Linear equivalence of ideal topologies

Irena Swanson

Abstract. It is proved that whenever P is a prime ideal in a commutative Noethe-
rian ring such that the P-adic and the P-symbolic topologies are equivalent, then
the two topologies are equivalent linearly. Several explicit examples are calculated,
in particular for all prime ideals corresponding to non-torsion points on nonsingular
elliptic cubic curves.

There are many examples of prime ideals P in commutative Noetherian rings for which
the symbolic Rees algebra S(P) = @, P, where P(™ is the nth symbolic power of P,
is not a Noetherian ring. The first such example was found by Rees in [Red4|, and later
Roberts [Rol], [Ro2] and Goto, Nishida and Watanabe [GNW] found examples in reg-
ular rings. Noetherianness of symbolic Rees algebras has been studied by many other
authors, for example Cowsik [Co|, Cutkosky [Cul, Cu2|, Eliahou [E], Goto, Nishida, Shi-
moda [GNS], Huckaba [Hbl], Huneke [Hul, Hu2, Hu3|, Morales [Mo], Schenzel [Schl,
Sch4], Srinivasan [Sr]. Even in the case of space curves, it is not yet known what distin-
guishes the primes whose symbolic Rees algebras are Noetherian. When a symbolic Rees
algebra is Noetherian, then certainly S(P) is generated over the base ring in degrees up
to some integer k. It is easy to show that then for all positive integers n, P+ C pm.
Thus perhaps this “linear” equivalence of P-symbolic and P-adic topologies distinguishes

the primes whose symbolic Rees algebras are Noetherian?

The consequence of the main result of this paper is that this is not at all the case. In
fact, I prove that as long as the P-symbolic and P-adic topologies are equivalent, the two
topologies are equivalent “linearly”. The assumption that the two topologies be equivalent
is definitely necessary, yet it is satisfied in great many cases, say if the ring is a regular local
domain and P has dimension one (see Schenzel’s Theorem 2.2 below). In fact, equivalence
of adic and symbolic topologies has been studied by many people, for example by Huckaba,
Katz, McAdam, Ratliff, Schenzel, Verma ([Hb2], [Ka], [KR], [Mc], [Ra2], [Schl], [Sch2],
[Sch4], [V1], [V2]).

Throughout all rings will be commutative with identity.

The main result of this paper, Theorem 3.3, says that whenever I and J are two ideals

in a Noetherian ring R such that the I-adic topology is equivalent to the topology defined
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by ideals {I™ : J>},,, then there exists an integer k such that for all n > 1, I*" : J>° C I™.

Here we use the definition:

Definition 1.1: For two ideals I and J in a ring R, I : J* denotes Uy (I :g J").

In case when J is the maximal ideal, I : J* is often denoted as I 52" and is called the

saturation of I.

The most common case of the main theorem, and the one which actually implies the

main theorem, is the case when R is a Noetherian local ring and J is its maximal ideal.

This paper in particular answers affirmatively the following question of Schenzel’s:

Question 1.2:  (Schenzel) Let (R,m) be a commutative Noetherian local ring and
I an ideal in R such that the I-adic topology is equivalent to the topology defined by the
ideals {I™ : m™®},. Is it true that there exists an integer k such that for all n > 1,
Ik oo C ™9

The proof relies on the reduction, done in Section 2, to the case when R is a complete
local hypersurface domain of dimension d with maximal ideal generated by x1,..., 2441,
and [ is a prime ideal of R of height d — 1 generated by z1,...,z4. Here, d is at most the

dimension of the original ring.

Equivalence of these adic and symbolic topologies is closely related to the following

function:

Definition 1.3: (See [Sch2, page 144].) Let (R, m) be a Noetherian local ring and let
I be an ideal in R whose I-adic topology is equivalent to the topology defined by the ideals
{I" : m*>®},,. Define the function t; : N — N as follows: for each n > 1, t;(n) is the

smallest integer such that It'(™) : m> C I,

The fact that the I-adic topology is equivalent to the topology defined by the ideals
{I™ : m*},, just says that ¢;(n) is defined for all n.

Suppose that t; is bounded above by a linear function. Namely suppose there are
integers k and ! such that for all n > 1, t7(n) < kn + [. Then necessarily k is nonnegative
and for all n > 1, t7(n) < kn+1 < (k + |I|)n, so T*+n . oo € 1t1(n) 2 oo C 1™ which
gives a positive answer to Schenzel’s Question 1.2. Conversely, if Schenzel’s Question 1.2
has a positive answer, there exists an integer k such that for all n > 1, I*¥" : m®> C I™.

Hence t7(n) < kn, so t; is bounded above by a linear function.

Thus Question 1.2 is equivalent to the question whether ¢;(n) is bounded above by

a linear function in n. I would like to say that this means that the two topologies are



equivalent linearly. However, in the literature “linear equivalence” has been used to mean

that t; is bounded above by a linear function of slope one.

This paper proves that t;, whenever defined, is always bounded above by a linear

function.

The paper is organized as follows: Section 2 contains the reductions to the hyper-
surface domain case and Section 3 contains the main results, all of “linear” flavor. The
last section, Section 4, contains explicit calculations of linear upper bounds for primes
corresponding to monomial curves studied by Goto, Nishida and Watanabe in [GNW], for
primes corresponding to points on nonsingular elliptic cubic curves as first studied by Rees
in [Re4], and for the Nagata-Roberts’ ideals from [N], [Rol].

2. Reduction to the hypersurface case

A special case of the true-to-word linear equivalence was proved by Katz and Schenzel

independently:

Theorem 2.1:  (Katz [Ka, Theorem 4.1], Schenzel [Sch1, Corollary 2]) Let I be an
ideal in an unmized Noetherian local ring (R, m). Then the analytic spread of I is strictly
smaller than the dimension of R if and only if there exists an integer k such that for all
n>k, I" :m> C I"F, [ ]

Schenzel also proved the following:

Theorem 2.2: (Schenzel [Schi, Theorem 1]) Let (R, m) be a Noetherian local ring and
I an ideal in R. Then the following are equivalent:
(i) {I" : m™}, N is equivalent to the I-adic topology.

(ii) MNpeN (I”ﬁ : mﬁ"o) = 0, where R denotes the m-adic completion of R.
(iii) ht (IR + p/p) < dim (R/p) for all p € Ass R. n

A good reference for these results is Schenzel [Sch3].

Let I be an ideal in a local Noetherian ring (R, m) whose I-adic topology is equivalent
to the topology defined by {I" : m*} _N. By Theorem 2.2, the I R-adic topology is
equivalent to the topology defined by {I"R : moo}neN, where R denotes the m-adic

completion of R. Suppose that the latter equivalence is linear, namely that there exists an
integer k£ such that for all n > 1, IF"R - m> - I"R. Then

~

¥ :m® C (I"R:m®)NRC (I"R)N R C I,
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Thus in order to answer Schenzel’s question affirmatively, it suffices to answer it for com-

plete local rings.

Lemma 2.3:  Suppose that for all complete local rings with only one associated prime
ideal, each ty, whenever defined, is bounded above by a linear function. Then also for I in

an arbitrary local ring R, t; is bounded above by a linear function.

Proof: (Due to Schenzel) By Theorem 2.2 and the comment after it, we may assume that
R is complete with maximal ideal m. Let 0 = ¢; N ---N g, be a primary decomposition of
0. Let S=R/q1®---® R/q,. Then S is a module-finite overring of R. By the Artin-Rees
Lemma there exists an integer k such that for all n > k, I"SN R C Ik,

By Theorem 2.2, for each i = 1,...,r, the IR/qg;-adic topology is equivalent to the
topology defined by the decreasing sequence {I"R/q; : m®}. Thus by assumption for each
t=1,...,7,t1r/q 18 bounded above by a linear function. Let ¢ be a linear function which
bounds above all the ¢7p/4,. Then

It m> C (IS . m>®)N R
= (&:(I"™R/gi :m=)) N R
C (@ It’R/qz (")R/q m )) NR
C(@®I"R/gi)N R
=I"SNR
C I’n—k
which proves that for all n > 1, t;(n) < t(n + k), and hence finishes the lemma. ]

So now in order to answer Question 1.2, without loss of generality it is only necessary

to consider the case when R is a complete local ring with only one associated prime.

Lemma 2.4:  Suppose that (R, m) is a complete local ring with only one associated prime
ideal Q. Let P be any prime ideal in R different from m such that P contains I and such
that dim (R/P) = 1. Suppose that tp is bounded above by a linear function. Then tr is

also bounded above by a linear function.

Proof: If I is nilpotent, then ¢;(n) is eventually a constant, so there is nothing to prove.

Thus without loss of generality I is not nilpotent.

As P contains I, for all n > 1,
Ite™ g C ptr®) . o C pr Cmn.
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By [Sw, Theorem 3.4] there exists a positive integer | such that for all n > 1, I"™ has a
primary decomposition I™ = ¢; N --- N gq, such that for each 7 = 1,...,r, \/@l" Cgqi. In
particular, I" = (I"™ : m®) N (I + m'™). Note that tp(In) > n for all n, for otherwise

_1 -1 tp(l l
pr—tC prl > C ptein) ;oo C pin,

which says that P and hence I are nilpotent, contradicting the assumption. Thus for all
n>1,tp(ln) > n and so

trn) . 00 cI™n (I" :m*>) C mi™ N (I":m>) C I,

by the choice of I, which proves that t;(n) < tp(In). ]

By Theorem 2.2, the equivalence of the I-adic topology and the topology defined by
{I™ : m*},, in a complete local ring (R, m) occurs if and only if for all Q € Ass(R), [ +Q
is not m-primary. Thus under the assumptions as in Lemma 2.3, when R has only one
associated prime (), there always exist prime ideals different from m which contain I + Q.
Hence by Lemma 2.4, in order to answer Question 1.2, without loss of generality I may be
taken to be a prime ideal of dimension 1 in a complete local ring with only one associated

prime ideal.

The next lemma reduces in addition to a complete local integral domain:

Lemma 2.5: Let (R,m) be a complete Noetherian local ring with only one associated
prime ideal Q. Let I be an ideal containing Q. Assume that in all proper quotient rings
S of R of the same dimension, whenever the 1S-adic topology is equivalent to the topology
defined by {I™S : m™},,, then t;s is bounded above by a linear function. It follows that ty

is also bounded above by a linear function.

Proof: Without loss of generality I is different from (), for otherwise I is nilpotent so ¢

is eventually constant and the conclusion of the lemma is satisfied trivially.

Let p be a nonzero element of ). Let J be the Q-primary component of pR. Then
J is a nonzero ideal. By Theorem 2.2, the I(S/J)-adic topology is equivalent to the
topology defined by {I"S/J : m*>}. Thus by assumption t;r,; is bounded above by a

linear function. This means that for all n > 1,
(11102 1) mee 1
Similarly, t;g/(0:p) 18 bounded above by a linear function, and for all n > 1,
(Itm/m:p)(n) +(0 :p)) . m® C I" 4 (0 : p).
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By the definition of J there exists an element z € R not in Q such that zJ C pR. Note
that z is a nonzerodivisor in R. By the Artin-Rees Lemma there exist integers k£ and I,
such that for all n > k,

I":pCI"*+(0:p)
and such that for all n > I,
I".zcrm

Now let & be an element of Itrr/s(tir/p)(ntD)+k) . o0 Then by assumption « lies in
Itir/op) (v D)4k L 7 Write o = 3 4 v, where 3 is in I*77/©»)(+D+k and « is in J. Thus

z7y = rp for some r € R. Hence
rp =2y = 20 — 2 € (ItIR/J(tIR/(o:p)(n+l)+k) . m0°> + ItIR/(O:p)(n+l)+k
g ItIR/(O:p) (n-l-l)-l—k . mOO‘

The last inclusion used that for all n > 1, t;g,s(n) > n; this is satisfied whenever I+ J/J
is not nilpotent. It follows that

rc (ItIR/(O:p) (n+l)+k . mOO) i p

oo

ItIR/(o:p)(n+l)+k :p> ‘m

<(
C (ItIR/(0=p>(n+l) +(0 :p)) .

1"+ (0: p).

Thus zy = rp € It so v € It . 2 C I". Finally, « = 8+ v € I", so ty(n) <
trr)s(tir(0:p)(n + 1) + k), which proves the lemma. n

Noetherian induction and this lemma then imply that in order to find an answer to
Schenzel’s Question 1.2, it suffices to prove that ¢; is bounded above by a linear function

whenever I is a prime ideal of dimension one in a complete local domain.

Note that none of the reductions so far have increased the dimension of the ring. In the
following we will reduce to the case when R is a d-dimensional complete local hypersurface

domain of a special form, where d is again at most the dimension of the original ring.

We first need a definition and some lemmas. The two lemmas enable passing back

and forth between finite domain extensions.

Definition 2.6:  Let I, J be ideals in a ring R. For each n > 1, let tr j(n) be the least

integer such that It1.7(") : Jo° C [ [f there is no such integer, set tr,g(n) = oo.
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This definition differs from Definition 1.3 in that it allows R to be non-local and J to
be different from the maximal ideal of R. The proofs below of the main results necessitate

this generalization.

Lemma 2.7: Let S be a module-finite domain extension of a local Noetherian domain
(R,m). Let I and J be ideals in R. Suppose that for all prime ideals @ in S which are
minimal over IS, tg js is bounded above by a linear function. Then tr j is also bounded

above by a linear function.

Proof: Let Qq,...,Q, be all the prime ideals in S which are minimal over IS. Let I’ be
such that (Qy - - -Qr)l’ C IS. Let t be a linear function which bounds above all the tg, ms.
By [Sw, Theorem 4.1], there exists an integer [ such that for all n > 1,

Qnn---nQ" C (Q1---Qr)l’"-

Hence for alln > 1, Q" N ---nN QIT” C I™S. By the Artin-Rees Lemma there exists an
integer k such that for alln > 1, I"SN R C I"F_ Thus for all n > 1,

[ goo € (TR S g (1)) AR

(
c (@) 5 (J8)=) N R
(

which proves that for all n > 1, t; y(n) < t(Il(n + k)). ]

Lemma 2.8: Let S be a module-finite domain extension of a local Noetherian domain
(R,m). Let Q be an ideal in S and I,J ideals in R such that Q is the radical of 1S and
such that t7 ; is bounded above by a linear function. Then tg js is also bounded above by

a linear function.

Proof: By assumption there exists an integer ! such that Q' C IS. S is torsion-free over
R, so there exists an integer r such that R" is an R-submodule of S and S/R" is a torsion

R-module. In other words, there exists a nonzero element ¢ in R such that ¢S C R".

By the Artin-Rees Lemma, there exists an integer k£ such that for all integers n > k,
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I"S :g ¢ C I"kS. Then

QUtra(ntk) .o goo C ptra(ntk)g .o oo
c (ItI,J(n+k)Rr ‘R J‘x’) 5 C
CI""*R" .5 ¢
CI"tkS g ¢
c IS
CQ"S.

Hence tg js(n) < ltr j(n+ k). m
Finally, we reduce to the hypersurface case:

We start with an arbitrary complete local domain (R, m) and a prime ideal I in R of

dimension one. The goal is to prove that ¢; is bounded above by a linear function.

Let V be the coefficient ring of R. So V is either a discrete valuation ring or a field.
In case V is a discrete valuation ring, let p be its uniformizing parameter. Choose elements
x1i,...,24—1 in I which are part of a system of parameters. In case V is a discrete valuation
ring and p € I, let 27 = p. Choose x4 € I such that the radical of the ideal (z1,...,zq) is
I. Also, choose u such that x1,...,24_1,u are a system of parameters in R. In case V is

a discrete valuation ring and p is not an element of I, set u = p.

Let B = V|[z1,...,Z4,u]] be the subring of R generated by the z; and u. By Cohen’s
Structure Theorem, R is module-finite over B and B is module-finite over the d-dimensional
regular local ring V[[z1,...,24-1,u]]. Thus B is actually a hypersurface ring of the form
Vl{[z1,...,24-1, X4, u]]/(g), where X, is a variable and g is a monic polynomial in Xy (and

a power series in the rest of the variables).

Let J = (z1,...,24)B. Then J is a prime ideal in B as J = IN B. As I is the radical
of JR, by Lemma 2.8, in order to answer Schenzel’s question, it suffices to prove that t;

is bounded above by a linear function.

The preceeding discussion just proved:

Theorem 2.9:  Assume that tra;(g) is bounded above by a linear function whenever
(i) (A, (x1,...,24,u)) is a complete regular local ring of dimension d + 1,
(ii) g is a prime element of the ideal I = (x1,...,24),
(iii) g is, as a function of x4, a monic polynomial,
(iv) the prime ideal IA/(g) is minimal over (xy,...,24-1)A/(9).

Then whenever I is an ideal in an arbitrary Noetherian local ring (R, m) with the
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property that the I-adic topology is equivalent to the topology defined by the ideals {I™ :

m™>},,, then t; is also bounded above by a linear function. [ |
Note that in this theorem, I A/(g) is minimal over the ideal (z1,...,2z4-1), where the
elements z1,...,x4—1 generate a regular sequence in the ring.

This last lemma was not completely necessary, but it provides a neater setup in the
proof of the main theorem in the next section.

Note that the existence of an ideal I in (R, m) whose I-adic topology is equivalent
to the topology defined by {I™ : m®} implies that I is not m-primary and hence the
dimension of the ring is at least one. If the dimension is one, then I must have height zero
and by Theorem 2.2 it must be contained in all the associated primes of R. But then I is
nilpotent, hence t; is eventually a constant function. Thus it suffices to analyze rings of

dimension at least two.

3. The main results

This section affirmatively answers Schenzel’s question 1.2 (see Theorem 3.1), and also

contains some generalizations. Theorem 3.4 contains a related “linear” result.

Theorem 3.1:  Let (R,m) be a Noetherian local ring (R, m) and I an ideal in R such
that the I-adic topology is equivalent to the topology defined by the ideals {I™ : m™},,.
Then there exists an integer k such that for all n > 1,

Ik o™ C 1™,
Proof: By the definition of ¢; (see Definitions 1.3 and 2.6), it suffices to prove that ¢; is

bounded above by a linear function. By Theorem 2.9 and the discussion preceeding it, we

may assume that R = A/(g), where
(i) A is a complete regular local ring of dimension d + 1 and with maximal ideal
(1, -, Ta,u),
(ii) ¢ is a prime element of the prime ideal (z1,...,24)A,
(iii) g is, as a function of x4, a monic polynomial,

(iv) I = (x1,...,24)R is a prime ideal in R minimal over the complete intersection
ideal (:L‘l, ce ,a:d_l)R,

(v) R is module-finite over the regular local ring B = k[[z1,...,24—1,u]], where k is
a coefficient subring of R. In case k is discrete valuation ring with uniformizing

parameter p, then p is either z; or u.
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With this notation, ¢; equals t7,r. Set J to be the ideal (z1,...,24-1)B.

Let R’ be the integral closure of R inside the normal closure of the quotient field of R
over the quotient field of B. Then R’ is still a complete local Noetherian ring, module-finite
over R and B. Every prime ideal in R’ minimal over IR’ is also minimal over JR'. By
Lemma 2.7, it suffices to prove that {g ,r is bounded above by a linear function for all @

minimal over JR'.

Let R” be the integral closure of B in the separable closure of the quotient field of B
inside the quotient field of R’. Then R" is also a complete Noetherian local ring, module
finite and Galois over B, and R" is contained in R’. Moreover, the extension R” C R’ is
module-finite and purely inseparable, thus there is a one-to-one correspondence between
prime ideals in R” and prime ideals in R’. Let @@ be a prime in R’ minimal over JR' and
let P=QNR". Then Q is the radical of PR'. By Lemma 2.8, if ¢tp,r~ is bounded above
by a linear function, then so is g y,r’.

Thus without loss of generality it suffices to prove that whenever R” is an integrally
closed complete local ring with maximal ideal m, which is a module-finite Galois extension
of a complete d-dimensional regular local ring (B, (z1,...,24—1,u)), and P is a prime ideal
in R” minimal over JR", where J = (z1,...,24-1)B, then tp,r~ is bounded above by a

linear function.

Let P = Py, P,,...,Ps be all the primes in R” minimal over JR"”. Let p;,, be the
P;-primary component of J®R”. Then p1, N---Npsn = J*R” : m*>. By Theorem 2.1,
there exists an integer ¢ such that for all n > ¢, J*R” : m® C J" 9R". Thus for all n > ¢,

Pin--Dsn g Din n--- ﬂps,n Q Jn—qul.

If v is an arbitrary valuation on the quotient field of R” which is non-negative on R",
then

v(pl,n o 'ps,n) Z U(Jn_q) = (n - Q)U(J)7

so that there exists an integer m € {1,..., s} such that
n p—
v(pm,n) Z T'U(J)

Now we need some basic facts about Rees valuations. More details can be found in
[Rel]. For the ideal M = (z1,...,24—1,u)B there exist finitely many valuations v, ..., v,
on the quotient field of R”, all centered on the maximal ideal m of R”, such that for all

integers n > 1, an element x of R” lies in the integral closure of M™R" if and only if for
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alli =1,...,7, vi(z) > nv;(M). We also need the following remarkable result of David
Rees (see (E), page 409 in [Re2]), based on Lipman’s [L]: for all 4,5 € {1,...,r}, there

exist positive integers C;; such that for all nonzero = in R”,
’Uz(iL') S Cij’l)j(m).

Let C be the maximum of all the C;;. Then by above for each positive integer n and each

i =1,...,r, there exists an integer m € {1,..., s}, such that
Ui(pm,sn+q) > ”Ui(J) > ”UZ(M)

Thus for all j € {1,...,7},

1 n n
Uj(pm,sn+q) 2 Evi(pm,sn+q) Z Evz(M) 2 EU](M)

Since v1, ..., v, are all the Rees valuations of M R", this means that py,, sn44 is contained
in the integral closure of M (3=l As R" is analytically unramified, by Rees [Re3] there
exists an integer [ such that for all n > 1, the integral closure of M™ is contained in M™~!.
Thus the above proves that for all n > 1, there exists an integer m such that pp, ¢nyq is
contained in Mcz1=t,

Let G be the Galois group of the extension B C R”. Note that G acts transitively
on each of the sets {pin,...,Psn}, where n =1,2,.... Let o be an element in the Galois
group which maps pp, sn44 isomorphically to pi snyt. As M is generated by elements
of B, o leaves any power of M unchanged. This means that for all integers n > 1,
D1,sn+t C MEz1=t Tn other words, for all n > 1, p; sc2p4+ 1S contained in M™=t or better

yet, P1,sc?(n+i)+t 18 contained in M".

Set P = P;. Let p be a positive integer such that P} is contained in p; ;. Then for
all integers n > 1, PP" is contained in p; 5, and hence also PP" : (uR")* is contained in
P1n- Thus for all n > 1,

2
pr(sC*(nth)+q) . (uR'")>® C D1,5C2(ntl)+q S M™.

Finally, by [Sw, Theorem 3.4], there exists an integer m such that for all n > 1, P =
(P™: (uR")>*°)N(P™+ M™™). Here, P™ : (uR")> is the P-primary component of P" and
P™+ M™™ is the (possibly redundant and definitely non-unique) zero-dimensional primary

component. Hence for all n > 1,
Pp(sC2(mn+l)+q) . (uR”)OO C (Pn . (uR”)OO) nM™ C pP",
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which proves the theorem. [ |

Thus Theorem 2.2 and Theorem 3.1 combine to give

Theorem 3.2: Let (R, m) be a Noetherian local ring and I an ideal in R. Then the
following are equivalent:
(i) {I" : m™}, N is equivalent to the I-adic topology.
(i3) N,eN (I”ﬁ : mﬁ"o) = 0, where R denotes the m-adic completion of R.
(iii) ht (IR + p/p) < dim (R/p) for all p € Ass R.
(iv) There exists an integer k such that for alln > 1, Ikn oo C ™. ]

By localizing at appropriate finitely many primes we also get more generally:

Main theorem 3.3:  (cf. [Sch2, Theorem 3.2]) Let R be a Noetherian local ring and I
and J ideals in R. Then the following are equivalent:
(i) {I" : J*°}, N 18 equivalent to the I-adic topology.
(ii) for all P € UjAss (R/I°)), {I"Rp : JRY},, is equivalent to the IRp-adic topology.
(iii) for all P € V(J)N (UjAss (R/I7)), {I"Rp : JR¥},, is equivalent to the IRp-adic
topology.
(iv) for all P € V(J)N (U;Ass (R/I)), {I"Rp : PR¥}, is equivalent to the IRp-adic
topology.
(v) for all P € V(J) N (U;Ass (R/I7)), NneN (I”ﬁ; : PE;:OO> — 0, where Rp denotes
the P-adic completion of Rp.
(vi) for all P € V(J)N (U;jAss (R/17)), ht (IRp+p/p) < dim (Rp/p) for allp € Ass Rp.
(vii) there exists an integer k such that for alln > 1 and all P € V(J) N (U;Ass (R/I7)),
Ikan 1 Pe g Ian.
(viii) there ezists an integer k such that for alln > 1 and all P € V(J) N (U;Ass (R/I7)),
I*Rp : J>° C I"Rp.
(iz) there ewists an integer k such that for allm > 1, I*" : J° C ™.

Proof: (ix) = (i) = (ii) = (iii) is trivial. (iii) = (iv) as J C P. (iv), (v), (vi) and (vii)
are equivalent by the previous theorem and by Ratliff’s result [Ral] that U;Ass (R/I7) is
a finite set.

(vil) = (viii) is obvious if P is minimal in the set V(J) N (U;Ass (R/I7)). In that
case I"Rp : P*® = I"Rp : J°® for all n > 1. Now assume that P is not minimal in
V(J) N (UjAss (R/I7)). Without loss of generality we may localize at P to assume that
P is the only maximal ideal of R. By induction on the length of a chain of primes in
V(J) N (UjAss (R/I7)), we may assume that for all @ in (V(J) N (U;Ass (R/I))) \ {P}
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there exists an integer k' such that for all n > 1, Ik'"RQ : J® CI"Rg. Then

¥ g c () ("R N R)
Q
= intersection of all the non-P-primary components of I*"
= Ik . p*°
Y

which proves (vii) = (viii).
To prove (viii) = (ix), it suffices to prove that I*" : J°° C I™ after localization at all

P € UjAss (R/I7). If J is not contained in P, this holds trivially, and if J is contained in
P, then it holds by assumption. [ |

This last theorem obviously implies Theorem 3.1.

The following result is also in the same “linear” spirit. It implies, vaguely speaking,

that the degrees of the zero-divisors in the graded ring EBnmmn—_"H behave rather nicely.

Theorem 3.4:  Let (R, m) be an analytically irreducible Noetherian local ring. Then
there exists an integer k such that for all positive integers n and all elements o and 3 of

kn

R whose product lies in m"™™, either o or (3 lies in m™.

Proof: Without loss of generality we may pass to the completion of R. Let vq,...,v, be
the Rees valuations of m. As in the proof of Theorem 3.1, by Rees’ [Re2, page 409] there

exists a positive integer C such that for all nonzero z in R, and all 4,5 € {1,...,r},
vi(x) < Cvj(z).
Also, by Rees [Re3] there exists an integer [ such that for all n > 1, the integral closure of

m" is contained in m"~!. Now let k = 2C2%(I + 1).

By assumption v1(a) + v1(8) = vi(aB) > knvi(m) = 2C%(Il + 1)nvy(m). It follows
that, say, v1(a) > C?(I + 1)nvy(m). Hence for all i € {1,...,r},

vi(a) > évl(a) > C(l + Dnvs(m) > (I + Dnvg(m).

This means that « lies in the integral closure of m{+t1)” and by the choice of I, a lies in
m'". ]

With some work, this last theorem and Theorem 2.9 imply the Main Theorem 3.3.
The main ingredient in the proofs of the theorem above and the main theorem was Rees’

result on linear relations between the various valuations centered on the maximal ideal.
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4. Explicit calculations of linear equivalence

In this section I calculate for various prime ideals P an explicit integer k such that
for all n > 1, the knth symbolic power P(*™) of P is contained in P". In general it
is difficult to calculate this k following the proof of existence from the previous section,
as in the process one may need to find some of the following: rank of a module-finite
extension, torsion elements, Artin-Rees constants, a primary decomposition constant from

[Sw,Theorem 3.4], and possibly more. All these calculations tend to be difficult.

Explicit calculations are given here for certain primes corresponding to monomial
curves (Example 1), for primes corresponding to points on nonsingular elliptic cubic curves
in the projective plane (Example 2), and for the Nagata-Roberts ideals (Example 3). All
these prime ideals were chosen because their symbolic Rees algebras @, P(™ are NOT
Noetherian. The point is that for a prime ideal whose symbolic Rees algebra IS Noetherian,
the existence of k£ (but possibly not the calculation) is a trivial matter: take &k to be the
largest integer such that @, P(™ has an algebra generator over R in that degree.

Example 4.1: The first example analyzes some binomial primes in F[[X,Y, Z]|, where F’
is a field and X, Y and Z are variables over F' corresponding to some monomial curves.
Namely, let m be an arbitrary integer bigger than or equal to 4 and not divisible by 3,
and let P be the kernel of the homomorphism from F[[X,Y, Z]] to F[[T]] which takes X to
T™=3,Y to T®™=2™ and Z to T#™~3. Goto, Nishida and Watanabe proved in [GNW]
that the symbolic Rees algebra @,, P(™ is a Noetherian ring if and only if the characteristic

of F' is positive.

I prove that, independently of the characteristic and of m, for all n > 1, PG") C pm.
All the hard work for this proof has already been done by Herzog in [He] and Kunz
in [Ku]. Namely, Herzog proved that P equals (X3™~1 -y z?m~-1 y3 _ xmzm z3m-1_
X?m=1y2) and that P is a set-theoretic complete intersection. Kunz showed in [Ku,

page 139] more specifically that there exists a polynomial f in F[X,Y, Z] such that P =
V(f, Y3 — XmZm) and that

(X3m—1 _ Yz2m—1)3 = _Xm—i—lf mod (Y3 _ szm)’
(Z3m—1 _ X2m_1Y2)3 = Z3m—1f mod (Y3 _ XmZm)

Note that f,Y3 — X™Z™ Z and f,Y3 — X™Z™,Y are two regular sequences. Then it is

easy to deduce from the relations

Zm(X3m—1 _ Yz2m—1) + X2m—1(y3 _ szm) + Y(z3m—1 _ XZm—ly2)

= (],
Y2(X3m—1 . Yz2m—1) + Z2m—1(y3 . szm) + Xm(sz—l o X2m—1y2) — 07
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(by multiplying the first one by (Z3™~! — X2m~1y2)2 the second one by (X3m~! —
Y Z?™~1)2) that actually P3 C (f, Y3 — X™Z™). Hence for all n > 1,

P(3n) — P3n . (X,KZ)OO g (f; Y3 _ szm)'n . (X’ Y7 Z)OO — (f’ Y3 _ szm)‘n g P" =

Example 4.2: The second example is about prime ideals corresponding to points on
nonsingular elliptic cubic curves in the projective plane. Rees proved in [Re4] that when a
prime ideal corresponds to a non-torsion point on such a cubic, the corresponding symbolic
Rees algebra is not Noetherian. I prove that for every such prime ideal P and all n > 1,
PQ8n) ¢ pn_ T suspect that 18 is overly generous. In fact, the proof below shows that in
many cases 3 or 9 work. I did some explicit calculations on the computer algebra system
Macaulay, but I quickly ran into computer limitations with the degrees of polynomials in

higher symbolic powers.

So let C' be a nonsingular elliptic cubic curve in the projective plane and R =
Clx,y, z]/(f) the corresponding graded affine ring. Then for any point p = (zo : Yo : 20)
on C we naturally associate a prime ideal P in R of height one generated by the linear
forms zoy — yox, oz — 20, Yoz — 20y, two of which suffice. For example, Schenzel [Sch2,
page 145] gives the example R = Clz,y, 2]/ (2?2 + 222 + yz? — y3), for which the point
p=(0:0:1) corresponds to the prime ideal P = (z,y).

Now let p be an arbitrary point of C' and let P be the corresponding prime ideal in
R generated by two linear forms. By a linear change of coordinates we may assume that
P = (z,y). Similarly, by the Noether Normalization Lemma (or even the Cohen Structure
Theorem for graded affine rings), we may assume that two linear forms, = and z, satisfy
that C[z, z] C R is a module-finite graded extension. The element y € R then satisfies an
irreducible integral equation over C[z, z] with the constant coefficient lying in the ideal (z).
This integral equation necessarily equals f. Note that as f has degree three, xR has one,

two, or three primary components, all minimal over xR, and one of them being P-primary.

If the number of components is one, necessarily f is of the form y3 + multiple of z,
so P2 C zR. Thus by Theorem 2.1 for all n > 1,

pBr) = p3n .y C "R :m™ = 2"R C P"R.

Now assume that there is more than one component of xR. Let ys be a root of f
other than y. Write f = 33 + a1y? + a2y + a3, where each a; is a form in Clz, 2] of
degree 7 and ag is a multiple of x. It is easy to see that ys and the third root of f satisfy
the monic polynomial W2 + (a1 + y)W + a3 + a1y + y? in indeterminate W over R. By
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the nonsingularity assumption, R is integrally closed in its field of fractions, so that if y-
satisfies a nontrivial polynomial over R of order one, y2 necessarily lies in R. It follows
that either yo lies in R or else it satisfies no polynomials over R of order one. Set S
to be the ring R[y2]. Then by the quadratic formula S contains also the third root of
f. When y, is not in R, by above then S is of the form S = C|z,y, z,y2]/(f, g), where
g =v2+ (a1 +y)y2 + as + a1y + y? and, by abuse of notation, we now think of z,y, z and
yo as variables over C.

Thus regardless of whether y, lies in R, S is a Cohen-Macaulay ring with = being

a nonzerodivisor. Hence all the associated prime ideals of powers of xS are the primes

minimal over zS.

We first assume that S = R[ys]| is different from R. Then by the structure of S,

S _ Clz,y, 2y
S (z,f,9)
~ C[yvzay2]
(P +ay? +azy, yi + (@1 +y)ye + @z +ary +y2)’

where @; denotes the image of a; in Clz, z]/(z) = C[z]. Similarly,

S . (C[$7y727 y2] ~ (C[Z7 y?] _ C[ZJ y2]

PSS~ (2,y,f.9) (imageofg) (y3+ @iy +a2)’

so there are at most two prime ideals in S lying over P.

Let @ be a prime ideal in S lying over P. We first analyze the case when a3 is nonzero.
Then y(y?+ a1y +asz) € xS implies that the Q-primary component of S contains y. Note
that then @Q is the Q-primary component of .S if and only if y2 + a1y, + a3 factors into two
distinct linear factors over C|z, y2]. In the remaining case when y2 +ayys + a3 is the square
of a linear form in C[z, y], necessarily a1? = 4az and the linear factor is y + @1/2. Then
P has only one prime ideal Q = (z,y, y2 + a1/2) in S lying over it and Q2 is contained in
the Q-primary component (z,y, (y2 + a1/2)?) of £S. By assumption that xR have at least
two primary components, necessarily a; # 0 and

(z, £,9)Clz,y, 2, y2] = (2, y(y + a1/2), 93 + (a1 + y)y2 + a1 /4 + a1y + ¢°),
so that the primary decomposition of S equals
xS = (xa Y, (y2 + 01/2)2) N (:Ua (y + 0,1/2)2, y2) N (:Ua (y + 0,1/2)2, Y2 + a1+ y)

In particular, the number of primary components of xS is three.
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If @3 is zero, however, the assumption that f have at least two factors modulo (x)
implies that @y is nonzero. Hence (z, f,9)Clz,y, z,y2] = (z,y%(y + a1),v2 + (a1 + y)y2 +
a1y + y?). It follows easily that y? is contained in the Q-primary component of xS and

that @ is either the prime Q = (z,y,y2) or Q = (z,y,y2 + a1). From

(y+y2)(y2 + a1) = y3 + (a1 + y)y2 + a1y € (9,7, y°)Clz, y, 2, yo]

it follows that

zS = (z,y%,y+y2) N (z,y% y2 + a1) N (z,y + a1,93)

is the irredundant primary decomposition.

Thus in all the cases above under the assumption that xR have more than one com-
ponent, for each prime @ in S lying over P, either 2 lies in the Q-primary component
of £S5 and the number of primary components of S is three or else () is the Q-primary

component of zS.

A similar analysis of the case when ys € R shows that when a3 # 0, zR has at most
three primary components and P is the P-primary component of zR. By the quadratic
formula, y» equals one half of —(a1 + y) + /(a1 +y)2 — 4(a2 + a1y + y?). Under the
assumption that ys € R, (a1 + y)2 —4(as + a1y + y2) = a% —2a1y —4as is a perfect square

in R. If we further assume that a3 = 0 and that a7y # 0, we get a contradiction. Thus

Y2 € R and a3 = 0 is impossible.

Let G be the Galois group of f, where f is regarded as a polynomial in y with
coefficients in C|z, z]. As G fixes S, it permutes the primary components of £S. Thus the
number of components of 5 is at most the order of the Galois group, and that is at most
six. Say S = p; N .- N p; is an irreducible primary decomposition. Then for all n > 1,
xS = p&") N---N p,E") is an irreducible primary decomposition, where pgn) =pS 5 NS.
Thus for all forms a € pgn), Usego (@) lies in 2™S. Note that each element of the Galois
group preserves the degrees of elements so that « has degree at least L%J > | %]- Moreover,
when ¢ = 3, then actually o has degree at least | % |. In particular, if y2 is in R, R is Galois

over C[z, z] and the Galois group has order three.

First assume that @ is the Q-primary component of zS. Then P(®™ lies in Q6™
which is the Q-primary component of 26"S. Hence by above for all n > 1, elements of

P©7) have degree at least n.

Now assume that Q is not the Q-primary component of £S. Then Q? is contained in

the Q-primary component and the number of primary components is three. Thus P(6")
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lies in Q(®™) which lies in the Q-primary component of z3"S which by above lies in degrees

at least n. Hence here also for all n > 1, elements of P(®™) have degree at least n.
Similarly, if yo is in R, for all n > 1, elements of P(®®) have degree at least n.

We are almost done with this example. First observe that for all n > 1,
PM) = Pt ™ = P 2™ = P 22,

The only equality to be proved is the last one. This follows from the observation that the
ring &, P"/P"*! is isomorphic to C[X,Y, Z]/(f*), where X,Y, Z are indeterminates over
C and f* is the part of f = f(x,y,z) of least degree in the two variables z and y (for
details and more on hypersurface rings see for example [Hb2]). As f € P, f* has degree
at least one in X,Y. Thus f* is divisible by Z! for [ at most 2. The equality above then

follows by examining zero divisors modulo higher powers of P.

Finally,

P8 c p() A (4, 2)3"
C PO ((@y)" + (2)™)
= P" + PN (z)*"
= Pn 4 (P(") : 22”)
= P" + 22" (P™: 2°")
= P" 4+ P" N (2)™"
- p".

Similarly, if yo is in R, for all n > 1, PO C pn, m

Example 4.3: The last examples I analyze are the Nagata-Roberts examples. Let F' be
a field, X,Y, Z indeterminates over F. Let I be the ideal in R = F[X,Y, Z] corresponding
to m generic lines through the origin, i.e., I is the intersection of m ideals, each of which
is generated by two generic linear forms. Let M = (X,Y, Z), and for each n > 0, define
I = ™ : M. Nagata proved in [N] that if F is a sufficiently large field of characteristic
zero, say if F' is the complex numbers, and m is a perfect square bigger than or equal to
16, then @I(™ is not Noetherian.

I prove below that for all I of the form above, namely for all m > 1, we have I(™") C I
for all n > 1. An analysis of the proof then implies that for Roberts’ prime P, constructed
in [Rol], and for all n > 1, P(mn) C pP»,
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Lemma 4.4: Let m be a positive integer and Iy, 15, ..., I, ideals in R each of which is
generated by two generic linear forms. Let J =111y ---1,,. Then for alln > 1,

M nIrNIyn---nI) CJm

Proof: If m = 1, there is nothing to show. Now let m = 2. By a change of coordinates we
may assume that I1 = (X,Y), I = (Y, Z). Then

M*™NIPN Iy = M™IP N M™I5 by grading
= (X*Y"Z¢:a+b+c=2n,a+b>n)
N(X*Y°Z¢:a+b+c=2nb+c>n)
= (XY"Z¢:a+b+c=2n,a<n,c<n)
C X, Y)Y, 2)"
=J"

Now let m > 2. We introduce some notation: L = I3ly---1,,, J1 = 1L, Jo = I3L. Then

by induction on m,
M™NIrnIyn.--nIl C MmN JrNJy.

Again by grading, this is contained in M"JP " M"J3 = M"ITL*NM™I3L™. By a change
of coordinates we may assume again that I = (X,Y), I, = (Y, Z). Let L™ = (a1, ..., a),
where the a; are forms of degree (m —2)n. Let r be an element of M™*NIPNIFN---NIJ.
Then we can write 7 = Y r;a;, for some r, € M"I} = (X,Y,2)"(X,Y)". So r; =
ZriachaYbZC, where the sum is over all a,b, c such that a +b+c=2n and a+ b > n.
We now combine all terms in r; for which a < n into ¢; and the rest equals r; — ¢; = d; X™.
Then r = Y cia; + X™ Y d;a;. Note that ¢; € (X,Y)" N (Y,Z2)" N (X,Y, Z)*, so that
by the case m = 2, ¢; € (X,Y)™(Y, Z)" = II7, hence ) c;a; € J™. Thus it suffices to
prove that X™ " d;a; is an element of J”. By construction, X" > d;a; = 7 — > c;a; lies
in MPIPL" " M™IL". Hence X™ Y d;a; lies in I} = (Y, Z)™, so

Y dia; € Iy 0 L™ 0 MO Dn
cIEnIpn---nIt N Mm=bn
C J3 by induction,
so that X™ > d;a; lies in X" J C J". n
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With notation as in this lemma, Nagata’s ideal I is just Iy N ---N I,. Then for all
n>1,

I = . It
cM™nNIn---nIt
C (I~ Iy)"

cI". [ ]
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