and only if for all i, rank (Gi) =

rank ((ϕi)red) + rank ((ϕi+1)red), and the height of the ideal of minors of ϕi
of size rank(ϕi) is at least i.

In particular, when the ring is regular and the conditions on the ranks
and heights as above are satisfied, then the complex is exact. Also, when the
two conditions are satisfied, each module of cycles is contained in the integral
closure of the corresponding module of boundaries (see [R2] for definitions).
The corresponding result is not known for rings in mixed characteristic 0,
but partial results were obtained by Katz in [Ka].



5. Application to symbolic and ordinary powers

of ideals

Ein, Lazarsfeld, Smith [ELSm] proved that for smooth affine rings in
characteristic 0, for every prime ideal P of height k and every integer n,
P (kn) ⊆ P n. This is a remarkable result in itself, but Ein, Lazarsfeld, Smith
generalized it further in several ways. By [Sw4] it was known that for any
prime ideal P in a polynomial ring (and more generally) there exists an
integer h such that P (hn) ⊆ P n for all n, but the proof in [Sw4] gives no
indication that h can be taken to be k and is thus globally bounded. Ein,
Lazarsfeld, and Smith used in the proof the theory of multiplier ideals, which
are defined only the complex numbers. Hochster and Huneke subsequently
in [HH14] used the theory of tight closure to extend these effective results
also for rings in characteristic p.

This result is yet another one showing a connection between multiplier
ideals and tight closure, and how tight closure has implications in geometry.

Definition 5.1: Let I be an ideal, and W the set of all non-zerodivisors on
R/I. By I(n) we will denote W−1In ∩R.

This definition is somewhat non-standard.

Theorem 5.2: (Hochster-Huneke [HH14]) Let R be a Noetherian ring con-
taining a field. Let I be any ideal of R. Let h be the largest height of any
associated prime ideal of I.

(i) If R is regular, then for all positive n and all non-negative k,

I((h+k)n) ⊆ (I(k+1))n.

In particular, I (hn) ⊆ In for all n.

(ii) If I has finite projective dimension, then I (hn) ⊆ (In)∗ for all n.

Proof: Note that all the assumptions are preserved if we pass from R to



Application to symbolic and ordinary powers of ideals 31

R[t] and replace I by IR[t], where t is an indeterminate over R. This
passage preserves all the hypotheses and ensures that the residue field of
the localization of R at every associated prime of I is infinite.

Let P be an associated prime ideal of I. As the residue field of RP is
infinite, there exists an h-generated reduction JP of IRP . Then there exists
an integer sP such that for all n ≥ 0, IsP +n ⊆ JnP . Let s be the maximum
of all the sP . Let W ⊆ R be the set of all the non-zerodivisors on R/I.

Let u ∈ I((h+k)n). Let q ≥ 1 and q = an+ r with 0 ≤ r < n. Then

I
s+(h+k)(n−1)
P ua ⊆ I

s+(h+k)(n−1)+a(h+k)n
P ⊆ I

s+(h+k)(an+r)
P ⊆ J

(h+k)q
P .

(The first inclusion holds because localization at P is a further localization

of W−1R.) But JP is h-generated, so J
(h+k)q
P ⊆ (Jk+1

P )[q] ⊆ (Ik+1
P )[q]. As

this holds for all P , Is+(h+k)(n−1)ub
q
n
c ⊆W−1(I(k+1))[q] ∩R.

When R is regular or when I (k+1) has finite projective dimension, the
associated primes of (I (k+1))[q] are the same as the associated primes of
I(k+1), so that in these cases we just proved that

Is+(h+k)(n−1)ub
q
n
c ⊆ (I(k+1))[q],

or I(s+(h+k)(n−1))nuq ⊆ (I(k+1))n[q]. Thus if I contains a non-zerodivisor,
this implies the theorem.

In the regular case, R is a direct sum of regular integral domains in
which the image of I is either zero or it contains a non-zerodivisor. As the
theorem certainly holds for the zero ideal in an integral domain, and by
above it holds for non-zero ideals in regular domains, it therefore holds for
all regular rings. This proves the first part.

If I has finite projective dimension, then it locally has a finite free reso-
lution, and its rank is the alternating sum of the ranks of the free modules in
the finite free resolution. In particular, locally at all the associated primes
of I, by the Auslander-Buchsbaum theorem I is free, and of rank either 0
or 1. Thus an ideal of finite projective dimension is locally either (0) or it
contains a non-zerodivisor.

In case R is a direct product of rings, if I has finite projective dimen-
sion on R, its components have finite projective dimensions and heights of
the associated primes of the components can only decrease. Thus it suf-
fices to prove the second part of the theorem under the assumption that
Spec(R) is connected. In that case, as the rank of a module of finite pro-
jective dimension is the alternating sum of the ranks of the free module in
a free resolution, the rank is well-defined on each local ring. After local-
izing at each associated prime ideal P of R, the projective dimension of I
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is 0 by the Auslander-Buchsbaum formula, i.e., IP = 0P or IP = RP for
all P , independent of P . Thus locally I is either (0) or it contains a non-
zerodivisor. The second case has been proved, and the first case follows as
always (0)((h+k)n) ⊆

√
(0) = (0)∗ = (((0)(k+1))n)∗.

Hochster and Huneke also proved the following more general result, using
“multipliers” (different from the multiplier ideals mentioned in connection
with the result of Ein, Lazarsfeld and Smith at the beginning of this sec-
tion). In the course of the proof we will make several assumptions – giving
motivation for the next section. Namely, in order to prove the nice result
below, one needs to prove some technicalities, and the proofs of these and
further technicalities are in the next section.

Theorem 5.3: (Hochster-Huneke [HH14]) Let R be finitely generated,
geometrically reduced and equidimensional over a field K. Let I be any ideal
of R and h be the largest height of any associated prime ideal of I. Let
J be the Jacobian ideal of the extension R/K. Assume that the ideal I is
locally either 0 or contains a non-zerodivisor. Then for all positive n and
all non-negative k,

JnI((h+k)n) ⊆ ((I(k+1))n)∗, and Jn+1I((h+k)n) ⊆ (I(k+1))n.

Recall that a K-algebra R is geometrically reduced if S = K ⊗K R
is reduced.

Proof: We will prove this here only in the case when R contains a field of
characteristic p.

Notice that S is a faithfully flat integral extension of R containing R.
The Jacobian ideal of the extension S over K is simply JS. The assumptions
for I in R also hold for IS in S.

We ASSUME (see next section) that there exists an element c ∈ R◦

which satisfies the property that for all ideals I in R or in S , if x ∈ I ∗, then
cxq ∈ I [q] for all q ≥ 0. (See next section for this.)

If the theorem is proved for IS in S, then

JnI((h+k)n) ⊆ JnS(IS)((h+k)n) ∩R ⊆ (((IS)(k+1))n)∗ ∩R.

Then for all q ≥ 0 and any x ∈ (((IS)(k+1))n)∗ ∩R,

cxq ∈ (((IS)(k+1))n)[q] ∩R = ((I(k+1))n)[q],

so that x ∈ ((I(k+1))n)∗, as required. Similarly, if the second part of the
theorem holds in S, it also holds in R. (For the second part we do not need
the existence of the special c.)
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Thus without loss of generality we may assume that K is algebraically
closed, and so S = R. Also, it suffices to prove the theorem on each con-
nected component of Spec(S).

The Jacobian criterion applies. As R is reduced, J is not contained in
any minimal prime ideal of R.

We FURTHERMORE ASSUME that every element c ∈ J ∩R◦ satisfies
the property that for all ideals I in R or in any of its localizations and
completions, if x ∈ I∗, then cxq ∈ I [q] for all q ≥ 0. Furthermore, it is
also true for each such c there exists a regular subring A of R such that
for all q ≥ 0, cR1/q ⊆ A1/q[R]. It is also true that A1/q[R] is always a flat
R-module.

As in the proof of the previous theorem, if u ∈ I ((h+k)n), then for all
q ≥ 0,

Is+(h+k)(n−1)ub
q
n
c ⊆W−1((I(k+1))[q]) ∩R,

where W consists of all the non-zerodivisors on R/I.
Let x ∈ W−1((I(k+1))[q]) ∩ R. Then there exists w ∈ W such that wx ∈
(I(k+1))[q], and thus trivially wqx ∈ (I(k+1))[q]. Then wx1/q ∈ I(k+1)R1/q,
so that by the ASSUMPTION on J , cwx1/q ⊆ I(k+1)A1/q[R]. Since A1/q[R]
is flat over R and W contains no zerodivisors on R/I (k+1), then also W
contains no zerodivisors on A1/q[R]/I(k+1)A1/q[R]. It follows that cx1/q ⊆
I(k+1)A1/q[R]. Hence cqx ⊆ (I(k+1))[q]. As J is generated by c ∈ R◦ ∩ J , it
follows that J [q]x ⊆ (I(k+1))[q]. Thus

J [q]Is+(h+k)(n−1)ub
q
n
c ⊆ (I(k+1))[q],

and so
(J [q])nI(s+(h+k)(n−1))nuq ⊆ (I(k+1))n[q].

As Spec(R) is connected, either I = (0) or I contains a non-zerodivisor.
The theorem follows for both cases from the last display and the FURTHER
ASSUMPTIONS we made in three places.

Thus one can make beautiful statements about symbolic powers of ide-
als, such as above, if one can prove the existence of elements with special
properties. This will be done in the next two lectures. In particular, see
Theorem 7.1 for the proofs of the ASSUMPTIONS made in the proof above.



6. Test elements and the persistence of tight

closure

In the definition of tight closure, for every element x ∈ I ∗, one needs an
element c ∈ R◦, c depending on x and on I. Actually, as I∗ is a finitely
generated ideal, one can take c depending only on I and not on x. It is
desirable to have c ∈ R◦ which does not depend on I either. This points to
a recurring theme in the study of tight closure: often it is possible to find
uniform data (in some sense).

In fact, there are contexts in which the element c does not seem to play
a role in tight closure, such as in the following tight closure version of Rees’
multiplicity theorem:

Theorem 6.1: (Hochster-Huneke [HH4]) Let (R,m) be a local ring, module-
finite, torsion-free and generically smooth over a regular local ring. Let I be
any m-primary ideal in R and x ∈ R. Then

lim
q→∞

λ
(
I[q]+(xq)

I[q]

)

qdimR
= 0 if and only if x ∈ I∗.

Compare this theorem to Rees’ theorem [Re1]: if (R,m) is a formally

equidimensional Noetherian local ring, then lim
n→∞

λ
(
In+(xn)

In

)

ndimR
= 0 if and

only if x ∈ I . (The proof of the displayed Theorem 6.1 appears in Section 9.)
That theorem shows that no c appears in this definition of tight closure.
However, there is no way to remove c! In fact, if in the definition of tight
closure we always take c = 1, that defines the so called Frobenius closure,
which is in general strictly contained in the tight closure. For example, if
R = Z/pZ[x, y, z]/(x3 + y3 + z3) and p is a prime integer congruent to 1
modulo 3, then for all q ≥ 0, x2q 6∈ (y, z)q, but we have seen that x ∈ (y, z)∗.
For more on the Frobenius closure, see [Mc3].
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Thus in general some c is needed. The theory of tight closure is much
nicer over rings in which one element c suffices for all tight closure tests
(sompare with results and assumptions of the previous section):

Definition 6.2: An element c ∈ R◦ is said to be a test element if for
any finitely generated module M , any submodule N , and any x ∈ N ∗

M , for

all q ≥ 1, cxq ∈ N
[q]
M .

Lemma 6.3: An element c is a test element for ideals if and only if for all
ideals I, cI∗ ⊆ I.

Proof: If c is a test element, then for any I and x ∈ I ∗, when q = 1, cx ∈ I,
which proves that for all I, cI∗ ⊆ I.

Now assume that for all I, cI∗ ⊆ I. Let x ∈ I∗. Then for all q ≥ 1,
xq ∈ (I∗)[q] ⊆ (I [q])∗, so by assumption cxq ∈ I [q]. Thus c is a test element
for ideals.

It is not clear if the test elements for ideals are also test elements, but
that has been proved to be true under some extra assumptions.

It is not known if test elements exist in every domain, or in every excellent
reduced rings.

An application of the existence: if R ⊆ S is an integral extension of
Noetherian integral domains with common test element c, then for any ideal
I of R, (IS)∗ ∩R ⊆ I∗. Here is a proof: c((IS)∗ ∩ R)[q] ⊆ I [q]S ∩R. Then
by Theorem 1.6, I [q]S ∩R ⊆ (I [q])∗. Thus for all q >> 0,

c2((IS)∗ ∩R)[q] ⊆ c(I [q])∗ ⊆ I [q],

so that (IS)∗ ∩R ⊆ I∗.
In this application above, something weaker than a test element was

needed:

Definition 6.4: An element c ∈ R◦ is said to be a weak test element
if there exists q′ such that for all q ≥ q′, all finitely generated R-modules

N ⊆ M and all x ∈ N ∗
M , cxq ∈ N

[q]
M . Such an element is also called a

q′-weak test element.

The proof above has to be modified quite a bit with the assumption
of the existence of weak test element rather than the existence of a test
element: for a weak test element c we do not have that cI ∗ ⊆ I for all ideals
I. Instead, for all q ≥ q′ and all ideals I, c(I∗)[q] ⊆ I [q].
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Proposition 6.5: Let R ⊆ S be an integral extension of Noetherian integral
domains with a common q′-weak test element c. Then for any ideal I of R,
(IS)∗ ∩R ⊆ I∗.

Proof: As in the proof above, we can reduce to

c((IS)∗ ∩R)[q] ⊆ I [q]S ∩R ⊆ (I [q])∗

for all q >> 0. Then for all q >> 0,

(c)q
′

((IS)∗ ∩R)[qq
′] ⊆ ((I [q])∗)[q

′],

so that
c(c)q

′

((IS)∗ ∩R)[qq
′] ⊆ c((I [q])∗)[q

′] ⊆ I [qq′],

and as c1+q
′ ∈ R◦, this proves the proposition.

Proposition 6.6: If R has a weak test element then the tight closure of
I ⊆ R is the intersection of tightly closed ideals containing I which are
primary to a maximal ideal.

Proof: (Compare with Corollary 3.2.) Suppose x ∈ R \ I ∗. Let c ∈ R be
a q′-weak test element. As x 6∈ I∗, there exists q ≥ q′ such that cxq 6∈ I [q].

Then there exists a maximal ideal m in R such that cxq

1 6∈ I
[q]
m

. Hence there

exists an integer n such that cxq

1 6∈ (I+m
n)

[q]
m

. Hence cxq 6∈ (I+m
n)[q]. Thus

by the weak test element assumption, x 6∈ (I + m
n)∗, which proves that x is

not in the intersection of all the tightly closed ideals containing I which are
primary to some maximal ideal.

When do test elements exist? Perhaps surprisingly, they exist not so
infrequently, and the test elements are often better than “ordinary” test
elements:

Definition 6.7: An element c ∈ R◦ is called a locally stable (q-weak)
test element if c is a (q-weak) test element in every localization of R, and
it is called a completely stable (q-weak) test element if c is locally
stable (q-weak) and also a (q-weak) test element in the completion of each
RP as P varies over all the prime ideals of R.

The names in parentheses get omitted when q = 1.
Theorem 4.5 proved that if every ideal in R is tightly closed, then every

submodule of a finitely generated R-module is tightly closed. A similar proof
(here omitted) shows the following:
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Proposition 6.8: If R is locally approximately Gorenstein, then c ∈ R◦ is
a (completely stable, weak) test element for R if and only if it is a (completely
stable, weak) test element for all tests of tight closure for ideals of R.

Theorem 6.9: (Hochster-Huneke) Let (R,m) be a reduced local ring in
characteristic p for which R1/p is module-finite over R. If c is any element
of R◦ such that Rc is regular, then c has a power which is a completely stable
test element for R.

The assumption that R1/p is module-finite over R imply that R is an
excellent ring (Kunz [Ku2]).

(Recall that a ring R is excellent if it is universally catenary, Reg(A)
is an open subset of Spec(A) for every finitely generated R-algebra A, and

is a G-ring. A ring is a G-ring if for every prime ideal P in R, RP → R̂P
is regular. A map A → S is regular if it is flat, and all the fibers are
geometrically regular (over the base). A map k → A is geometrically
regular if k is a field and A⊗k k is regular.)

First a naive approach to prove Theorem 6.9: let I be an ideal in R,
x ∈ I∗. Then x ∈ (Ic)

∗, so as Rc is regular, x ∈ Ic. Hence there exists an
integer k such that ckx ∈ I. This integer k depends on x and I, or actually
one can choose k which depends only on I, but it is not clear that there
is an upper bound on these k as I varies over all the ideals of R. So this
attempt at a proof results in a dead end.

The theory of tight closure raises, and answers, many such “asymptotic”
questions about Noetherian rings.

But Theorem 6.9 can be proved in greater generality:

Theorem 6.10: (Hochster-Huneke [HH9]) Let (R,m) be a reduced local
ring in characteristic p for which R1/p is module-finite over R. If c is any
element of R◦ such that Rc is Gorenstein and weakly F-regular, then c has
a power which is a completely stable test element for R.

Clearly this implies Theorem 6.9 as every regular ring is Gorenstein and
weakly F-regular.

Proof: By Theorem 3.4, Rc is strongly F-regular. Thus for every d ∈ R◦

there exists q such that the Rc-module map R
1/q
c → Rc taking d1/q to 1

splits. Thus there exists an R-module map R1/q → R taking d1/q to a power
of c. When d = 1, we may assume that q = p, so then by replacing c by a
power of itself, we may assume that the R-linear map ψ : R1/p → R takes 1
to c.
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The domain of the map ψ for d = 1 is R1/p. But more is true: for every
q ≥ 1, there exists an R-linear map ψq : R1/q → R taking 1 to c2 as follows.
The case q = p has been established. If q > p, define the map ψq as follows:

R1/q
ψ

1/p
q/p−−−→R1/p c

p−2
p

−−−→R1/p ψ1−−−→R,

where the middle map is multiplication. Note that the composition above
takes 1 to

1 7→ c2/p 7→ c 7→ c2,

as desired.
Now let I be an ideal in R and x ∈ I∗. Then there exists d ∈ R◦ such that

for all q >> 0, dxq ∈ I [q]. As above, we may choose a sufficiently large q ′

such that there is an R-linear map ϕ : R1/q′ → R taking d1/q′ to some power
cq

′′

of c. Then for all large q, dxqq
′q′′ ∈ I [qq′q′′], hence d1/qq′q′′x ∈ IR1/qq′q′′ .

By applying ϕ1/qq′′ we get

c1/qx = ϕ1/qq′′(d1/qq′q′′x) ∈ IR1/qq′′ .

It follows that

c3/qx = c1/qxψ
1/q
q′′ (1) = ψ

1/q
q′′ (c1/qx) ∈ ψ

1/q
q′′ (IR1/qq′′) ⊆ IR1/q.

Thus c3xq ∈ I [q], which proves that c3 is a test element for ideals in R. The
same argument also works for all tight closure tests for N ⊆ Rn, whence c3

is a test element for R.
The maps ψq also localize to any localization of R, and can be tensored

with the completion of any localization of R at a prime ideal. Then c3 is a
test element also in every localization and in every such completion.

A stronger theorem about the existence of test elements is the following
(the proof uses the proved theorem above):

Theorem 6.11: Let (R,m) be a local ring in characteristic p for which
R → R̂ has regular fibers. If c is any element of R◦ such that (Rred)c is
regular, then c has a power which is a completely stable weak test element
for R. If R is reduced, then c has a power which is a completely stable test
element for R.

In particular, if R is an excellent local ring, then R has a completely
stable test element.

Note that the theorem above does not assume F-finiteness. F-finiteness
is a rather strong assumption: even when R is a field, F-finiteness is rare.
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We will prove the theorem above after establishing several lemmas.

Lemma 6.12: Let R→ S be a faithfully flat extension. Let c ∈ R◦.

(i) If c is a (q′-weak) test element in S, then c is a (q ′-weak) test element
in R.

(ii) If c is a completely stable (q′-weak) test element in S, then c is a
completely stable (q′-weak) test element in R.

In particular this holds when R is local and S is its completion.

Proof: (i) Let I be an ideal in R and x ∈ I∗. As R → S is flat, it follows
that R◦ ⊆ S◦, so that x ∈ (IS)∗. By assumption on c, for all q ≥ q′,
cxq ∈ (IS)[q] = I [q]S, hence by faithful flatness cxq ∈ I [q]S ∩ R = I [q]. As
x and I were arbitrary, this proves the first part for ideals. A similar proof
works for all submodules N ⊆ Rn, which proves the first part in general.

(ii) Let P be a prime ideal in R. We need to show that c is a completely
stable (q′-weak) test element in RP , and by the first part it suffices to prove

that c is a (q′-weak) test element in R̂P .
Let Q be a prime ideal in S lying over P . By assumption c is a (q ′-weak)

test element in ŜQ. But ŜQ is faithfully flat over R̂P , so we are done by the
first part.

Lemma 6.13: Let R be a Noetherian ring, c ∈ R◦ a completely stable
q′-weak test element for Rred. Then for some q′′ ≥ q′, some power of c is a
completely stable q′′-weak test element for R.

Proof: Let N be the nilradical of R. Let q ′′ be such that N [q′′] = (0). We
will prove that cq

′′

is a completely stable q′q′′-weak test element for R. By
the previous lemma it suffices to prove that for every prime ideal P of R, cq

′′

is a q′q′′-weak test element for R̂P . We know that c is a q′-weak test element

for ̂(Rred)P = R̂P /NR̂P . Let I be an ideal of R̂P and x ∈ I∗. As the images

of the elements of R̂P
◦

lie in ̂(Rred)P
◦
, then also x ∈ (I ̂(Rred)P )∗. Thus for

all q ≥ q′,

cxq + P ∈ (I ̂(Rred)P )[q], or cxq ∈ (I [q] +N)R̂P .

Thus
cq

′′

xqq
′′ ∈ (I [qq′′] +N [q′′])R̂P = I [qq′′]R̂P .

A similar proof works for all submodules of finitely generated modules, which
proves the lemma.
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Thus in order to prove Theorem 6.11, we may assume that R is a reduced
local ring. By lemma 6.12 it then suffices to prove that c has a power which
is a completely stable (weak) test element for R̂. Thus we have reduced the
proof of Theorem 6.11 to proving the following:

Theorem 6.14: (Hochster-Huneke [HH9]) Let (R,m) be a reduced local
ring in characteristic p for which R → R̂ has regular fibers. If c is any ele-
ment of R◦ such that Rc is regular, then c has a power which is a completely
stable test element for R̂.

Here is another lemma which helps make further reductions to prove the
theorem:

Lemma 6.15: Let R→ S be a ring homomorphism of Noetherian rings.

(i) If all the fibers are regular and R is regular (resp., Gorenstein, Cohen-
Macaulay, reduced), then S is regular (resp., Gorenstein, Cohen-Macaulay,
reduced).

(ii) If S is (weakly) F-regular, and R → S is faithfully flat, then R is
(weakly) F-regular.

(iii) If R is (weakly) F-regular, R→ S is purely inseparable, and for every
maximal ideal m of R, mS is a maximal ideal in S, then S is (weakly)
F-regular.

(iv) If (R,m) is weakly F-regular and all the tight closure tests in S can be
performed by elements of R◦, then S is weakly F-regular.

Proof: The proof of the first part is standard commutative algebra, and
the proof of the second statement is easy, and not given here. We next
prove the third part. Note that it suffices to prove that every ideal in S
which is primary to a maximal ideal is tightly closed. Let I be such an
ideal, primary to n. Then there exists an integer k such that n

k ⊆ I. Let
m = n ∩ R. Then m is a maximal ideal of R. By the (weak) F-regularity
assumption, R is normal, so locally approximately Gorenstein (Hochster
[Ho1]), so there exists an m-primary irreducible ideal J in R contained in m

k.
Note that by the assumptions, JS is irreducible, n-primary, and contained
in m

kS ⊆ n
k ⊆ I. As I = JS :S (JS :S I), it suffices to prove that JS is

tightly closed. For this, it suffices to prove that a socle element of JS is
not in the tight closure of JS. Let x ∈ J :R m be a socle element of J , i.e.,
x 6∈ J and xm ⊆ J . Then x 6∈ JS and xn ⊆ JS, so it suffices to prove that
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x is not in (JS)∗. Otherwise there exists c ∈ S◦ such that for all q >> 0,
cxq ∈ I [q]S. By replacing c by some power of itself, we may assume that
c ∈ R◦. Hence cxq ∈ I [q]S ∩ R = I [q], so x ∈ J∗ = J , contradiction. This
proves the third part.

Similarly for the fourth part also it suffices to prove that for every irre-
ducible 0-dimensional ideal J of R, if x ∈ (J :R m) \ J , then x 6∈ (JS)∗. As
the testing c for this tight closure can be taken from R, the rest follows as
for the third part.

Thus to prove the last stated theorem and therefore also Theorem 6.11
one may pass to the completion R̂ of R: R̂ is reduced R̂c is regular. Thus
we may assume that R is complete. Thus by the Cohen Structure Theorem
the proofs of Theorems 6.14 and Theorem 6.11 reduces to:

Theorem 6.16: (Hochster-Huneke [HH9]) Let R be a reduced ring finitely
generated over a complete local ring in characteristic p. If c is any element
of R◦ such that Rc is regular, then c has a power which is a test element.

Before we embark on the proof, we will digress for the so-called Gamma
construction ([HH9]) needed for this theorem and for its generalizations:

Let (R,m,K) be a complete local ring in characteristic p, K a coefficient
field of R. Let Σ be a p-base of K. This means that K = Kp(Σ), and for
every finite subset Γ of Σ of cardinality s, [Kp[Γ] : Kp] = ps. It is standard
field theory that a p-base always exists.

For each subset Γ of Σ, define KΓ
q = K[λ1/q|λ ∈ Γ] and KΓ = ∪qKΓ

q .

For this, we fix some algebraic closure K of K so that all KΓ
q ⊆ K.

Then for each Γ ⊆ Σ, KΓ
q is a subfield of K containing K.

For any field L containing K, define L[[R]] to be the completion of L⊗KR
at m(L⊗K R). Note that if R is regular, then R ∼= K[[x1, . . . , xd]] for some
variables x1, . . . , xd over K, and then L[[R]] ∼= L[[x1, . . . , xd]], which is also
a complete regular ring. Furthermore, L[[R]] is faithfully flat, Noetherian
and Henselian. If in addition L is finite over K, so is L[[R]] over R, and if
L is purely inseparable over K, so is L[[R]] over R.

A general complete local ring R is module-finite over a regular local
subring A. By module-finiteness, L[[R]] ∼= L[[A]]⊗AR. Then it is clear that
for any purely inseparable finite extension L of K, L[[R]] is faithfully flat
and purely inseparable over R, is Noetherian and Henselian.

For each Γ ⊆ Σ, define RΓ = ∪qKΓ
q [[R]]. This is a union/direct limit of

Henselian rings and local homomorphisms of purely inseparable extensions,
with maximal ideals extending to maximal ideals. Thus RΓ is a Noetherian
Henselian local ring, faithfully flat and purely inseparable over R, its residue
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field is KΓ, and its completion is KΓ[[R]].

If R is module-finite over a complete regular ring (A,n,K), then RΓ =
AΓ ⊗A R. Each AΓ is a regular ring. For every cofinite subset Γ of Σ,
(AΓ)1/p is a finite AΓ-module. Thus AΓ is a finite module over (AΓ)p. Thus
also for every cofinite subset Γ of Σ, the ring RΓ is a finite module over
(RΓ)p.

More generally, if R is a finitely generated algebra over A, define RΓ =
AΓ ⊗AR. Then RΓ is Noetherian, and faithfully flat and purely inseparable
over R. Furthermore, the ring RΓ is a finite module over (RΓ)p whenever
the ring AΓ is a finite module over (AΓ)p. We know this holds for all cofinite
subsets Γ of Σ.

If P is a prime ideal of R, then

(R/P )Γ =
⋃

q

KΓ
q [[R/P ]] =

⋃

q

(m-completion of KΓ
q ⊗K R/P )

=
⋃

q

m-completion of KΓ
q ⊗K R

P (m-completion of KΓ
q ⊗K R)

=
⋃

q

KΓ
q [[R]]

PKΓ
q [[R]]

=
RΓ

PRΓ
.

Let Q = P ∩ A. The fiber of R → RΓ at P is independent of the complete
local subring A′ ⊆ A/Q when this extension is module-finite. Thus without
loss of generality A/Q = A′ is a complete regular local ring, Q = (0)A′. The
fiber of R→ RΓ at P equals

⋃

q

(R \ P )−1KΓ
q [[R/P ]] =

⋃

q

(A′ \ (0))−1KΓ
q [[A′]] ⊗k(0A′) k(P ).

As k(0A′) ⊆ k(P ) is a finitely generated extension of fields, k(P ) equals a
polynomial ring over k(0A′) modulo a special regular sequence: if the vari-
ables are x1, . . . , xn, then the regular sequence can be taken to be f1, . . . , fn
with fi = fi(x1, . . . , xi) monic in xi. Also, (A′ \ {0})−1KΓ

q [[A′]] is a lo-
calization of a regular ring, so that each fiber above is Gorenstein. Hence
their (special) direct limit is Gorenstein, which proves that whenever R is
finitely generated over a complete local ring, then all the fibers of the map
(correspondingly defined) R→ RΓ are Gorenstein.

Lemma 6.17: Let L be a field, {Fj}j∈J a family of subfields directed by
reverse inclusion. Let F be a subfield of ∩jFj and M a subfield of L which
is a finite algebraic extension of F . If ∩jFj and M are linearly disjoint in L
over F , then there exists an element j ∈ J such that each Fi ⊆ Fj is linearly
disjoint in L over F .
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Proof is straightforward field theory/commutative algebra.

Lemma 6.18: Let (A,m,K) be a complete local ring with coefficient field
K of characteristic p. Let Σ be a p-base for K. For any finitely generated
A-algebra R and any subset Γ of Σ, define RΓ = AΓ ⊗A R.

(i) If R is an integral domain (resp., reduced), then there exists a cofinite
subset Γ0 of Σ such that for all Γ ⊆ Γ0, R

Γ is an integral domain
(resp., reduced).

(ii) If P is a prime ideal in R, then there exists a cofinite subset Γ0 of Σ
such that for all Γ ⊆ Γ0, PR

Γ is a prime ideal.

Proof: Nothing changes if A is replaced first by its homomorphic image
which is contained in R and then by a complete regular local subring (of
itself and of R) with the same coefficient field. Thus we may assume that A
is a complete regular local ring contained in R.

First assume that R is an integral domain. We want to show that RΓ

is an integral domain. As R ⊆ RΓ is purely inseparable, it suffices to prove
that RΓ is reduced.

The field of fractions M of R is finitely generated over the field of frac-
tions F of A. For each cofinite subset Γ of Σ, let FΓ be the field of fractions
of AΓ. As RΓ = AΓ ⊗A R ⊆ AΓ ⊗A M ⊆ FΓ ⊗F M , it suffices to find a
cofinite subset Γ0 of Σ such that for all Γ ⊆ Γ0, FΓ ⊗F M is reduced. It is
clear that if for some Γ ⊆ Σ, FΓ ⊗F M is reduced, then the same holds for
all smaller Γ. So it suffices to find a cofinite Γ ⊆ Σ such that FΓ ⊗F M is
reduced.

Then it suffices to prove that for any larger overfield M ′ of M , FΓ⊗FM
′

is reduced. In particular, we enlarge M to a finite extension M ′ such that
M ′ is obtained from F by first making a purely transcendental extension
F (y1, . . . , ys) followed by a purely inseparable extension M ′′ and then by
a separable finite extension. If FΓ ⊗F M

′′ is reduced, then FΓ ⊗F M
′ =

FΓ ⊗F M
′′⊗M ′′ M ′ is reduced as M ′/M ′′ is separable. Thus we may assume

that M = M ′′. Furthermore, M is a subfield of F ′(y1/q
1 , . . . , y

1/q
s ) for some q

and some purely inseparable extension F ′ of F . We may then even assume

that M = F ′(y1/q
1 , . . . , y

1/q
s ) = F ′(y1/q).

Then FΓ⊗FM equals the localization of a polynomial ring over FΓ⊗F F
′,

so that it suffices to prove that FΓ ⊗F F
′ is reduced for some cofinite subset

Γ ⊆ Σ.
Now observe that the intersection of all the FΓ is F , and that F and

F ′ are linearly disjoint over F . Then by Lemma 6.17, (i) is proved when R
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is a domain. For any prime ideal P of R, as RΓ/PRΓ = (R/P )Γ, this also
proves part (ii).

Now suppose that R is reduced. For every minimal prime P of R there
exists a cofinite subset ΓP of Σ such that for all smaller Γ, PRΓ is a prime
ideal. Thus for all Γ ⊆ ∩PΓP , ∩PPRΓ = (∩PP )RΓ (flatness!) = (0), so RΓ

is reduced.

Armed with this Gamma construction, we get back to proving Theo-
rem 6.16. But a sneak preview of the proof shows that we have to – and
also can – prove more:

Theorem 6.19: (Hochster-Huneke [HH9]) Let R be a finitely generated
algebra over an excellent local ring in characteristic p. If c is any element
of R◦ such that Rc is weakly F-regular and Gorenstein, then c has a power
which is a completely stable weak test element.

Proof: As for any excellent local ring A the fibers of A → Â are regular,
by Lemma 6.15 we may assume that R is a finitely generated algebra over
a complete local ring.

Note that Rc = (Rred)c, so by Lemma 6.13, we may assume that R is
reduced. We will prove that a power of c is a completely stable test element.

By assumption there exists a complete local ring inside R so that R is
finitely generated over it, and by Cohen Structure theorem we may assume
that R is finitely generated over a complete regular local ring A in R. Let
Σ be a p-base of the coefficient field of A. We use the Gamma construction,
and define RΓ = AΓ ⊗A R.

By Lemma 6.18, for every cofinite subset Γ of some cofinite subset Γ0

of Σ, RΓ is reduced. Furthermore, RΓ is faithfully flat over R, (RΓ)1/p

is module-finite over RΓ, and the fibers of the map R → RΓ are Goren-
stein. Thus the assumption that Rc is Gorenstein implies that RΓ

c is Goren-
stein. By Lemma 6.15, RΓ

c is also weakly F-regular. Then by Theorem 6.10,
some power of c is a completely stable test element for RΓ. But then by
Lemma 6.12, that power of c is a completely stable test element for R.

This finishes the proof of the existence of test elements in many contexts.
An immediate corollary is the very important and powerful property of tight
closure called “persistence”:

Theorem 6.20: (Persistence of tight closure) Let ϕ : R → S be a homo-
morphism of Noetherian rings of characteristic p. If R is a finitely generated
algebra over an excellent local ring or if Rred is F-finite, then for any ideal
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I of R, ϕ(I∗) ⊆ (IS)∗ (and the corresponding statement for modules).

Proof: Both assumptions pass to homomorphic integral domain images and
imply that R is excellent.

If the conclusion does not hold, then for some ideal I of R, ϕ(I ∗) 6⊆ (IS)∗.
By mapping further to S/P for some minimal prime ideal P of S, we get that
ϕ(I∗) + P 6⊆ (IS/P )∗. Thus we may assume that S is an integral domain.
Let P be the kernel of ϕ. If the image of I∗ in R/P lies in (IR/P )∗, then
as R/P ⊆ S, the theorem is proved. So it suffices to assume that S = R/P .

Let P0 ⊆ P1 ⊆ · · · ⊆ Pn = P be a saturated chain of prime ideals in
R. We will prove that whenever Q is a prime ideal in an excellent ring A of
height at most 1, then for any ideal I of A, the image of I ∗ in A/Q lies in
(IA/Q)∗. Repeated application of this then proves the theorem.

Thus we may assume that S = R/P , with P a prime ideal in R of height
at most 1. If the height is 0, this has been proved, so we may assume that
the height of P is exactly 1 and that R is an integral domain.

As R is excellent, the integral closure R of R is module-finite over R.
Let Q be a prime ideal in R which lies over P . As R is excellent and normal
and Q has height one, there exists c ∈ R \Q such that Rc is regular. Then
by Theorem 6.19, c has a power ck which is a test element for R. Then
I∗ ⊆ I∗R ⊆ (IR)∗, so that for all q ≥ 1, ck(I∗)[q] ⊆ I [q]R. As ck 6∈ Q, the
image of I∗ in R/Q lies in the tight closure of the image of I. But R/Q
is module-finite over R/P , so that the image of I ∗ in R/P lies in the tight
closure of the image of I. This proves the theorem.

Note that if the existence of test elements is proved for more rings,
then the persistence of tight closure would hold for more rings. Is there a
counterexample to persistence? In what further rings do test elements exist?
Aberbach and MacCrimmon proved in [AM] that Q-Gorenstein can replace
Gorenstein in the existence statement of test elements. But do test elements
exist in greater generality?



7. More on test elements, or what is needed in

Section 5

The following theorem finishes the proof of Hochster-Huneke’s Theo-
rem 5.3:

Theorem 7.1: Let K be a field of characteristic p and R a finitely gen-
erated geometrically reduced equidimensional ring over K. Let J be the
Jacobian ideal of R over K. Then J is generated by completely stable test
elements.

Proof: By tensoring withK(t), t an indeterminate, if necessary, and by using
the reductions of the previous section, we may without loss of generality
assume that K is an infinite field. Write R = K[x1, . . . , xn]/(g1, . . . , gm).
Let d be the dimension of R. Then J is generated by the (n− d) × (n− d)

minors of the Jacobian matrix (
∂gj

∂xi
). There is a non-empty Zariski-open

subset U ⊆ Kn2
such that whenever (uij) ∈ U , then with yi =

∑
j uijxi,

any d of the yi generate a Noether normalization A of R. As R is reduced
and equidimensional, then R is module-finite and torsion-free over each such
A. Furthermore, by possibly restricting U further, R is generically smooth
over A. (Recall: a ring R is generically smooth over an integral domain
A means that R ⊗A Q(A) is smooth over Q(A). A ring S is smooth over
a field L if S is a finite product of fields each of which is a finite separable
extension of L.)

Without loss of generality we may assume that the identity matrix is in
U (by possibly replacing the xi others). The relative Jacobian of R over A

is then generated by the (n− d)× (n− d) minors of (
∂gj

∂xi
) using the columns

corresponding to the xj not appearing in A. Thus it suffices to prove the
following:

Theorem 7.2: Let K be a field of characteristic p and A a regular domain
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which is finitely generated over K. Let R be module-finite, torsion-free and
generically smooth over A. Let c ∈ R◦ be an element of the Jacobian ideal
for R over K, and the relative Jacobian of R over A. Then c is a completely
stable test elements for R.

Proof: Let q be a power of p. As A is a regular ring, A1/q is flat over A. As
R is generically smooth, then A1/q⊗AR = A1/q[R] inside R1/q. Separability
also ensures that R1/q is in the field of fractions of A1/q[R], thus R1/q is
in the integral closure of A1/q[R]. According to Lipman and Sathaye [LS],
if R were an integral domain, cR1/q ⊆ A1/q[R]. But Hochster showed in
[Ho10] that essentially the same proof of the Lipman-Sathaye result works
even with the given more general assumptions, so that cR1/q ⊆ A1/q[R].

Then c is a test element for R. Namely, if I is an ideal in R and x ∈ I ∗,
then there exists d ∈ R◦ such that dxq ∈ I [q] for all q >> 1. Then d1/qx ∈
IR1/q, so that cd1/qx ∈ IA1/q[R], or d1/q ∈ (IA1/q [R] :IA1/q [R] cx). As

A1/q[R] is faithfully flat over R by base change, then d1/q ∈ (I :R cx)A
1/q[R],

so that d ∈ (I :R cx)
[q] for all q >> 1. But then necessarily I :R cx) = R, so

that cx ∈ I. Thus c is a test element in R.
Note that the property cR1/q ⊆ A1/q[R] localizes. Then it is easy to

show c is also a test element in every localization of R.
Now let P be a localization of R and S = R̂P . Let Q = P ∩ A. The

Q-adic completions A′ and R′ of AQ and RA\Q still satisfy the property

cR′1/q ⊆ A′1/q[R′] (think Cauchy sequences). But R′ is the direct sum of

finitely many complete local rings, one of which is S. Thus cS1/q ⊆ A′1/q[S].
Thus by the same proof as before, c is a test element also for the completion
S of a local ring of R.



8. Tight closure in characteristic 0

Tight closure is defined in all rings of positive prime characteristic p, and
can be extended to some rings of characteristic 0. Most of this section is
taken from [HH15]:

Definition 8.1: Let R be a finitely generated algebra over a field K of
characteristic 0. Let N ⊆ M be finitely generated R-modules, u ∈ M . The
quintuple (D,RD,MD, ND, uD) is called descent data for (K,R,M,N, u)
if

(i) D is a finitely generated Z-subalgebra of K,

(ii) RD is a finitely generated D-subalgebra of R,

(iii) ND ⊆MD are finitely generated RD-submodules of M with ND ⊆ N ,

(iv) ND,MD and MD/ND are free over D,

(v) The canonical map K ⊗D RD → R is a K-algebra isomorphism, and
the canonical map K ⊗DMD →M is a R-module isomorphism,

(vi) the element u ∈M is in MD and uD = u.

The descent data always exist! Namely, let R = K[X1, . . . , Xn]/J for
some variables Xi over K and some ideal J = (f1, . . . , fm) in K[X1, . . . , Xn].
In the first approximation, set D to be the subalgebra of K generated over
Z by all the finitely many coefficients appearing in the polynomials fi. Let
RD = D[X1, . . . , Xn]/(f1, . . . , fm).

Recall the Generic Freeness theorem: let A be a Noetherian integral
domain, R a finitely generated A-algebra and S a finitely generated R-
algebra. Let M be a finitely generated S-module, N a finitely generated
R-submodule of M , and W a finitely generated A-submodule of M . Then
there exists a non-zero element a in A such that after localizing at a, the
A-module M/(N +W ) is free over Aa. This version of the Generic Freeness
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theorem was proved by Hochster and Roberts [HR1], and prior to that a
simpler version was proved by Grothendieck [Gr].

By this version of the Generic Freeness theorem then there exists a non-
zero element a ∈ D such that after localizing at a, RD is free over the
localized D. Then after inverting a, RD injects into RD ⊗D QF (D), which
injects into RD ⊗D K ∼= R, so that the localized RD injects into R. The
next approximation is to enlarge D to D[ 1

a ] and RD to RD[ 1a ].

We will have to enlarge D and correspondingly RD finitely many more
times by elements of K. In this way this operation preserves the first two
desired properties of descent data.

Next we tackle M . As M is a finitely generated R-module, it can be
written as the cokernel of an m × n matrix (rij), rij ∈ R. So each rij is
the image of some polynomial in K[X1, . . . , Xn]. By adding to D all the
finitely many coefficients appearing in these finitely many polynomials, we
may then assume that there exist rij ∈ RD. Set MD to be the cokernel of
the matrix (rij) over RD. By generic freeness, by inverting another element
of D we may assume that MD is free over A. Hence also MD ⊗RD

K = M .

In the future, when we add further finitely many elements of K to D,
we will preserve all the properties obtained so far: RD and MD are free over
D.

Now to incorporate the construction for N , there exist sij ∈ R such that
the image of the m × k matrix (sij) in M is N . Then the cokernel of the
m × k matrix (sij|rij) is M/N . Via the same construction as for MD we
may assume that the sij ∈ RD and that (sij|rij) determines an RD-module
(M/N)D, which tensored with K over D equals M/N and which is free over
D. Set ND to be the kernel of the natural map MD → (M/N)D. By further
additions to D we may assume that ND is free over D.

Similarly we can construct an element uD = u in MD. Then all the
properties of descent data work out. Furthermore, the following is clear:

Proposition 8.2: Let R be a finitely generated algebra over a field K
of characteristic 0. Let N ⊆ M be finitely generated R-modules, x ∈
M , and c ∈ R. Then descent data for (K,R,M,N, u) always exist. If
(D,RD,MD, ND, uD) are descent data for (K,R,M,N, u), then so is ev-
ery (D ⊗D B,RD ⊗D B,MD ⊗D B,ND ⊗D B, uD ⊗D B) whenever B is a
finitely generated D-algebra contained in K.

Clearly the descent data are not uniquely determined. As RD and D in
the descent data are finitely generated algebras over Z, for every maximal
ideal m of D of of RD, the corresponding residue field k is finitely generated
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over Z/m∩Z, which forces Z/m∩Z to be a field. Thus k is a field of positive
prime characteristic.

Definition 8.3: Let R be a finitely generated algebra over a field K of
characteristic 0. Let I ⊆ R, x ∈ R. We say that x is in the tight closure
I∗ of I if there exist descent data (D,RD, ID) for R, I, x such that for every
maximal ideal m of D, the image of xD in RD/mRD lies in the (usual positive
prime characteristic) tight closure of the image of ID in IDRD/mRD.

If I = I∗, then I is called tightly closed.
The definition for the tight closure N ∗

M of a submodule N of a finitely
generated R-module M is similar: x ∈ M is in the tight closure N ∗

M if
there exist descent data (D,RD,MD, ND, xD) for (K,R,M,N, x) such that
for every maximal ideal m of D, the image of xD in MD/mMD lies in the
tight closure of the image of ND in MD/mMD.

Notice that the phrase “for every maximal ideal m of D” in the definition
above can be replaced with the phrase “for all except finitely many maximal
ideals m of D”. For if the second condition is satisfied, there exists a non-
zero element a in D which is in all of the given finitely many maximal ideals.
Then D can be replaced by D[ 1

a ], in which “for every maximal ideal m of
D[ 1a ]” holds!

It is a very hard theorem of Hochster and Huneke that this definition is
equivalent to the following definition:

Definition 8.4: Let R be a finitely generated algebra over a field K of
characteristic 0. Let N ⊆ M be finitely generated R-modules, x ∈ M . We
say that x is in the tight closure N ∗

M of N in M if there exists an element
c ∈ R◦ and descent data (D,RD,MD, ND, xD) for (K,R,M,N, x) and c
such that for every maximal ideal m of D, if p is the characteristic of D/m,
then for all q >> 0, the image of cxqD in MD/mMD lies in (ND/mMD ∩
ND)[q].

The proof that the two definitions are equivalent uses some results of
Lipman-Sathaye [LS]. Note that in the original definition, for each RD/mRD
one could find a distinct c not in any minimal prime ideal, but in the second
definition one c works for all m! Thus tight closure again forces one to think
about – and prove – “uniform”-type results (independent of m).

With either definition, it is clear that if the quintuples (D,RD,MD, ND,
xD) and (D′, R′

D,M
′
D, N

′
D, x

′
D) are descent data for (K,R,M,N, x), then

one can obtain new descent data (E,RE ,ME , NE , xE) incorporating the
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information of the two given descent data. Namely, this can be done say
by first setting E to be the subring of K generated by the finitely many
generators ofD andD′ over Z, RE the image in R of the E-algebra generated
by all the finitely many generators of RD and R′

D over D andD′ respectively,
and similarly for the modules. To ensure the freeness over E, one may need
to modify E by inverting some non-zero element in it.

This process enables one to prove that N ∗
M is a submodule of M , and

that it is tightly closed in M .
And how does one prove other elementary properties of tight closure

(which were relatively easy to prove in characteristic p)? For this we need
to establish what properties of R and M “descend” to descent data RD and
MD:

(i) Finite generation of modules descends. (Clear from the construction.)

(ii) Freeness of modules descends. (Clear from the construction.)

(iii) Module containment descends. (Clear from the construction.)

(iv) Similarly as in the construction, the kernel, image, and cokernel of
maps descend as well (first make them free over D).

(v) Thus surjectivity and injectivity of maps also descend.

(vi) Commutation of diagrams descends.

(vii) Bounded complexes and bounded exact sequences of finitely generated
modules descend. In other words, homologies descend: (Hi(G))D =
Hi((G)D). Furthermore, split-exactness descends.

(viii) If N and N ′ are submodules of a finitely generated R-module M , there
exist descent data such that ND ∩N ′

D = (N ∩N ′)D and ND +N ′
D =

(N +N ′)D.

(ix) If ϕ : R→ S is a ring homomorphism of affine K-algebras, there exist
descent data ϕD : RD → SD such that ϕD ⊗D K = ϕ.

(x) If x1, . . . , xn ∈ R is an M -regular sequence, there exist descent data
such that (x1)D, . . . , (xn)D ∈ RD form an MD-regular sequence. (De-
scend the Koszul complex K(x1, . . . , xn;M).)

(xi) If K → R is regular (or reduced), there exist descent data such that
RD is regular (or reduced). For this one uses the Jacobian criterion of
regularity and/or reducedness.
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The list of properties which descend is much longer. See [HH15] for more
details.

Proposition 8.5: (Briançon-Skoda theorem) Let R be an affine K-algebra,
where K is a field of characteristic 0. Let I be an ideal generated by at most
n elements. Then In ⊆ I∗.

Proof: One can find descent data such that ID is generated by at most n
elements. As this theorem holds in characteristic p, the proposition then
follows by the definition of tight closure in characteristic 0.

This seems almost too easy! Again this shows the power of tight closure:
once you set it up, it quickly produces results.

But tight closure can be defined in greater generality as well:

Definition 8.6: Let S be a Noetherian K-algebra, where K is a field of
characteristic 0. Let N ⊆M be finitely generated S-modules, x ∈M . Then
x is in the direct K-tight closure N>∗K of N in M if

(i) there exists an affine K-algebra R, finitely generated R-modules NR

and MR, and an element xR ∈MR,

(ii) there exists a K-algebra homomorphism ϕ : R→ S,

(iii) there exists an R-linear map β : MR → M with the induced map
S ⊗RMR →M taking 1 ⊗R xR to x being an isomorphism,

(iv) there exists an R-linear homomorphism η : NR → MR such that the
composition NR ⊗R S →MR ⊗R S →M maps onto N ,

(v) xR is in the tight closure of the image of NR in MR.

Similarly as for affine K-algebras, also the direct K-tight closure of N
in M is a submodule of M containing N .

Note that a Noetherian algebra containing Q may be a K-algebra for
uncountably many subfields K, so in principle there are uncountably many
notions of tight closure of submodules of finitely generated S-modules. How-
ever, it is conjectured that all of these notions are the same. (So once again,
tight closure raises a uniform-type question. This one has not been an-
swered.)

The proof of the Briançon-Skoda theorem as above is equally easy for
this notion: one collects the generators x1, . . . , xn of I, the finitely many
generators y1, . . . , ym of In and all the finitely many coefficients in the m
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equations of integral dependence of the yi over I and adjoins these to a
finitely generated K-algebra R. As this form of the Briançon-Skoda theorem
is known for affine K-algebra, the result also follows for S.

It is somewhat more involved to prove that in a regular ring, all submod-
ules of finitely generated modules are tightly closed. The sketch of a proof
below is not complete as we have not developed enough theory of descent
from Noetherian K-algebras to affine K-algebras. More details can be found
in [HH15]:

Theorem 8.7: Let K be a field of characteristic 0 and S a regular K-
algebra. Let N be a submodule of a finitely generated S-module M . Then
N>∗K = N .

Proof: Here are some reductions for proving this theorem. Suppose there
exists x ∈ N>∗K \N . We may choose a prime ideal P such that x is not in
NP . But the definition shows that x is still in N>∗K

P . Thus we may assume
that S is a regular local domain. Similarly, we may complete, so without loss
of generality S is a complete regular local ring, with maximal ideal m. Also,
we can replace N by a maximal submodule of M not containing x. There
exists an integer t such that x 6∈ N + m

tM , so without loss of generality
N = N + m

tM . Furthermore, by maximality of N , M/N has finite length,
the image of u generates its socle, and M/N is an essential extension of Ku.

Let x1, . . . , xn be a regular system of parameters of S. Then by self-
injectivity of S/(xt1, . . . , x

t
n), M/N embeds in S/(xt1, . . . , x

t
n) for t sufficiently

large. Now the goal is to show that (x1 · · · xn)t−1 is not in the direct K-tight
closure of the ideal (xt1, . . . , x

t
n), which would prove the theorem. Then it

suffices to prove that (x1 · · · xn)t−1 is not in the direct L-tight closure of
(xt1, . . . , x

t
n), where L is a coefficient field of S containing K.

If (x1 · · · xn)t−1 is in the direct L-tight closure of (xt1, . . . , x
t
n), then there

exists an affine L-algebra R as in Definition 8.6 which contains all the xi
and in which (x1 · · · xn)t−1 is in the L-tight closure of (xt1, . . . , x

t
n)R. One

can further replace R by a larger affine L-algebra, and then one may assume
that R is regular with the xi forming a regular sequence (details of this are
omitted here). But as regularity of an affine algebra and regularity of a
sequence descend to descent data, then this is impossible: (x1 · · · xn)t−1 is
not in the direct L-tight closure of (xt1, . . . , x

t
n).



9. A bit on the Hilbert-Kunz function

Let (R,m) be a Noetherian local ring in positive prime characteristic p.
For any m-primary ideal I, define the Hilbert Kunz function HKI : N →
N to be

HKI(q) = λ

(
R

I [q]

)
.

This interesting and strange function has been studied by Kunz, Monsky,
Han, Seibert, Buchweitz-Chen, Chiang-Hung, Chang, Watanabe-Yoshida,
Conca, and so on. It has been proved that there exists a positive real
number α such that HKI(q) = αqdimR + o(qdimR−1). When α is known,
it does not seem to reflect on the geometric properties of I and of R very
much!

Theorem 9.1: (Hochster-Huneke: length criterion for tight closure, [HH4])
Let R be a Noetherian ring of characteristic p, and let N ⊆ L ⊆ M be
finitely generated R-modules such that L/N is annihilated by a power of
some maximal ideal m of R. Let d be the height of m.

(i) If L ⊆ N ∗
M , then there exists a constant C such that for all q ≥ 0,

λ(L
[q]
M/N

[q]
M ) ≤ Cqd−1.

(ii) If Rm is analytically unramified and formally equidimensional and has
a completely stable q′-weak test element, and if

lim inf
e→∞

λ
(
L

[q]
M/N

[q]
M

)

qd
= 0,

then L ⊆ N ∗
M .

Proof: As L is finitely generated, there exists c ∈ R◦ such that for all

q >> 0, cL
[q]
M ⊆ N

[q]
M . Let J be an m-primary ideal such that JL ⊆ N . The

number of the generators of L
[q]
M/N

[q]
M is at most the number b of generators
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of L/N , and L
[q]
M/N

[q]
M is annihilated by J [q] + cR. Thus

λ
(
L

[q]
M/N

[q]
M

)
≤ bλ

(
R

J [q] + cR

)
.

Note that the latter module has support only at m. But Rm/cRm has
dimension d− 1, so there exists x1, . . . , xd−1 in R such that (x1, . . . , xd−1, c)
is an m-primary ideal in Rm contained in JRm + cRm. Then

λ

(
R

J [q] + cR

)
≤ λ

(
R

(xq1, . . . , x
q
d−1, c)

)
≤ qd−1λ

(
R

(x1, . . . , xd−1, c)

)
,

which proves the first part.
Now assume the hypotheses in the second part, and also (without loss of

generality) that M is a free R-module and L = N + yR. These hypotheses
still hold after localizing at m. Let x ∈ L \ N ∗

M . As L/N is annihilated
by a power of m, then also locally at m, x ∈ L \ N ∗

M . This will bring to
a contradiction. Without loss of generality we may assume that R = Rm

is reduced, local and equidimensional with a completely stable q ′-weak test

element c. Then there exists q ≥ q′ such that cxq 6∈ N
[q]
M . Then also

cxq 6∈ N [q]R̂MR̂, so x is not in (NR̂)∗
MR̂

. The assumptions are thus also

satisfied after passing to the completion R̂ of R, so without loss of generality
we may assume that R is in addition a complete ring.

Then R is module-finite and torsion-free over a complete regular local
ring A. As in Section 7, there exists a power q ′′ of p such that R[A1/q] is
separable over A1/q, and there exists c ∈ A◦ such that cR1/q ⊆ R[A1/q] for
all q >> 0.

For each q >> 0, define Kq = N
[q]
M :A L

[q]
M . Then by assumption

lim inf
q→∞

λ (R/Kq)

qd
= 0.

Let a ∈ Kq. Then ayq ∈ N
[q]
M , so that as M is a free module, this says

that a1/qy ∈ NR1/q. Then by the choice of c, ca1/qy ∈ NR[A1/q], or a1/q ∈
NR[A1/q] :R[A1/q ] cy. As R[A1/q] is flat over R, this says that a1/q ∈ (N :R

cy)R[A1/q]. Thus a ∈ (N :R cy)
[q].

If cy 6∈ N , then a ∈ m
[q], so that Kq ⊆ m

[q] ∩ A for all q >> 1. By the

Artin-Rees lemma, then lim infq→∞
λ(R/Kq)

qd is not zero.

So necessarily cy ∈ N , or cL ⊆ N . Then similarly cL[q] ⊆ N [q] for all q,
so that L ⊆ N ∗.



10. Summary of research in tight closure

This section is only a haphazard naming of big areas of research related
to tight closure, with no theorems and no proofs. This is meant as an outline
of a reference, and more information can be found in the bibliography.

(i) (Hochster, McDermott) Define a closure operation in mixed charac-
teristic which would also give proofs of the Briançon-Skoda thoerem,
Cohen-Macaulayness of direct summands of regular rings, homological
conjectures, etc.

(ii) (Smith, Watanabe, Hara) Classification of geometric singularities in
algebraic geometry using tight closure.

(iii) (Hochster, Huneke, Smith) Vanishing theorems: of Tor, Kodaira, etc.

(iv) (Aberbach, Hochster, Huneke) Phantom homology.

(v) (Aberbach, Hochster, Huneke, Smith) Plus closure (absolute integral
closure).

(vi) (Aberbach, Hochster, Huneke, MacCrimmon, Singh, Smith) Defor-
mations of various F-properties: F-rationality deforms, but F-purity,
F-regularity, strong F-regularity, and weak F-regularity do not in gen-
eral. Under further assumptions on the ring they do deform.

(vii) (Aberbach, Huneke, Swanson) Briançon-Skoda theorems, with coeffi-
cients, and with joint reductions.

(viii) (Aberbach, Huneke, Smith) Arithmetic Macaulayfication, i.e. the prob-
lem of determining when for a given ring R there exists an ideal I in
R such that R[It] is Cohen-Macaulay. Non-tight closure related work
is due to Brodmann, Faltings, Goto-Yamagishi...

(ix) (Aberbach, Hochster, Huneke, MacCrimmon, Singh, Smith) Test ele-
ments and test ideals.
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(x) (Aberbach, Hochster, Huneke, Katzman, Smith, Swanson) Uniform-
type results.

(xi) (Smith, Hara-Watanabe, Lyubeznik) Characterization of the tight clo-
sure of special ideals via local cohomology.

(xii) (Hochster, Vraciu) Tight integral closure of a set of ideals.

(xiii) (Katzman, Smith, Hermiller-Swanson) Computational aspects.

(xiv) (Lyubeznik, Smith) Graded modules.

(xv) (Han, Monsky, Seibert, ...) The Hilbert-Kunz function.

(xvi) (Smith, ...) Multiplier ideals are related to tight closure.
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Études Sci. Publ. Math., 24 (1965).

• [HM] C. Han and P. Monsky, Some surprising Hilbert-Kunz functions,
Math. Z., 214 (1993), 119-135.

• [Ha1] N. Hara, F-injectivity in negative degree and tight closure in
graded complete intersection rings, C. R. Math. Rep. Acad. Sci. Canada,
17 (1995), 247-252.

• [Ha2] , F-regularity and F-purity of graded rings, J. Algebra,
172 (1995), 804-818.

• [Ha3] , Classification of two-dimensional F-regular and F-pure
singularities, Adv. Math., 133 91998), 33-53.

• [Ha4] , A characterization of rational singularities in terms of
injectivity of Frobenius maps, Amer. J. Math., 120 (1998), 981-996.

• [Ha5] , Geometric interpretation of tight closure and test ideals,
Trans. Amer. Math. Soc., 353 (2001), 1885-1906.

• [HaW] N. Hara and K. I. Watanabe, The injectivity of Frobenius acting
on cohomology and local cohomology modules, Manuscripta Math., 90
(1996), 301-315.

• [Has] M. Hashimoto, Cohen-Macaulay F-injective homomorphisms.
Geometric and combinatorial aspects of commutative algebra (Messina,
1999), 231-244, Lecture Notes in Pure and Appl. Math., 217, Dekker,
New York, 2001.

• [HSw] W. Heinzer and I. Swanson, Ideals contracted from 1-dimensional
overrings with an application to the primary decomposition of ideals,
Proc. Amer. Math. Soc., 125 (1997), 387-392.



62 References

• [He1] R. C. Heitmann, The plus closure in mixed characteristic, J.
Algebra, 193 (1997), 688-708.

• [He2] , The plus closure in degree two extensions, J. Algebra,
218 (1999), 621-641.

• [He3] , Extensions of plus closure, J. Algebra, 238 (2001), 801-
826.

• [Hr] J. Herzog, Ringe der Characteristik p und Frobeniusfunktoren,
Math. Z., 140 (1974), 67-78.

• [Ho1] M. Hochster, Cyclic purity versus purity in excellent Noetherian
rings, Trans. Amer. Math. Soc., 231 (1977), 463-488.

• [Ho2] , Some applications of the Frobenius in characteristic 0,
Bull. Amer. Math. Soc., 84 (1978), 886-912.

• [Ho3] , Big and small Cohen-Macaulay modules. Module theory
(Proc. Special Session, Amer. Math. Soc., Univ. Washington, Seattle,
Wash., 1977), 119-142, Lecture Notes in Math., 700, Springer, Berlin,
1979.

• [Ho4] , The local homological conjectures. Commutative alge-
bra: Durham 1981 (Durham, 1981), 32-54, London Math. Soc. Lecture
Note Ser., 72, Cambridge Univ. Press, Cambridge-New York, 1982.

• [Ho5] , Canonical elements in local cohomology modules and
the direct summand conjecture, J. Algebra, 84 (1983), 503-553.

• [Ho6] , Tight closure in equal characteristic, big Cohen-Macaulay
algebras, and solid closure. Commutative algebra: syzygies, multi-
plicities, and birational algebra (South Hadley, MA, 1992), 173-196,
Contemp. Math., 159, Amer. Math. Soc., Providence, RI, 1994.

• [Ho7] , Solid closure. Commutative algebra: syzygies, multi-
plicities, and birational algebra (South Hadley, MA, 1992), 103-172,
Contemp. Math., 159, Amer. Math. Soc., Providence, RI, 1994.

• [Ho8] , The tight integral closure of a set of ideals, J. Algebra,
230 (2000), 184-203.

• [Ho9] , Parameter-like sequences and extensions of tight closure,
preprint, 2001.



References 63

• [Ho10] , Presentation depth and the Lipman-Sathaye Jacobian
Theorem, preprint, 2001.

• [HH1] M. Hochster and C. Huneke, Tightly closed ideals, Bull. Amer.
Math. Soc. (N.S.), 18 (1988), 45-48.

• [HH2] , Tight closure and strong F-regularity. Colloque en
l’honneur de Pierre Samuel (Orsay, 1987), Mém. Soc. Math. France
(N.S.) No., 38 (1989), 119-133.

• [HH3] , Tight closure. Commutative algebra (Berkeley, CA,
1987), 305-324, Math. Sci. Res. Inst. Publ., 15, Springer, New York,
1989.

• [HH4] , Tight closure, invariant theory, and the Briançon-Skoda
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