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I assume some background from Atiyah–MacDonald [2] (especially the parts on

Noetherian rings, primary decomposition of ideals, ring spectra, Hilbert’s Basis Theorem,

completions). In the first lecture I will present the basics of integral closure with very few

proofs; the proofs can be found either in Atiyah–MacDonald [2] or in Huneke–Swanson [13].

Much of the rest of the material can be found in Huneke–Swanson [13], but the lectures

contain also more recent material.
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1 Integral closure of rings and ideals
(How it arises, monomial ideals and algebras)

Integral closure of a ring in an overring is a generalization of the notion of the algebraic

closure of a field in an overfield:

Definition 1.1 Let R be a ring and S an R-algebra containing R. An element x ∈ S is

said to be integral over R if there exists an integer n and elements r1, . . . , rn in R such

that

xn + r1x
n−1 + · · ·+ rn−1x + rn = 0.

This equation is called an equation of integral dependence of x over R (of degree n).

The set of all elements of S that are integral over R is called the integral closure

of R in S. If every element of S is integral over R, we say that S is integral over R.

When S is the total ring of fractions of a reduced ring R, the integral closure of R

in S is also called the integral closure of R. A reduced ring R is said to be integrally

closed if the integral closure of R equals R.
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Many facts that are true of the algebraic closure of fields are also true for the integral

closure of rings – in the analogous form, of course. The proofs of the following such facts

are similar, or at least easy:

Remarks 1.2

(1) The integral closure of a ring in a ring is a ring (even an integrally closed ring).

(2) The integral closure of a ring always contains that ring.

(3) The integral closure of a field in a field is a field, and equals the (relative) algebraic

closure of the smaller field in the bigger one.

(4) Warning: The integral closure of a field, when thought of as a ring, is itself, whereas

its (absolute) algebraic closure may be a much larger field.

(5) An element x ∈ S is integral over R if and only if the R-subalgebra R[x] of S is a

finitely generated R-module.

(6) Integral closure is a local property: x ∈ S is integral over R if and only if x
1 ∈ SP is

integral over RP for all prime (or all maximal) ideals P of R.

(7) It is straightforward to prove that every unique factorization domain is integrally

closed. If R is integrally closed and X is a variable over R, then R[X] is integrally

closed.

(8) Equations of integral dependence of an element need not be unique, not even if their

degrees are minimal possible. For example, let S be Z[t]/(t2−t3), where t is a variable

over Z, and let R be the subring of S generated over Z by t2. Then t ∈ S is integral

over R and it satisfies two distinct quadratic equations x2 − t2 = 0 = x2 − xt2 in x.

Examples 1.3 Where/how does integral closure of rings arise?

(1) In number theory, a common method for solving a system of equations over the

integers is to adjoin to the ring of integers a few “algebraic integers” and then work in

the larger ring. For example, one may need to work with the ring Z[
√

5]. In this ring,

factorization of (1+
√

5)(1−
√

5) = −2 ·2 is not unique. If, however, we adjoin further

“ideal numbers”, in Kummer terminology, we get the larger ring Z[ 1+
√

5
2 ], in which

at least the given product has unique factorization up to associates. Furthermore,

Z[ 1+
√

5
2

] ∼= Z[X]
(X2−X−1)

is integrally closed, so it is a Dedekind domain, it has unique

factorization of ideals, and has unique factorization of elements at least locally.

(2) In complex analytic geometry, for a given variety one may want to know the closure

of all rational functions that are bounded on the variety, or at least locally on some

punctured subvariety, in the standard topology. For example, on the curve y2−x3−x2

in C2, the rational function y
x defined away from the origin is bounded because ( y

x )2 =

x + 1 along the curve. Ring theoretically, the curve y2 − x3 − x2 corresponds to the

ring C[X, Y ]/(Y 2 − X3 − X2), and adjoining y
x corresponds to the ring

C[X, Y, T ]

(Y 2 − X3 − X2, XT − Y, T 2 − X − 1)
∼= C[X, T ]

(T 2 − X − 1)
∼= C[T ],
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which is a regular ring, it is the integral closure of the original ring C[X, Y ]/(Y 2 −
X3 − X2) (and it is the bounded closure).

(3) The last two examples show that the integral closure of a ring is a better ring,

sometimes. A one-dimensional Noetherian domain is integrally closed if and only if it

is regular. All nonsingular (regular) rings (in algebraic geometry) are integrally closed.

A typical desingularization procedure in algebraic geometry uses a combination of

blowups and taking the integral closure to get to a regular ring. Thus integral closure

is an important part in getting regular rings.

(4) A monomial algebra is a subalgebra of a polynomial ring k[X1, . . . , Xn] over a

field k generated over k by monomials in X1, . . . , Xn. Let E be the set of exponents

that appear in a generating monomial set. It turns out that the integral closure of

k[Xe : e ∈ E] is also a monomial algebra, and it is

k[Xe : e ∈ E] = k[Xe : e ∈ (ZE) ∩ (Q≥0E)].

Thus for example, k[X3, X2Y, Y 3] = k[X3, X2Y, XY 2, Y 3], which is a Veronese sub-

variety of k[X, Y ], and k[X3, Y 3] = k[X3, Y 3], which is a polynomial ring.

I assume the following background from Atiyah–MacDonald [2]:

(1) Lying-Over.

(2) Incomparable.

(3) Going-Up.

(4) If R is an integral domain with field of fractions K, then an element s of a field

extension L of K, is integral over R if and only if it is algebraic over K and its

minimal (monic) polynomial over K has all its coefficients in the integral closure

of R.

(5) Let R be an integral domain, K its field of fractions, and X a variable. Let f(X) be

a monic polynomial in R[X], and g(X), h(X) monic polynomials in K[X] such that

f(X) = g(X)h(X). Then the coefficients of g and h lie in the integral closure of R.

(6) If R ⊆ S is an integral extension of rings, then dimR = dimS.

(7) (Going-Down) Let R ⊆ S be an integral extension of rings. Assume that R is an

integrally closed domain. Further assume that S is torsion-free over R, i.e., every

non-zero element of R is regular on S. Then given a chain of prime ideals P1 ⊆ P2 ⊆
. . . ⊆ Pn of R and a prime ideal Qn in S such that Pn = Qn ∩R, there exists a chain

of prime ideals Q1 ⊆ . . . ⊆ Qn of S such that Qi ∩ R = Pi for all 1 ≤ i ≤ n.

(8) (Determinantal trick) Let R be a ring, M a finitely generated R-module, ϕ : M → M

an R-module homomorphism, and I an ideal of R such that ϕ(M) ⊆ IM . Then for

some ri in Ii,

ϕn + r1ϕ
n−1 + · · ·+ rnϕ0 = 0.

In particular, if x is in an extension algebra containing R such that xM ⊆ M , then if

M is faithful over R[x] it follows that x is integral over R.
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(9) (Noether normalization) Let k be a field and R a finitely generated k-algebra. Then

there exist elements x1, . . . , xm ∈ R such that k[x1, . . . , xm] is a transcendental exten-

sion of k (i.e., k[x1, . . . , xm] is isomorphic to a polynomial ring in m variables over k)

and such that R is integral over k[x1, . . . , xm]. If k is infinite, x1, . . . , xm may be

taken to be k-linear combinations of elements of a given generating set of R. If R is a

domain and the field of fractions of R is separably generated over k, then x1, . . . , xm

can be chosen so that the field of fractions of R is separable over k[x1, . . . , xm].

(10) A consequence of Noether normalization is also due to Emmy Noether: The integral

closure of a domain R that is finitely generated over a field is module-finite over R.

(One can also replace “field” above by “Z”.)

(11) (Cohen Structure Theorem, not covered in [2], but general knowledge) Let (R, m)

be a complete Noetherian local domain, and k a coefficient ring of R. In case k

is a discrete valuation domain of rank one with maximal ideal generated by p, we

assume that p, x1, . . . , xd is a system of parameters. If R contains a field, we assume

that x1, . . . , xd is a system of parameters. Then the subring k[[x1, . . . , xd]] of R is a

regular local ring and R is module-finite over it.

(12) Furthermore, the integral closure of a complete local Noetherian domain R is module-

finite over R.

There is also the notion of the integral closure of ideals:

Definition 1.4 Let I be an ideal in a ring R. An element r ∈ R is said to be integral

over I if there exist an integer n and elements ai ∈ Ii, i = 1, . . . , n, such that

rn + a1r
n−1 + a2r

n−2 + · · ·+ an−1r + an = 0.

Such an equation is called an equation of integral dependence of r over I (of

degree n).

The set of all elements that are integral over I is called the integral closure of I ,

and is denoted I . If I = I , then I is called integrally closed. If I ⊆ J are ideals, we say

that J is integral over I if J ⊆ I .

If I is an ideal such that for all positive integers n, In is integrally closed, then I is

called a normal ideal.

Remarks 1.5

(1) We will later prove that I is an ideal.

(2) xy ∈ (x2, y2) because (xy)2 + 0 · (xy) − x2y2 = 0. Similarly, for any i = 0, . . . , d,

xiyd−i ∈ (xd, yd).

(3) If I ⊆ J , then I ⊆ J .

(4) I ⊆ I ⊆
√

I .

(5) Radical ideals, hence prime ideals, are integrally closed.

(6) Intersections of integrally closed ideals are integrally closed.
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(7) Persistence: if R
ϕ−→S is a ring homomorphism, then ϕ(I) ⊆ ϕ(I)S.

(8) Contraction: if R
ϕ−→S is a ring homomorphism and I an integrally closed ideal

of S, then ϕ−1(I) is integrally closed in R. (Thus if R is a subring of S, and I an

integrally closed ideal of S, then I ∩ R is an integrally closed ideal in R.)

(9) Beware: The integral closure of the ideal R in the ring R is R, whereas the integral

closure of the ring R may be strictly larger.

(10) For any multiplicatively closed subset W of R, W−1I = W−1I.

(11) I = I if and only if for all multiplicatively closed subsets W of R, W−1I = W−1I,

which holds if and only if for all prime (resp. maximal) ideals P of R, IP = IP .

(12) r ∈ I if and only if for all multiplicatively closed subsets W of R, r
1
∈ W−1I, which

holds if and only if for all prime (resp. maximal) ideals P of R, r
1
∈ IP .

(13) The nilradical of the ring is contained in I for every ideal I .

(14) Reduction to reduced rings: The image of the integral closure of I in Rred is the

integral closure of the image of I in Rred, i.e., IRred = IRred.

(15) Reduction to domains: An element r ∈ R is in the integral closure of I if and only

if for every minimal prime ideal P in R, the image of r in R/P is in the integral closure

of (I + P )/P . (Proof of the harder direction: let U be the subset of S consisting of

all elements of the form {rn + r1r
n−1 + · · · + rn |n ∈ N≥0, ri ∈ R}. Then U is a

multiplicatively closed subset of S that intersects with PS for each P ∈ Min(R). If

U does not contain 0, then S can be localized at U . If Q is a prime ideal in U−1S,

let q denote the contraction of Q in R. Since U intersects qS and qS is contained in

Q, it follows that Q intersects U , which is a contradiction. Thus U−1S has no prime

ideals, which contradicts the assumption that 0 is not in U . So necessarily 0 ∈ U ,

which gives an equation of integral dependence of r over R.)

We have seen how the integral closure of rings arises. Now we address the same for

ideals.

(1) Let R[It] be the Rees algebra of the ideal I in R. Its integral closure equals

R ⊕ IRt ⊕ I2Rt2 ⊕ I3Rt3 ⊕ I4Rt4 ⊕ · · · .

To prove this, we need to know that the integral closure of a graded ring in a graded

overring (in this case, in R[t]) is also graded. Refer to the next lecture.

(2) Similarly, the integral closure of the extended Rees algebra R[It, t−1] equals

· · · ⊕ Rt−2 ⊕ Rt−1 ⊕ R ⊕ IRt ⊕ I2Rt2 ⊕ I3Rt3 ⊕ I4Rt4 ⊕ · · · .

(3) The two preceeding items show that the integral closure of an ideal is an ideal, and

even an integrally closed ideal, i.e., that I = I .

(4) Let R ⊆ S be rings, with either S integral or faithfully flat over R. Let I be an ideal

in R. Then I ⊆ IS ∩ R = IS ∩ R = I .
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(5) Let R be an N-graded ring, generated over R0 by R1. Assume that R0 is reduced.

Let F1, . . . , Fm be homogeneous elements of degree 1 in R. If
√

(F1, . . . , Fm) = R1R,

then (F1, . . . , Fm) = R1R.

(6) (Burch [3]) Let (R, m) be a Noetherian local ring that is not regular, i.e., µ(m) >

dimR, and let I be an ideal of finite projective dimension. Then m(I : m) = mI and

I : m is integral over I .

(7) (Ratliff [21]) Let R be a locally formally equidimensional Noetherian ring and let

(x1, . . . , xn) be a parameter ideal, i.e., the height of (x1, . . . , xn) is at least n. For all

m ≥ 1,

(x1, . . . , xn−1)
m : xn ⊆ (x1, . . . , xn−1)m : xn = (x1, . . . , xn−1)m.

(8) (The Dedekind–Mertens formula) Recall that the content c(f) of a polynomial in

one variable with coefficients in a ring R is the ideal of R generated by the coefficients

of f . If f, g are polynomials in the same variable over R, and if the content of f

contains a non-zerodivisor, then c(fg) ⊆ c(f)c(g), and this extension is integral.

(9) (Rees’s Theorem) Let (R, m) be a formally equidimensional Noetherian local ring. Let

I be an m-primary ideal. The integral closure of I is the largest ideal in R containing

I that has the same Hilbert–Samuel multiplicity.

(10) If I ⊆ J and IJn = Jn+1, then J is integral over I . We talk about this criterion in

Section 4 (and Bernd Ulrich talked about it in his lectures).

(11) Bernd Ulrich also gave an analytic criterion for integral closure. There is a more gen-

eral valuative criterion: I = ∩IV ∩R, where the intersection varies over all valuation

domains containing R/P for some prime ideal P . We will look at this in Section 3.

Integral closure of monomial ideals is especially simple and illustrative of the theory

in general.

Definition 1.6 An ideal is said to be monomial if it is generated by monomials in the

polynomial ring k[X1, . . . , Xd] (or in the convergent power series ring C{X1, . . . , Xd} or

in the formal power series ring k[[X1, . . . , Xd]]), where k is a field, and X1, . . . , Xd are

variables over k.

The polynomial ring k[X1, . . . , Xd] has a natural Nd grading with deg(Xi) =

(0, . . . , 0, 1, 0, . . . , 0) ∈ Nd with 1 in the ith spot and 0 elsewhere. Under this grading,

monomial ideals are homogeneous, and monomial ideals are the only homogeneous ideals.

In the Rees algebra R[It] we then have the natural Nd+1-grading, where the last compo-

nents denotes the t-degree. Assuming for now that the integral closure of R[It] is also

Nd+1-graded, we get that I is monomial, i.e., that the integral closure of a monomial ideal

is a monomial ideal. Thus any monomial Xe in the integral closure of a monomial ideal

I satisfies an equation of integral dependence of degree m, say, and since the degree me-

vector subspace of k[X1, . . . , Xn] is one-dimensional, this equation of integral dependence
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is (Xe)m − ai(X
e)m−i for some monomial ai ∈ Ii, and since the ring is a domain, without

loss of generality i = m, so the equation of integral dependence is (Xe)m − am = 0 for

some monomial am ∈ Im. In other words, if Xb1 , . . . , Xbs = 0 generate I , then Xe ∈ I

if and only if e is componentwise greater than or equal to
∑

i qibi for some non-negative

rational numbers qi. Geometrically, such e is an integer lattice point in the convex hull of

the exponent set of the monomial ideal I .

Example 1.7 Let J = (X3, Y 3) ⊆ I = (X3, X2Y, Y 3) ⊆ C[X, Y ]. Then J = I = (X, Y )3.

In general, given an ideal I in a polynomial ring in n variables generated by m gen-

erators of degrees at most d, there is a poorly understood upper bound D = D(n, m, d)

such that I is generated by elements of degree at most D (see Seidenberg [25]). With an

a priori upper bound D, the search for the integral closure of elements can be converted

to a linear algebra problem (in a high-dimensional vector space, so perhaps this is not a

simplification). When restricted to monomial ideals I , D can be taken to be n + d − 1, so

in this case the linear algebra problem is doable.

Theorem 1.8 (Reid, Roberts and Vitulli [23]) Let I be a monomial ideal in the polynomial

ring k[X1, . . . , Xd] such that I, I2, . . . , Id−1 are integrally closed. Then all the powers of I

are integrally closed, i.e., I is normal.

Proof. Let n ≥ d. It suffices to prove that In is integrally closed under the assumption

that I, I2, . . . , In−1 are integrally closed. For this it suffices to prove that every monomial

Xe1

1 · · ·Xed

d in the integral closure of In lies in In. Let {Xv
1 , . . . , Xv

t} be a monomial gen-

erating set of I . By the form of the integral equation of a monomial over a monomial ideal

there exist non-negative rational numbers ai such that
∑

ai = n and the vector (e1, . . . , ed)

is componentwise greater than or equal to
∑

aivi. By Carathéodory’s Theorem, by pos-

sibly reindexing the generators of I , there exist non-negative rational numbers b1, . . . , bd

such that
∑d

i=1 bi ≥ n and (e1, . . . , ed) ≥ ∑d
i=1 bivi (componentwise). As n ≥ d, there

exists j ∈ {1, . . . , d} such that bj ≥ 1. Then (e1, . . . , ed)− vj ≥ ∑
i(bi − δij)vi says that the

monomial corresponding to the exponent vector (e1, . . . , ed)−vj is integral over In−1. Since

by assumption In−1 is integrally closed, the monomial corresponding to (e1, . . . , ed)− vj is

in In−1. Thus Xe1

1 · · ·Xed

d ∈ In−1Xv
j ⊆ In.

(An easy extension of the proof shows that for all n ≥ d, In = IIn−1.)

In particular, in a polynomial ring in two variables over a field, the power of an inte-

grally closed monomial ideal is integrally closed. (This holds more generally for arbitrary

integrally closed ideals in two-dimensional regular rings, by Zariski’s theory.)

It is poorly understood which integrally closed monomial ideals in a three-dimensional

polynomial ring also have the second power (and hence all powers) integrally closed. Some

results were proved by Reid, Roberts, and Vitulli, and more by Coughlin in her Ph.D.

thesis at the University of Oregon.

We end this lecture with a direct connection between the integral closure of rings and

the integral closure of ideals:
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Proposition 1.9 Let R be a ring, not necessarily Noetherian, and integrally closed in its

total ring of fractions. Then for any ideal I and any non-zerodivisor x in R, xI = x · I . In

particular, every principal ideal generated by a non-zerodivisor in R is integrally closed.

Corollary 1.10 Let R be a Noetherian ring that is integrally closed in its total ring

of fractions. The set of associated primes of an arbitrary principal ideal generated by a

non-zerodivisor x consists exactly of the set of minimal prime ideals over (x).

Furthermore, all such associated prime ideals are locally principal.

Proof. All minimal prime ideals over (x) are associated to (x). Let P be a prime ideal

associated to xR. By Prime Avoidance there exists a non-zerodivisor y in R such that

P = xR :R y. We may localize at P and assume without loss of generality that R is

a local ring with maximal ideal P . By definition y
xP ⊆ R. If y

xP ⊆ P , then by the

Determinantal Trick, y
x ∈ R = R, so that y ∈ xR and P = xR :R y = R, which is a

contradiction. Thus necessarily y
xP = R. Hence there exists z ∈ P such that y

xz = 1.

Then P = xR :R y = yzR :R y = zR, so P is a prime ideal of height 1. Thus P is minimal

over xR.

The last statement follows immediately.

2 Integral closure of rings
(Serre’s conditions, Jacobian criterion, affine algebras, low dimensions, absolute integral

closure)

A ring R is said to be normal if for every prime ideal P of R, RP is an integrally

closed integral domain. Every normal ring is locally an integral domain, thus globally it

is reduced. A Noetherian reduced ring is integrally closed if and only if it is normal. We

have already proved that the determination of integral closure can be determined modulo

all minimal primes, so much of the time we lose no generality by considering only domains.

In the first lecture we relied on the fact that the integral closures of graded rings in

graded overrings are also graded. We prove this next.

Theorem 2.1 Let G = Nd ×Ze, and let R ⊆ S be G-graded and not necessarily Noethe-

rian rings. Then the integral closure of R in S is G-graded.

Proof. This proof is taken from [13]. We first prove the case d + e = 1. Let s =
∑j1

j=j0
sj,

sj ∈ Sj, be integral over R. We have to show that each sj is integral over R.

Let r be an arbitrary unit of R0. Then the map ϕr : S → S that multiplies elements

of Si by ri is a graded automorphism of S that restricts to a graded automorphism of R

and is identity on S0. Thus ϕr(s) =
∑j1

j=j0
rjsj is an element of S that is integral over R.

Assume that R0 has n = j1 − j0 + 1 distinct units ri all of whose differences are also

units in R. Define bi = ϕri
(s). Each bi is integral over R. Let A be the n×n matrix whose
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(i, j) entry is rj+j0−1
i . Then

A




sj0

sj0+1

...
sj1


 =




bj0

bj0+1

...
bj1


 .

As A is a Vandermonde matrix, by the choice of the ri, A is invertible, so that




sj0

sj0+1

...
sj1


 = A−1




bj0

bj0+1

...
bj1


 .

Thus each sj is an R-linear combination of the bi, whence each sj is integral over R, as

was to be proved.

Finally, we reduce to the case when R0 has n = j1 − j0 + 1 distinct units ri all

of whose differences are also units in R. Let tj0 , . . . , tj1 be variables over R. Define

R′ = R[tj , t
−1
j , (tj − ti)

−1 | i, j = j0, . . . , j1] and S′ = S[tj, t
−1
j , (tj − ti)

−1 | i, j = j0, . . . , j1].

We extend the G-grading on R and S to R′ and S′ by setting the degree of each ti to be 0.

Then R′ ⊆ S′ are G-graded rings, R′ contains at least n distinct units ri = ti in degree 0

all of whose differences are also units in R′. By the previous case, each sj ∈ S is integral

over R′. Consider an equation of integral dependence of sj over R′, say of degree n. Clear

the denominators in this equation to get an equation E over R[ti | i = j0, . . . , j1]. (Note

that it suffices to clear the denominators by multiplying by powers of ti, ti − tj .) The

coefficient of sn
j in E is a polynomial in R[ti | i = j0, . . . , j1], with at least one coefficient of

this polynomial being a unit of R. Picking out the appropriate multi ti-degree of E yields

an integral equation of sj over R. Thus sj is integral over R. This finishes the proof of the

case d + e = 1.

Now we proceed by induction on d + e. Let T be the integral closure of R in S. If

e = 0 set G′ = Nd−1 and if e > 0 set G′ = Nd × Ze−1. We impose a G′-grading on R ⊆ S

by forgetting about the last component. By induction, T =
∑

ν∈G′ Tν , where Tν is the

homogeneous part of T consisting of elements of degree ν. Now let s ∈ Tν . As s ∈ S

and S is G-graded, we may write s =
∑j1

j=j0
sj, where each sj ∈ S(ν,j). Thus by the case

d + e = 1, each sj is integral over R.

In particular, the integral closure of the Rees algebra is as indicated in the first lecture.

Shiro Goto pointed out a shorter proof of Theorem 2.1 in case we accept that the

integral closure of of a homogeneous subring of A[X1, . . . , Xn] in B[X1, . . . , Xn], where the

grading is the monomial grading in the variables (and the degrees of elements of A and B

are 0). Namely, define ϕR : R → R[G] to be the homomorphism that takes a homogeneous

r ∈ R of degree g to an element r·g ∈ R[G]. Similarly define ϕS. Set R̃ = R[G] ⊆ S̃ = S[G].

Then R̃ and S̃ are localizations of polynomial rings at some variables, and in R̃ and S̃ we

treat the degrees of elements of S and R to be 0. Thus by assumption the integral closure
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of R[G] in S[G] is homogeneous under the polynomial ordering. Now let s ∈ S be integral

over R. Then ϕ(s) is integral over R[G], so that all the (polynomial) components of ϕ(s)

are integral over R[G], whence by writing out the equations we get that the homogeneous

components of s are integral over R.

Example 2.2 It need not be the case that the integral closure of a reduced (Nd × Ze)-

graded ring is graded. Let R = Q[X, Y ]/(XY ), with X, Y variables over Q. We can impose

any of the following gradings on R:

(1) N-grading deg X = 0, deg Y = 1,

(2) Z-grading deg X = 1, deg Y = −1,

(3) N2-grading deg X = (1, 0), deg Y = (0, 1).

Namely, the element X/(X + Y ) of K it satisfies the integral equation T 2 − T = 0, it is

idempotent, but cannot be written as a fraction of homogeneous components under the

given gradings.

Theorem 2.3 (Huneke–Swanson [13], Chapter 2) Let G = Nd × Ze, let R be a G-graded

reduced Noetherian ring, K its total ring of fractions, and Min(R) = {P1, . . . , Ps}. Let S

be the localization of R at the set of all homogeneous non-zerodivisors of R. The following

are equivalent:

(1) The ring S is integrally closed.

(2) The integral closure R of R is a G-graded subring of S (inheriting the grading).

(3) The idempotents of R are homogeneous elements of S of degree 0.

(4) For i = 1, . . . , s, Pi +∩j 6=iPj contains a homogeneous non-zerodivisor. (In case s = 1,

this condition is vacuously satisfied.)

Corollary 2.4 Let R be a reduced Nd-graded ring, possibly non-Noetherian, such that

the non-zero elements of R0 are non-zerodivisors in R. Then the integral closure of R is

Nd-graded.

In particular, a monomial algebra has the integral closure that is also a monomial

algebra.

This finishes the proofs of the graded bits that were used in the first lecture.

Now we switch themes and consider rings of homomorphisms. For this part we

assume that all rings are domains. In this case for any non-zero ideals I and J in a

ring R, HomR(I, J) is multiplication by an element of the field of fractions K: this is

certainly so after inverting all the non-zero elements of R. Moreover, the natural map

(J :K I) −→ HomR(I, J) is an isomorphism. Computationally, J :K I requires knowing all

fractions, which is not easily doable, and HomR(I, J) in general is returned as an R-module

that may not be easily understood as a submodule of K. But the following trick solves

both problems nicely: for any non-zero x ∈ I , we have natural identifications

(J :K I) ∼= HomR(I, J) ∼= 1

x
(xJ :R I).

This characterization makes it clear how HomR(I, I) is a subring of K.
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Definition 2.5 If R is a domain with field of fractions K, for any non-zero (fractional)

ideal I , define I−1 = HomR(I, R).

Note that I ⊆ (I−1)−1 and that II−1 = I−1I ⊆ R.

Proposition 2.6 Let R be a Noetherian domain. Then

R =
⋃

I

HomR(I, I) =
⋃

I

HomR(I−1, I−1),

where I varies over non-zero (finitely generated fractional) ideals.

Proof. By the Determinantal trick, HomR(I−1, I−1), HomR(I, I) ⊆ R. If s ∈ R \ R, then

with J = R :R R[s], we have that J is a non-zero finitely generated ideal in R with sJ ⊆ J ,

so that an arbitrary s ∈ R is in some HomR(I, I). The rest is similar.

In particular, R is integrally closed if and only if HomR(I, I) = R for all non-zero

(finitely generated fractional) ideals I . We will see in lecture 5 an effective criterion: at

least for finitely generated algebras over a perfect field there exists a computable ideal J

such that R is integrally closed if and only if HomR(J, J) = R.

Now we switch to Jacobian ideals.

Definition 2.7 Let A be a universally catenary ring and R a localization of a finitely

generated A-algebra. Write R as W−1A[X]/(f1, . . . , fm), where A[X] = A[X1, . . . , Xn],

X1, . . . , Xn are variables over A, fi ∈ A[X], and W is a multiplicatively closed subset of

A[X]. A Jacobian matrix of R over A is defined as the m × n matrix whose (i, j) entry

is ∂fi

∂Xj
. Assume furthermore that there exists a non-negative integer h such that for each

prime ideal P in A[X] that is minimal over (f1, . . . , fm) and such that P ∩ W = ∅, A[X]P
is equidimensional of dimension h. Observe that this set of prime ideals is in one-to-one

correspondence with the minimal primes of R. Under these conditions, the Jacobian

ideal of R over A, denoted JR/A, is the ideal in R generated by all the h×h minors of the

Jacobian matrix of R over A.

It is a fact that the Jacobian ideal JR/A is independent of the choice of the generators

Xi and the relations fj (read for example [13, Chapter 4]), and furthermore that it contains

the regularity and the normality conditions:

Theorem 2.8 (Jacobian criterion) Let k be a field and R an equidimensional finitely

generated k-algebra. Let J be the Jacobian ideal JR/k. Let P be a prime ideal in R. If J

is not contained in P , then RP is a regular ring.

Conversely, if RP is a regular ring and κ(P ) is separable over k (say if k is a perfect

field), then J is not contained in P .

Before we can state the normality condition, we need three definitions (and a fourth

definition is tacked on):
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Definition 2.9 A Noetherian ring R is satisfies Serre’s condition (Rk) if for all prime

ideals P in R of height at most k, RP is a regular local ring.

Also, R satisfies Serre’s condition (Sk) if for all prime ideals P in R, the depth of

RP is at least min {k, htP}.
The singular locus of R is the set of all P ∈ Spec R such that RP is not regular.

The non-normal locus of R is the set of all P ∈ SpecR such that RP is not normal.

Theorem 2.10 (Serre’s conditions) A Noetherian ring R is normal if and only if it satisfies

Serre’s conditions (R1) and (S2).

If V (J) is the singular locus of R, then J has grade at least 2 if and only if R satisfies

(R1) and (S2).

Thus we have an effective computational criterion for deciding if an affine domain is

integrally closed. (It is much harder to find elements in the integral closure that are not in

the ring when the ring is not integrally closed.)

In order to find/compute the integral closure of a ring, there needs to be some kind of

algorithmic procedure, and actually first of all, there needs to be some finiteness condition

on the integral closure. We have seen that affine domains have module-finite integral

closures, and actually the computation of those integral closures is doable.

It is not true in general that the integral closure of a Noetherian domain is a module-

finite extension, even for local Noetherian domains of dimension one! However, the integral

closure of a Noetherian domain of dimension at most 2 is still Noetherian. The one-

dimensional version is called the Krull–Akizuki Theorem, and the two-dimensional version

is due to Nagata (and uses the fact that the integral closure of a Noetherian domain is a

Krull domain). Nagata also showed that there exists a three-dimensional Noetherian local

domain whose integral closure is not Noetherian.

At the end of this lecture I want to introduce the “largest” integral extension of a

domain.

Definition 2.11 Let R be a domain with field of fractions K. Let K be an algebraic

closure of K. The absolute integral closure of R is the integral closure R+ of R in K.

It is straightforward to prove that every monic polynomial in one variable over R+

factors into linear factors in R+.

The ring R+ is unusual: Michael Artin in [1] proved that the sum of a collection of

prime ideals is either the whole ring or a prime ideal! The following proof is from Hochster

and Huneke [11]. The proof reduces at once to a finite family of primes, and then by

induction to the case of two primes, P and P ′. Suppose that xy ∈ P + P ′. Let z = y − x,

so that x2 + zx = a + b with a ∈ P and b ∈ P ′. The equation T 2 + zT = a has a solution

t ∈ R, and since t(t + z) ∈ P , either t ∈ P or t + z ∈ P . Now x2 + zx = t2 + zt + b,

and so (x − t)(x + t + z) = b ∈ P ′, so that either x − t ∈ P ′ or x + t + z ∈ P ′. Since
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x = (x − t) + t = (x + t + z) − (t + z) and x + z = (x − t) + (t + z) = (x + t + z) − t, we

see that in all four cases, either x ∈ P + P ′ or y = x + z ∈ P + P ′, as required.

3 Valuation rings, Krull rings, and Rees valuations

Atiyah–Macdonald [2] contains the basic results about valuations:

(1) A valuation on a field K (or a K-valuation) is a group homomorphism v from the

multiplicative group K∗ = K \ {0} to a totally ordered abelian group G (written

additively) such that for all x and y in K,

v(x + y) ≥ min {v(x), v(y)}.

By abuse of notation, we sometimes call a valuation such a function extended to all

of K by declaring v(0) = ∞; domain we call a function K-valuation if it is defined on

a domain R whose field of fractions is K.

(2) If v is a valuation, v(
∑n

i=1 xi) ≥ min {v(x1), . . . , v(xn)}. If v(xi) are all distinct, then

v(
∑n

i=1 xi) = min {v(xi)}.
(3) Valuations v : K∗ → Gv and w : K∗ → Gw are equivalent if there exists an

order-preserving isomorphism ϕ : image(v) → image(w) such that for all α ∈ K∗,
ϕ(v(α)) = w(α).

(4) For a K-valuation v, the image Γv = v(K∗) of v is a totally ordered abelian group,

called the value group of v.

(5) A K-valuation ring, or simply a valuation ring or a valuation domain, is an

integral domain V whose field of fractions is K that satisfies the property that for

every non-zero element x ∈ K, either x ∈ V or x−1 ∈ V .

(6) In a valuation domain V all ideals are ordered by inclusion. The unique maximal

ideal is usually denoted mV . Every finitely generated ideal is principal. A Noetherian

valuation domain is a principal ideal domain.

(7) In fact, a local domain (R, m) that is not a field is a Noetherian valuation domain if

and only if it is a principal ideal domain; which holds if and only if R is Noetherian

and the maximal ideal m is principal; which holds if and only if R is Noetherian and

there is no ring properly between R and K; which holds if and only if R is Noetherian,

one-dimensional, and integrally closed; etc.

(8) Given a valuation v : K∗ → G,

Rv = {r ∈ K∗ | v(r) ≥ 0} ∪ {0}

is a K-valuation ring. For equivalent valuations v and w, Rv = Rw.

(9) Given a K-valuation domain, let ΓV = K∗/V ∗, where V ∗ ⊆ K∗ are the multiplicative

groups of units, and let v : K∗ → ΓV be the natural group homomorphism. Then ΓV

is a totally ordered abelian group, v is a K-valuation, and ΓV is the value group of v.
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(10) The previous two parts give a natural one-to-one correspondence between K-valuation

rings and equivalence classes of K-valuations.

(11) A valuation domain V is integrally closed.

(12) Every ring between a K-valuation domain and K is also a valuation domain.

(13) It is straightforward to check that the intersection of a K-valuation domain with a

subfield of F of K yields an F -valuation domain, and that moreover the intersection

of a Noetherian K-valuation domain with a subfield of F of K yields a Noetherian

F -valuation domain.

(14) (Existence of valuation domains) Let P be a non-zero prime ideal in an integral domain

R. Then there exists a valuation domain V between R and the field of fractions of R

such that mV ∩ R = P .

(15) A consequence is that for every domain R,

R = ∩V V,

where V varies over the valuation domains with field of fractions equals to the field of

fractions of R. This appears in [2], and we give another proof after Proposition 3.2.

In the sequel we relate valuations also to integral closure of ideals.

Proposition 3.1 Let R be an integral domain contained in a valuation ring V . Then

for any ideal I of R, IV = IV = IV . Equivalently, if v is a valuation that is non-negative

on R, then v(I) = v(I). (Here v of a set is defined to be the minimum v-value of an element

of the set.)

Proof. As I ⊆ I, it follows that IV ⊆ IV , and by persistence of integral closure, IV ⊆ IV .

Now let r ∈ IV . Let rn+a1r
n−1+· · ·+an−1r+an = 0 be an equation of integral dependence

of r over IV , with each ai ∈ IiV . There is a finitely generated ideal J contained in I such

that ai ∈ J iV , i = 1, . . . , n. Thus there exists j ∈ J such that JV = jV , and so r

satisfies an equation of integral dependence of degree n over jV . By Proposition 1.9,

r ∈ jV = JV ⊆ IV , which proves that IV ⊆ IV .

Proposition 3.2 (Valuative criterion) Let R be an integral domain, not necessarily

Noetherian, and let I be an ideal in R. Then

I =
⋂

V

IV ∩ R,

where V varies over all valuation domains of the field of fractions K of R that contain R.

Proof. By the previous proposition, I ⊆ ⋂
V IV ∩R =

⋂
V IV ∩R. Now let r be a non-zero

element of
⋂

V IV ∩ R, and let S be the ring R[ I
r ]. For all valuation rings V between S

and K, r ∈ IV , so that for each such V , the ideal I
r S of S extends to the unit ideal in

V . By the existence of valuation overrings then I
r S = S, so that 1 =

∑n
i=1

ai

ri for some ai

in Ii. Multiplying this equation through by rn yields an equation of integral dependence

of r over I of degree n, so that r is integral over I .
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Corollary 3.3 Let R be a domain. Then R = ∩V , where V varies over all valuation

domains of the field of fractions K of R that contain R.

Proof. Clearly R ⊆ ∩V . Now let x ∈ ∩V . Write x = r/s for some r, s ∈ R, s 6= 0. Then

r ∈ ∩sV , so by the previous proposition, r ∈ (s). An equation of integral dependence is

of the form rn + a1sr
n−1 + a2s

2rn−2 + · · · + ansn = 0 for some ai ∈ R. By dividing the

equation by sn we get an equation of integral dependence of x = r/s over R, so that x ∈ R.

When R is Noetherian, in the proposition above we may restrict the V to Noetherian

valuation domains by a slight modification of the proof and by the following result:

Theorem 3.4 (Existence of Noetherian valuation domains) Let P be a non-zero prime

ideal in a Noetherian domain R. Then there exists a Noetherian valuation domain V with

field of fractions equal to Q(R) such that mV ∩ R = P .

Proof. Without loss of generality P is the unique maximal ideal of R. If every element of

P/P 2 ⊆ G = grP (R) is nilpotent, then dimG = 0, and it follows that dimR = 0. Thus

R must be a field, contradicting the assumption that R has a non-zero prime ideal. Thus

there exists x ∈ P \ P 2 whose image in P/P 2 is not nilpotent in G.

Set S = R[P
x ]. This is a Noetherian ring. If xS = S, we can write 1 = x

∑n
i=0

ai

xi =
a

xn−1 for some ai ∈ P i, a ∈ P n. Then xn−1 ∈ P n, contradicting the choice of x. Thus

xS = PS is a proper ideal in S.

Any prime ideal Q minimal over xS has height 1 (by Krull’s Height Theorem). By

Lying-Over, there exists a maximal ideal M in the integral closure of SQ that contracts

to Q. By the Krull–Akizuki Theorem, SQ is one-dimensional, Noetherian, and integrally

closed, hence locally at M a Noetherian valuation domain. This is the valuation domain

that we want.

In case the ring is a polynomial ring and the ideal is a monomial ideal, we may

restrict the necessary valuations (as in Proposition 3.2) to monomial valuations, which

are those valuations for which the value on any polynomial is the minimum of all values of

the monomials appearing with non-zero coefficient.

The combination of Propositions 3.1 and 3.2 shows that the integral closure of an ideal

is an integrally closed ideal and that I = I for all ideals I .

With using the valuative criterion for integral closure makes the proofs of the following

results easy:

(1) For any ideals I and J in a ring, I · J ⊆ IJ = IJ .

(2) If I = (a1, . . . , ad) 6= 0, then for any n ∈ N, JIn : In = ∩i(JIn : an
i ) = J .

(3) Let v be a valuation on a field of fractions of R such that v is non-negative on R. Let

γ be an element of the value group of v. Then Iγ = {r ∈ R | v(r) ≥ γ} is integrally

closed in R.
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(4) (Cancellation theorem) Let I, J and K be ideals in a Noetherian ring R, I not con-

sisting of zero divisors, or more generally the height of I is positive. If IJ = IK, then

J = K.

Now we switch gears and pass to Krull domains.

Definition 3.5 A not necessarily Noetherian integral domain R is a Krull domain if

(1) for every prime ideal P of R of height one, RP is a Noetherian integrally closed

domain,

(2) R = ∩ht(P )=1RP , and

(3) every non-zero x ∈ R lies in at most finitely many prime ideals of R of height one.

Remarks 3.6

(1) Krull domains are intersections of integrally closed domains, hence are integrally

closed.

(2) In Krull domains all principal ideals have a primary decomposition: If P1, . . . , Ps are

all the prime ideals in R of height one containing x ∈ R, then xR = ∩i(xRPi
∩ R) is

a minimal primary decomposition of xR.

(3) An integrally closed Noetherian domain is Krull.

A much stronger result is the Mori–Nagata Theorem saying that the integral closure

of a Noetherian domain is a Krull domain. All proofs are fairly long, so we omit them here

(possibly see [13, Chapter 4]). One can then prove that a Krull domain is a Dedekind

domain if and only if it is a principal ideal domain after localization at each maximal prime

ideal. A polynomial or a power series ring over a Krull domain is a Krull domain. Any

unique factorization domain is a Krull domain.

Now we connect valuations and Krull domains.

For that, let R be a Noetherian domain and let I be a non-zero ideal in R. We already

know that I = ∩V IV ∩ R, as V varies over all valuation (Noetherian) domains with the

same field of fractions as R. If R/I is Artinian, certainly finitely many V suffice. David

Rees proved that finitely many suffice for any I . Furthermore, he proved that there exist

valuation domains V1, . . . , Vs such that for all n, In = ∩i(I
nVi) ∩ R. A minimal set of

such valuation rings is called the set of Rees valuation rings of I . Rees proved that it

always exists and is unique for non-zero I . (Such a result holds for all Noetherian rings, not

necessarily domains, but in the general case I should not be contained in any minimal prime

ideal for the uniqueness conclusion.) The construction goes as follows. Let S = R[It, t−1].

Then S is a Noetherian domain, the integral closure S of S is a Krull domain, and there

are only finitely many prime ideals P1, . . . , Pm that are minimal over (t−1)S. All of these

prime ideals have height one, SPi
is a Noetherian valuation domain, and Vi ∩ QF (R) is a

Noetherian valuation domain on the field of fractions of R that contains R. Then for all

n, t−nR[It, t−1] = ∩t−nVi ∩ R[It, t−1], so that by what we have seen so far,

In ⊆ ∩In(Vi ∩ QF (R)) ∩ R ⊆ ∩InVi ∩ R ⊆ ∩t−nVi ∩ R = t−nR[It, t−1] ∩ R = In,
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so that equality holds throughout. It takes a little bit of work to prove that no V1, . . . , Vm

is redundant.

In general, if R is not a domain, for any ideal I in R that is not contained in any

minimal prime ideal of R, the set of all valuation rings obtained in this way on each R/P

as P varies over the minimal prime ideals of R is the unique minimal set of valuation rings

that determine the integral closure of all powers of I . Such a minimal set is called the set

of Rees valuation rings of I , and the corresponding set of normalized valuations, i.e.,

their value field is Z, is called set of Rees valuations of I .

Proposition 3.7 (Hübl–Swanson [12]) Let I be an ideal in an integrally closed Noetherian

local domain R.

(1) grI(R) is reduced if and only if I is a normal ideal and if for each (normalized integer-

valued) Rees valuation v of I , v(I) = 1.

(2) The ring R/I⊕I/I2⊕I2/I3⊕· · · is reduced if and only if for each (normalized) Rees

valuation v of I , v(I) = 1.

Proof of Part (i): If grI(R) is reduced, let x ∈ In \ In+1. If x ∈ Im for some m >

n, the equation of integral dependence shows that x is nilpotent in grI(R), which is a

contradiction. So all powers of I are integrally closed. Then R[It, t−1] = R[It, t−1], and

R[It, t−1]/(t−1) = grI(R) = R[It]/IR[It], so that IR[It] is a radical ideal. By the definition

of Rees valuations via the extended Rees algebra as above, each Rees valuation v of I

corresponds to a prime ideal minimal over t−1R[It, t−1], hence to a minimal prime ideal in

grI(R), hence to a prime ideal in R[It] minimal over IR[It]. As grI(R) is reduced, IR[It]

equals locally each of those prime ideals, which says that for all Rees valuations v of I ,

v(I) = 1. Conversely, if x ∈ In/In+1 is non-zero and nilpotent in grI(R), then xk ∈ Ink+1

for some k, whence for all Rees valuations v of I , kv(x) ≥ (nk + 1)v(I) = nk + 1, whence

v(x) ≥ n + 1/k, and since v(x) is an integer, v(x) ≥ n + 1. But then x ∈ In+1 = In+1,

which is a contradiction.

We present another application of Rees valuations here.

Definition 3.8 Let I be an ideal in a Noetherian ring R. The function ordI : R →
Z≥0 ∪ {∞} defined by ordI(r) = sup{m | r ∈ Im} is called the order of I .

In general ordI is not a valuation. When it is, it is called the I-adic valuation.

For example, if R is a regular ring and is m a non-zero maximal ideal, then the order

function relative to m is a discrete valuation of rank one and the residue field of the

corresponding valuation ring is purely transcendental over R/m of transcendence degree

dimR − 1. Explicitly, the m-adic valuation ring equals (R[m
x ])(x) for any x ∈ m \ m2.

If ∩n≥0I
n = 0, then the associated graded ring grI(R) is an integral domain if and

only if the order function ordI yields a discrete valuation of rank one.

The Rees valuations yield the following:
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Theorem 3.9 (Rees [22]) Let I be an ideal in a Noetherian ring R, r ∈ R \ {0}, c ∈ N.

Then r ∈ Ic if and only if lim supm→∞
ordI(rm)

m ≥ c.

Furthermore, for any r ∈ R,

lim
n→∞

ordI(r
n)

n
= min

{
v(r)

v(I)
: v varies over the Rees valuations of I

}
,

so that the limit (lim sup) exists and is a rational number.

We now present an alternative construction of Rees valuations, again if R is a domain.

If I = (a1, . . . , al), take the set of Noetherian valuation rings that are localization of the

integral closure of R[ I
ai

] at the height one prime ideals minimal over ai, as i varies from

1 to l. This gives Rees valuations. The advantage of this construction is that everything

is done in the field of fractions of R (as opposed to in the field of fractions of R[t] as in

the method using the extended Rees algebras), but the disadvantage is that we need to

compute l integral closures. Note that the different R[ I
ai

] may yield some of the same

valuation rings. Note that if I = J , the set of Rees valuations of I is the same as the set

of Rees valuations of J , so we may want to look for ideals J with I = J and with the

minimal number of generators possible. We do that in the next lecture (and Bernd Ulrich

covered minimal reductions in his lectures). It is a fact that at least when the residue field

of the ring is infinite, if a is a sufficiently general element of I , then v(a) = v(I) for all Rees

valuations v of I , and in that case all Rees valuations of I may be obtained by localizing

the integral closure of R[ I
a ] at the height one prime ideals minimal over a. So in this case

we only need to compute one integral closure inside the field of fractions of R. The problem

is in general that we may not know a priori what the general element a is. The following

result gives a definite method for having to find only one integral closure of a ring with the

same field of fractions that gives all the Rees valuations of I :

Theorem 3.10 (Sally [24, page 438]) Let (R, m) be a Noetherian formally equidimen-

sional local domain of dimension d > 0, and I an m-primary ideal satisfying µ(I) = d. Let

I = (a1, . . . , ad). Then for every Rees valuation ring V of I and every i = 1, . . . , d, V is

the localization of the normalization of R[ I
ai

] at a height one prime ideal minimal over ai.

Note that if R = k[X1, . . . , Xd], a polynomial ring over a field k, then there is only

one Rees valuation of (X1, . . . , Xd), and its ring is

k

[
X1,

X2

X1
, . . . ,

Xd

X1

]

X1k
[
X1,

X2

X1
,...,

Xd
X1

] .

We already saw that if an ideal I has only one Rees valuation, then the I-adic order

is a valuation. Sally [24] proved that if (R, m) is analytically unramified Noetherian, and

if there exists an m-primary ideal I in R with only one Rees valuation, then the m-adic
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completion of R is an integral domain. (Katz [14]) proved that if (R, m) is a formally

equidimensional Noetherian local domain, then the number of Rees valuations of an m-

primary ideal is bounded below by the number of minimal prime ideals in the completion

of R. In particular, if R contains an m-primary ideal with only one Rees valuation, then R̂

has only one minimal prime ideals. Many proofs in the literature can be simplified if the

local ring contains a zero-dimensional ideal with only one Rees valuation, but Cutkosky

[5] proved that there exists a two-dimensional complete Noetherian local integrally closed

domain in which no zero-dimensional ideal has only one Rees valuation.

4 Rees algebras and integral closure
(Reductions, analytic spread, Briancon-Skoda Theorem)

We have seen Rees algebras: R[It] and R[It, t−1], and we have determined that

R[It] = R ⊕ IRt ⊕ I2Rt2 ⊕ I3Rt3 ⊕ I4Rt4 ⊕ · · · ,

and that

R[It, t−1] = · · · ⊕ Rt−2 ⊕ Rt−1 ⊕ R ⊕ IRt ⊕ I2Rt2 ⊕ I3Rt3 ⊕ I4Rt4 ⊕ · · · .

We have used them to prove that the integral closure of an ideal is an integrally closed

ideal, and that if I is a homogeneous ideal in a graded ring R, then I is homogeneous as

well under the same grading. We have also seen extended Rees algebras in the quick outline

of Rees valuations. An important relevant property of these algebras is the following:

t−nR[It, t−1] ∩ R = In, t−nR[It, t−1] ∩ R = t−nR[It, t−1] ∩ R = In

for all n. Thus many problems can be reduced to knowing the results for principal ideals

generated by non-zerodivisors.

There are four closely related rings:

(1) The integral closure of R[It] in R[t] equals the graded ring

R ⊕ It ⊕ I2t2 ⊕ I3t3 ⊕ · · · .

(2) The integral closure of R[It, t−1] in R[t, t−1] equals the graded ring

· · · ⊕ Rt−2 ⊕ Rt−1 ⊕ R ⊕ It ⊕ I2t2 ⊕ I3t3 ⊕ · · · .

(3) The associated graded ring of I is

grI(R) = ⊕n≥0
In

In+1
=

R[It]

IR[It]
=

R[It, t−1]

t−1R[It, t−1]
.
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(4) If R is Noetherian local with maximal ideal m, the fiber cone of I is the ring

FI(R) =
R[It]

mR[It]
∼= R

m
⊕ I

mI
⊕ I2

mI2
⊕ I3

mI3
⊕ · · · .

The Krull dimension of FI(R) is also called the analytic spread of I and is denoted

ℓ(I).

A useful interaction between these rings is provided for example by the following:

Suppose that R is a Noetherian ring R and that grI(R) is a reduced ring. Then for all n,

In is integrally closed, R[It] is integrally closed in R[t], and R[It, t−1] is integrally closed

in R[t, t−1].

Remarks 4.1 dimR is finite if and only if the dimension of either Rees algebra is finite.

If dimR is finite, then

(1) dimR[It] =





dimR + 1, if I 6⊆ P for some prime ideal P
with dim(R/P ) = dimR,

dimR, otherwise.

(2) dimR[It, t−1] = dimR + 1.

(3) dimFI = ℓ(I) = max {ℓ(I(R/P )) |P ∈ Min(R)} ≤ dim(grI(R)) = dimR.

(4) dimgrI(R) = sup{htP |P ∈ Spec R such that I ⊆ P}.
(5) If M is the maximal ideal in grI(R) consisting of all elements of positive degree and

of m/I , then dim(grI(R)) = htM .

(6) If (R, m) is a Noetherian formally equidimensional local ring, then for every minimal

prime ideal P of grI(R), dim(grI(R)/P ) = dimR.

In general the integral closure of a Noetherian ring need not be Noetherian and need not

be module-finite over the original ring. For Rees algebras we have the following sufficiency

for their integral closures to be module-finite extensions:

Proposition 4.2 Let R be a Noetherian domain that is complete local or finitely generated

over a field or over Z. More generally, let R be finitely generated over a Noetherian

integrally closed domain satisfying the property that every finitely generated A-algebra

has a module-finite integral closure. Let I be an ideal in R, and S the (extended or not)

Rees algebra of I . Then the integral closure of S is a module-finite extension of S, and

there exists an integer k such that for all n ≥ k, In = In−kIk.

So far we have been concentrating on finding the integral closure of ideals (and rings).

We now switch our attention to finding other ideals, possibly smaller and better, which

have the same integral closure. Namely, we will be talking about reductions and minimal

reductions.

Definition 4.3 A subideal J of an ideal I is said to be a reduction of I if there exists a

non-negative integer n such that In+1 = JIn. (Thus for all positive integers m, In+m =

JmIn = JIm+n−1, and so Im+n ⊆ Jm.)
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Remarks 4.4

(1) If K is a reduction of J and J is a reduction of I , then K is a reduction of I .

(2) If K is a reduction of I and K ⊆ J ⊆ I , then J is a reduction of I .

(3) If I is finitely generated, J = K + (r1, . . . , rk) ⊆ I , and K is a reduction of I , then K

is a reduction of J .

(4) If J = (a1, . . . , ak) ⊆ I , then J is a reduction of I , if and only if for any positive

integer m, (am
1 , . . . , am

k ) and/or Jm are reductions of Im.

(5) If J1 is a reduction of I1 and J2 is a reduction of I2, then J1 + J2 is a reduction of

I1 + I2, and J1 · J2 is a reduction of I1 · I2.

(6) Let R be a Noetherian ring, m be its Jacobson radical (i.e., the intersection of all

the maximal ideals), J, J ′ ⊆ I ideals, and L any ideal contained in mI such that

J + L = J ′ + L. Then J is a reduction of I if and only if J ′ is a reduction of I .

(7) If J ⊆ I is a reduction, then J and I have the same radical, the same height, and the

same set of minimal primes.

We have established so far that the equational definition of the integral closure I of I

is equivalent to the valuative criterion: if J ⊆ I are ideals in R, then J = I if and only if

IV = JV for all valuation rings V that are R-algebras, or even for all valuation rings V

that are between R/P and QF (R/P ) as P varies over the minimal prime ideals of R.

Proposition 4.5 Let J ⊆ I be ideals in R, and let I be finitely generated. Then J ⊆ I is

a reduction if and only if J = I .

Proof. Suppose that J = I . For any x ∈ I there is an equation xn + a1x
n−1 + · · ·+ an = 0

for some ai ∈ J i. This says precisely that J(J+(x))n−1 = (J +(x))n. Thus J ⊆ J +(x) is a

reduction. Let I = (x1, . . . , xn). Then we just proved that J ⊆ J +(x1) ⊆ J +(x1, x2) . . . ⊆
I are reductions, and then by the Remarks above, J ⊆ I is a reduction. Conversely, suppose

that J ⊆ I is a reduction. Then JIn = In+1 for some n. To prove that I = J , without

loss of generality we may assume that R is a domain. If J = 0, necessarily I = 0, and then

certainly I = 0 = J . Now suppose that J 6= 0. Since I contains J , I is non-zero as well.

In any valuation ring V (with the same field of fractions as R), JInV = In+1V = IInV ,

and since I is finitely generated, IV is principal, say generated by the non-zerodivisor x.

Then JxnV = IxnV , whence JV = IV , and by above, I = J .

Remark 4.6 It is worth mentioning yet another characterization of integral dependence:

If R is a Noetherian ring, x ∈ R and I an ideal in R, then x ∈ I if and only if there exists

an element c ∈ R that is not in any minimal prime ideal of R such that for all n ∈ N,

cxn ∈ In.

There is a connection between Rees algebras and reductions:

Theorem 4.7 Let J ⊆ I be ideals in a Noetherian ring R. Then J is a reduction of I if

and only if R[It] is module-finite over R[Jt].
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Furthermore, the minimum integer n such that JIn = In+1 is the largest degree of an

element in a minimal homogeneous generating set of the ring R[It] over the subring R[Jt].

Such a number is called the reduction number of I with respect to J . It is denoted by

rJ(I).

Thus if we start with a Noetherian local ring (R, m), and J is a reduction of I , then

R[It] is integral over R[Jt], so that FI(R) = R[It]
mR[It] is integral over R[Jt]

mR[It]∩R[Jt] . It follows

that the dimension of R[Jt]
mR[It]∩R[Jt] , which is at most the number of generators of J , must

be the same as dimFI(R) = ℓ(I), so that µ(J) ≥ ℓ(I) for all reductions J of I . This

also shows that if R/m is infinite, then we can find J with µ(J) = ℓ(I), which is minimal

possible.

Definition 4.8 A reduction J of I is called minimal if no ideal strictly contained in J is

a reduction of I .

There is in general no descending chain condition on ideals in Noetherian rings. How-

ever, Northcott and Rees proved in [20] the following for a Noetherian local ring R:

(1) For any reduction J of I there exists a minimal reduction K of I that is contained

in J .

(2) If R has an infinite residue field, then for any reduction J of I there exists a minimal

reduction K of I that is contained in J and is generated by ℓ(I) elements. In fact,

every minimal reduction of I is generated by precisely ℓ(I) elements. (See above.)

(3) If J ⊆ I a reduction such that µ(J) = ℓ(I), then J is a minimal reduction of I ;

for all positive integers k, Jk ∩ mIk = mJk; and FJ is canonically isomorphic to

the subalgebra of FI generated over R/m by (J + mI)/mI , and is isomorphic to a

polynomial ring in ℓ(I) variables over R/m.

The advantage of finding minimal reductions with few generators is that sometimes

these generators form a regular sequence, or even without that, sometimes the Rees algebras

are better behaved. We saw above that minimal reductions with a predetermined low

number of generators is guaranteed under the assumption that the residue field of the

Noetherian local ring has infinite cardinality.

There is a standard procedure for getting infinite residue fields: for a Noetherian local

ring (R, m), let X be a variable over R. Set R(X) = R[X]mR[X]. Then R ⊆ R(X) is

a faithfully flat extension of Noetherian local rings of the same Krull dimension. The

residue field R(X)/mR(X) of R(X) contains the residue field R/m of R. In fact, R(X)
mR(X)

∼=
( R[X]

mR[X]

)
mR[X]

, which is the field of fractions of (R/m)[X] and thus an infinite field.

Here is a list of easy facts (taken from [13]):

Facts 4.9 Let J, I be ideals in a Noetherian local ring (R, m). Then

(1) J ⊆ I if and only if JR(X) ⊆ IR(X).
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(2) ht(I) = ht(IR(X)). In particular, dimR = dimR(X), and I is m-primary if and only

if IR(X) is mR(X)-primary.

(3) J ⊆ I is a reduction if and only if JR(X) ⊆ IR(X) is a reduction.

(4) µ(I) = µ(IR(X)), ℓ(I) = ℓ(IR(X)).

(5) R is regular (resp. Cohen–Macaulay) if and only if R(X) is regular (resp. Cohen–

Macaulay).

(6) If I is m-primary, λ(R/I) = λ(R(X)/IR(X)). (Thus the Hilbert–Samuel functions

of I and IR(X) are the same.)

(7) I is generated by a regular sequence if and only if IR(X) is generated by a regular

sequence.

(8) If I = q1 ∩ · · · ∩ qk is a (minimal) primary decomposition, then IR(X) = q1R(X) ∩
· · · ∩ qkR(X) is a (minimal) primary decomposition.

(9) IR[X] = IR[X] and thus IR(X) = IR(X). In particular, I is integrally closed if

and only if IR[X] is integrally closed, which holds if and only if IR(X) is integrally

closed.

(10) The reduction number of I equals the reduction number of IR[X]mR[X].

Thus if we have an infinite residue field we are guaranteed the existence of minimal

reductions. How does one go about finding a minimal reduction? Picking the correct

number of sufficiently general/random elements will do the trick (see the paragraphs before

the last Facts). However, how can we be sure that the random elements work? A standard

and more formal method is via superficial elements:

Definition 4.10 We say that x ∈ I is a superficial element of I if there exists c ∈ N

such that for all n ≥ c, (In+1 :R x) ∩ Ic = In.

Facts 4.11

(1) In is always contained in (In+1 :R x) ∩ Ic. It is the other inclusion that makes

superficial elements special.

(2) If (R, m) has infinite residue field, choose x ∈ I such that its image in I/I2 ⊆ grI(R)

is not contained in any associated prime if 0 that does not contain all of I/I2. Then

you can verify that x is superficial for I .

(3) Thus by finding a superficial element x1 of I , a superficial element x2 ∈ I of I/(x1),

etc., we can build a superficial sequence. A superficial sequence of length ℓ(I) gener-

ates a minimal reduction.

Theorem 4.12 (Sally’s machine) Let (R, m) be a Noetherian local ring, and let I be an

ideal of R. Let (x1, . . . , xn) ⊆ I be a minimal reduction of I generated by a superficial

sequence of length n. Fix r ≤ n, and set J = (x1, . . . , xr). Then

depth(grI(R)) ≥ r + 1 if and only if depth(grI/J (R/J)) ≥ 1.
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This “machine” has been used with great effectiveness to study Hilbert coefficients and

the depth of Rees algebras by a number of researchers, especially by the Genova school.

We finish this lecture with mentioning the Briançon–Skoda-type results. The first

such result was motivated by a question from analysis. Lipman–Sathaye [18] and Lipman–

Teissier [19] generalized it to regular rings (and somewhat more generally), after which it

was picked up by the tight closure people. I simply present the result here in the simplest

general form:

Theorem 4.13 Let R be a regular ring, and I an ideal generated by l elements. Then for

any n ≥ 0, In+l ⊆ In+1.

In particular, if R has dimension d, then for any ideal I and any n ≥ 0,

In+d ⊆ In+1.

Here is a proof of this display. It suffices to prove this after localization at all the maximal

prime ideal. So we may assume that R is a Noetherian local ring with maximal ideal m,

of dimension at most d. If R/m is not infinite, we may pass to the faithfully flat extension

R(X). The ideal I extended to R(X) has a d-generated reduction J , so that by the theorem

above, In+dR(X) = Jn+dR(X) ⊆ JnR(X) ⊆ InR(X), whence In+d ⊆ InR(X), as was to

be proved.

5 Computation of integral closure
(Old algorithms, as well as recent improvements due to Greuel, Laplagne, Seelisch)

For simplicity in this lecture all rings are domains. We also need the Noetherian

assumption, otherwise it would be hard or even impossible to operate computationally on

the ring. Furthermore, for any algorithm to terminate, we need that R be module-finite

over R. By Emmy Noether’s result, this is true for any finitely generated algebra over a

field or over Z, and it is also true for any finitely generated algebra over a complete local

domain, etc.

Recall that a Noetherian integral domain is integrally closed if and only if it satisfies

Serre’s conditions (R1) and (S2). Stolzenberg’s procedure first constructs a module-finite

extension satisfying (R1), and one of Vasconcelos’s algorithms first constructs a module-

finite extension satisfying (S2).

We start with the oldest “algorithm”: The main steps of Stolzenberg–Seidenberg pro-

cedure for computing the integral closure of an affine domain R are as follows:

(1) Find a Noether normalization A of R.

(2) Find a non-zero element c ∈ A in the conductor of R.

(3) Compute a primary decomposition of cA and cR.

(4) Find a module-finite extension of R that satisfies Serre’s condition (R1).
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(5) Under the assumption that R satisfies (R1), find the integral closure of R.

Steps (1) through (3) are rather straightforward (even if hard). Step (5) is easy:

R = I
c
, where I is the intersection of the minimal components of cR! This is under the

assumption that R satisfies Serre’s condition (R1), in general we only have I
c
⊆ R. Thus,

the hard part is step (4). For this we need the following lemma:

Lemma 5.1 Let R be a Noetherian domain, and P a prime ideal of height one in R that

fails Serre’s condition (R1), i.e., RP is not a Noetherian valuation ring. Let a, b ∈ R be

part of a minimal generating set of PRP . Assume that R contains infinitely many units

u1, u2, . . . such that for all i 6= j, ui − uj is also a unit. Then there exists an integer i such

that a/(uib + a) is integral over RP and is not in RP . In fact, there exists an integer N

such that whenever {ui | i = 1, . . . , N + 1} ∪ {ui − uj | 1 ≤ i < j ≤ N + 1} consists of units,

then for some i ∈ {1, . . . , N + 1}, a/(uib + a) is integral over RP and is not in RP .

By the Jacobian criterion, at least for affine domains over perfect fields, we know

precisely when the domain does not satisfy (R1). Then by the lemma, after clearing

denominators, there exists r ∈ R \ R. Repeating the construction with R[r] in place of R

creates an ascending chain of domains between R and R. By Emmy Noether’s Theorem

this procedure has to stop, and it stops at a module-finite extension of R inside R that

satisfies (R1).

Well, r exists, but can we find it algorithmically? Stolzenberg and Seidenberg convert

the problem into the structure of finitely generated modules over principal ideal domains:

for any irreducible factor D of c, A(D) is a principal ideal domain, and RP is a localization

of the module-finite extension RA\(D). Integrality of an element can be determined via

characteristic polynomials. However, this procedure has never been implemented, as it has

various hard parts.

The first real algorithm is due to de Jong [6] and is based on the work of Grauert and

Remmert [9], [10].

Theorem 5.2 (Grauert and Remmert [9]) Let R be a Noetherian integral domain and J

a non-zero integrally closed ideal of R such that V (J) contains the non-normal locus of R.

Then the following are equivalent:

(1) R is integrally closed.

(2) For all non-zero fractional ideals I of R, HomR(I, I) = R.

(3) For all non-zero ideals I of R, HomR(I, I) = R.

(4) HomR(J, J) = R.

We always have R ⊆ HomR(I, I) ⊆ R, the second inclusion by the Determinantal

trick, for all non-zero ideals I of R. Furthermore, HomR(I, I) is a ring. It can happen

that for random ideals I , R = HomR(I, I) even if R is not integrally closed, however, for
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the special ideal J R = HomR(J, J) if and only if R is integrally closed. Thus, if we can

compute J , we can get a proper extension of R contained in R, and then we repeat the

algorithm on the strictly larger ring HomR(J, J). However, how do we compute J? By the

Jacobian criterion, if R is affine over a perfect field, we can first take J ′ be the Jacobian

ideal, but then J would have to be a non-zero integrally closed ideal whose radical contains√
J ′. A candidate is of course J = J ′, however, to compute the integral closure of J ′,

we need to compute the integral closure of its Rees ring, which makes the problem that

much harder. So, of course, we take J =
√

J ′. This step is computationally independent

of integral closure. One can use for example the algorithm for computing the radicals due

to Eisenbud, Huneke, Vasconcelos [7, Theorem 2.1].

Here are some improvements to the basic algorithm by de Jong:

(1) (Greuel, Laplagne, Seelisch 2010) When iterating the procedure above, one need not

compute the Jacobian ideal for each intermediate ring (this is very time-consuming).

One only needs to take at each step J to be the radical of the extension of the original

Jacobian ideal (for the first ring).

(2) (Lipman [17]) If R is essentially of finite type over a field of characteristic 0, then R

is integrally closed if and only if HomR(J−1, J−1) = R, where J is the Jacobian ideal

of R over the field.

(3) (Vasconcelos [27]) This procedure avoids the computation of the radical ideal in some

steps. Let R be an affine domain over a field of characteristic zero. First compute a

Noether normalization A of R. The process that yields A also yields a presentation

of R as an A-module. Then compute R∗∗ = HomA(HomA(R, A), A). This is actually

a subring of R that satisfies (S2). If R satisfies (R1), so does R∗∗, hence R∗∗ is the

integral closure of R. If, however, R does not satisfy (R1), then one can apply either

de Jong’s or Lipman’s step to find a proper extension of R contained in R. Then one

repeats the procedure with this proper extension in place of R.

(4) (Vasconcelos [28]) This procedure gives an a priori upper bound on the number of

steps. Let R be an affine domain over a field of characteristic zero. Compute a

Noether normalization A′ of R, and an element r ∈ R such that Q(A′)(r) = Q(R).

(The last condition is the Primitive Element Theorem.) Set A = A′[r]. Then A is

Gorenstein, A ⊆ R is module-finite, and A and R have the same field of fractions. Set

R1 = HomA(HomA(R, A), A). As before, R1 is a subring of R that contains R and

satisfies Serre’s condition (S2). If R1 6= R, i.e., if R1 is not integrally closed, compute

a proper extension R′
1 of R1 contained in R by de Jong’s or Lipman’s procedure. Set

R2 = HomA(HomA(R′
1, A), A), etc. One gets a filtration

R ( R1 ( R2 ( · · · ⊆ R,

where each Ri satisfies Serre’s condition (S2). Vasconcelos proved [28, Theorem

2.2] that the number of Ri needed is at most
∑

ht P=1 λ(AP /JAP ), where J is the

Jacobian ideal of A over the field.
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(5) (Gianni and Trager [8]) If t is a non-zero element of the Jacobian ideal (so we do

not have to compute the whole Jacobian ideal, which is time-consuming), and if R

is not integrally closed, then the ring HomR(
√

tR,
√

tR) properly contains R and is

contained in R.

An algorithm of a very different flavor is due to Singh and Swanson [26] and is based

on the work of Leonard and Pellikaan [16] and Leonard [15]. Let R be an affine domain

positive prime characteristic p that is separably generated over the base field. Let D be a

non-zero element of the Jacobian ideal (so we do not need to compute the whole Jacobian

ideal).

(1) Set V0 = 1
DR. This is a finitely generated R-module. By a result of Lipman and

Sathaye [18], DR ⊆ R, hence V0 contains R.

(2) Inductively define

Ve+1 = {f ∈ Ve : fp ∈ Ve}.
(3) The prime characteristic makes the Ve algorithmically computable. Namely, the mod-

ule Ue = DVe is an ideal of R. The inductive definition of Ve translates to U0 = R

and

Ue+1 = {r ∈ Ue : rp ∈ Dp−1Ue}.
Furthermore,

Ue+1 = Ue ∩ ker
(
R

F→ R
π→ R/Dp−1Ue

)
,

where F is the Frobenius endomorphism of R, and π the canonical surjection. Now

clearly Ue+1 is computable, and hence so are the Ve.

(4) Note that we have a descending chain

V0 ⊇ V1 ⊇ V2 ⊇ V3 ⊇ · · ·
of R-modules. It is straightforward to prove that all these modules contain R. (Be-

ware: In general, we do not have a descending chain condition on modules between

R and R.)

(5) There exists e such that Ve equals R, and so Ve = Ve+1. Namely, let v1, . . . , vs be the

Rees valuations of the ideal DR. Let e be an integer such that pe > vi(D) for each i.

Suppose r/D ∈ Ve. Then (r/D)pe ∈ V0, so rpe ∈ Dpe−1R, and pevi(r) ≥
(
pe−1

)
vi(D)

for each i. It follows that vi(r) ≥ vi(D) − vi(D)/pe > vi(D) − 1 for each i. Since

vi(r) is an integer, we have that vi(r) ≥ vi(D) for each i. Thus r ∈ DR ⊆ DR = DR,

so that r/D ∈ R.

(6) There exists e such that Ve = Ve+1. Then by definition Ve+i = Ve for each i ≥ 1, and

so Ve = R.

Thus the algorithm terminates, the given chain of modules between R and R does

satisfy the descending chain.

This algorithm should be and is less efficient when p is large. Nevertheless, for many

examples this algorithm is faster than the other implemented algorithms.

27



References

1. M. Artin, On the joins of Hensel rings, Advances in Math. 7 (1971), 282–296.

2. M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-

Wesley Publishing Company, 1969.

3. L. Burch, On ideals of finite homological dimension in local rings. Proc. Cambridge

Phil. Soc. 64 (1968), 941–948.

4. L. Burch, Codimension and analytic spread. Proc. Cambridge Phil. Soc. 72 (1972),

369–373.

5. S. D. Cutkosky, On unique and almost unique factorization of complete ideals II.

Invent. Math. 98 (1989), 59–74.

6. T. de Jong, An algorithm for computing the integral closure. J. Symbolic Comput.

26 (1998), 273–277.

7. D. Eisenbud, C. Huneke and W. Vasconcelos, Direct methods for primary decom-

position. Invent. Math. 110 (1992), 207–235.

8. P. Gianni and B. Trager, Integral closure of Noetherian rings. In Proceedings of the

1997 International Symposium on Symbolic and Algebraic Computation (Kihei, HI),

New York, ACM Press, 1997, pp. 212–216.

9. H. Grauert and R. Remmert, Analytische Stellenalgebren. Berlin, Springer–Verlag,

1971.

10. H. Grauert and R. Remmert, Coherent Analytic Sheaves. Berlin, Sprin-ger–Verlag,

1984.

11. M. Hochster and C. Huneke, Infinite integral extensions and big Cohen-Macaulay

algebras, Ann. of Math. 135 (1992), 53–89.
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