
THE BACK-AND-FORTH METHOD FOR
WASSERSTEIN GRADIENT FLOWS

MATT JACOBS, WONJUN LEE, AND FLAVIEN LÉGER

Abstract. We present a method to efficiently compute Wasserstein
gradient flows. Our approach is based on a generalization of the back-
and-forth method (BFM) introduced in [JL20] to solve optimal transport
problems. We evolve the gradient flow by solving the dual problem to
the JKO scheme. In general, the dual problem is much better behaved
than the primal problem. This allows us to efficiently run large scale
gradient flows simulations for a large class of internal energies including
singular and non-convex energies.

1. Introduction

In this work, we are interested in simulating the evolution of parabolic
equations of the form

∂tρ−∇ · (ρ∇φ) = 0,

φ = δU(ρ).
(1.1)

Equation (1.1), often referred to as Darcy’s law or the generalized porous
medium equation, describes the evolution of a mass density ρ flowing along
a pressure gradient ∇φ generated by an internal energy functional U . This
class of equations models various physical phenomena such as fluid flow, heat
transfer, aggregation-diffusion, and crowd motion [Váz07, San15]. In general,
these equations are both stiff and non-linear making them challenging to
solve numerically. For example, in the important special case where U(ρ) =

1
m−1

∫
ρm (m > 1), equation (1.1) becomes a non-linear version of the heat

equation
∂tρ−∆(ρm) = 0,

known as the porous medium equation (PME). When U is non-differentiable
or non-convex, simulation of these equations becomes even more difficult.
Thus, in this paper, our goal is to design a method that can efficiently and
accurately simulate equation (1.1) for a wide variety of internal energies U .

Our approach to simulating Darcy’s law is based on the celebrated inter-
pretation of equation (1.1) as a gradient flow with respect to the Wasserstein
metric [JKO98, Ott01]. This interpretation can be used to create a discrete-
in-time approximation scheme known as the JKO scheme [JKO98]. The
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scheme constructs approximate solutions by iterating

(1.2) ρ(n+1) := argmin
ρ

U(ρ) +
1

2τ
W 2

2 (ρ, ρ(n)).

Here, τ plays the role of the time step in the scheme and W2(·, ·) is the
2-Wasserstein metric from the theory of optimal transportation [San15] (see
Section 2.1 for a brief overview of optimal transport and the 2-Wasserstein
metric). Thanks to the variational structure of the scheme, the iterates are
unconditionally energy stable and one can choose the time step τ indepen-
dently from any spatial discretization. In addition, the JKO scheme retains
many desirable properties of the continuum equation, such as comparison
and contraction type principles [JKT20, DPMSV16, AKY14].

In light of the many favorable properties of the JKO scheme, there have
been many works devoted to the computation of minimizers for problem
(1.2), see [BCW10, CM10, Pey15, BCMO16, BCL16, CDPS17, CCWW19,
CWXY20, LMSS20] to name just a few. Despite the amount of work on
this problem, it remains a challenge to efficiently solve the JKO scheme at
a high resolution. The main difficulty in solving problem (1.2) lies in the
handling of the Wasserstein distance term. Indeed, there is not a simple
formula that gives the variation of the Wasserstein distance with respect to
the density ρ. As such, essentially all methods for solving (1.2) are adap-
tations of algorithms for computing the Wasserstein distance between two
fixed densities.

In this paper, we solve problem (1.2) by adapting the back-and-forth
method (BFM) introduced in [JL20]. BFM is a state-of-the-art algorithm for
computing optimal transport maps between two fixed densities. Instead of
directly solving Monge’s optimal transportation problem, BFM finds optimal
maps by solving the associated Kantorovich dual problem. Building on this
approach, rather than directly solving problem (1.2), we instead compute
solutions to its dual problem. The dual problem is a concave maximization
problem that produces the pressure variable at the next time step φ(n+1).
The optimal density variable can then easily be recovered from the pressure
via the duality relation φ(n+1) = δU(ρ(n+1)).

There are several advantages to solving the dual problem rather than
the original primal problem. The pressure variable φ has better regularity
than the density variable ρ. Indeed, at worst, the pressure gradient must
be square integrable. As a result, the pressure is better suited to discrete
approximation schemes. In addition, there is an explicit formula to compute
derivatives of the dual functional, hence one can apply gradient ascent to
solve the dual problem (the corresponding gradient descent scheme for the
primal problem is much more difficult). Finally, the dual approach is very
convenient when U encodes hard constraints (such as incompressibility of
the density), as the dual problem will be unconstrained.

Leveraging the advantages of the dual problem to (1.2) and the special
gradient ascent structure of BFM, we are able to rapidly and accurately solve
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the JKO scheme for a large class of internal energies U . We show that the
algorithm increases the value of the dual problem at every step. In particular,
this analysis holds even in cases where the Hessian of U is singular and our
analysis has no dependence on the size of the computational grid. As a result,
we are able to simulate equation (1.1) on a much larger scale than previous
methods, and we are easily able to handle difficult cases like incompressible
crowd motion models with obstacles and aggregation-diffusion equations.

1.1. Overall approach. The back-and-forth method for Wasserstein gradi-
ent flows is based on solving the dual problem associated to the JKO scheme.
The starting point for this analysis is Kantorovich’s dual formulation of op-
timal transport. Given two measures µ and ν, the dual formulation of the
2-Wasserstein distance is given by

(1.3)
1

2τ
W 2

2 (µ, ν) = sup
(φ,ψ)∈C

∫
Ω
ψ(x) dµ(x)−

∫
Ω
φ(y) dν(y),

where we maximize over the constraint

C := {(φ, ψ) ∈ C(Ω)× C(Ω) : ψ(x)− φ(y) ≤ 1

2τ
|x− y|2}.

Using the dual formulation of optimal transport, we can rewrite problem
(1.2) as

inf
ρ

sup
(φ,ψ)∈C

U(ρ) +

∫
Ω
ψ(x) dρ(n)(x)−

∫
Ω
φ(y) dρ(y).

When U is convex, we can interchange the inf and sup to get an equivalent
dual problem to (1.2):

(1.4) sup
(φ,ψ)∈C

∫
Ω
ψ(x) dρ(n)(x)− U∗(φ),

where U∗ is the convex conjugate of U,

U∗(φ) := sup
ρ

∫
Ω
φ(y) dρ(y)− U(ρ).

Problem (1.4) looks difficult due to the constraint encoded by C. Never-
theless, there is a very convenient way to reformulate the problem. Because
ρ(n) is a nonnegative measure, it is favorable to choose ψ to be pointwise as
large as possible. If we fix φ, it then follows that the corresponding largest
possible choice for ψ is given by

(1.5) φc(x) := inf
y∈Ω

φ(y) +
1

2τ
|x− y|2.

Conversely, U∗ is increasing with respect to φ (see Section 2.1), therefore,
we would like to choose φ to be pointwise as small as possible. Thus, if we
fix ψ, then the corresponding smallest choice for φ is given by

(1.6) ψc̄(y) := sup
x∈Ω

ψ(x)− 1

2τ
|x− y|2.
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Formulas (2.1) and (1.6) are known as the backward-c-transform and
forward-c-transform respectively. These transforms play an essential role
in optimal transport and are integral to our method. Crucially, we can use
these transforms to eliminate the constraint C and either one of the variables
φ or ψ. More explicitly, problem (1.4) is equivalent to maximizing either one
of the following two unconstrained functionals:

(1.7) J(φ) :=

∫
Ω
φc(x) dρ(n)(x)− U∗(φ),

(1.8) I(ψ) :=

∫
Ω
ψ(x) dρ(n)(x)− U∗(ψc̄).

Indeed, if φ∗ is a maximizer of J and ψ∗ is a maximizer of I, then we must
have the relations

φc∗ = ψ∗, ψc̄∗ = φ∗,

and (φ∗, ψ∗) is a maximizer of (1.4). The reformulations I and J genuinely
simplify the task of finding maximizers. On a regular discrete grid, the c-
transform can be computed very efficiently [Luc97, JL20]. As a result, it
is much more tractable to maximize I and J , rather than trying work with
(1.4) directly.

We will find the maximizers φ∗ and ψ∗ by building upon the BFM algo-
rithm introduced in [JL20]. The original BFM gives a very efficient scheme
for finding the maximizers in the special case where U∗ is a linear functional.
Rather than focusing on either I or J , BFM simultaneously maximizes both
functionals. The method proceeds by hopping back-and-forth between gra-
dient ascent updates on J in φ-space and gradient ascent updates on I in
ψ-space (hence the name). In between gradient steps, information in one
space (φ-space or ψ-space) is propagated back to the other by taking a
forward/backward c-transform. As noted in [JL20], the advantage of the
back-and-forth approach is that certain features of the optimal solution pair
(φ∗, ψ∗) may be easier to build in one space compared to the other. As a
result, the back-and-forth method converges far more rapidly than vanilla
gradient ascent methods that operate only on φ-space or only on ψ-space.

In order to generalize BFM to the Wasserstein gradient flow case, we need
to be able to guarantee the stability of gradient ascent steps on (1.7) and
(1.8) when U∗ is nonlinear. In fact, for many important cases, the Hessian
of U∗ may have a singular component. To overcome this difficulty, we per-
form the gradient ascent steps in an appropriately weighted Sobolev space.
The Sobolev control allows us to use Stokes’ Theorem to convert boundary
integrals into integrals over the full space, thus taming the singularities of
U∗ (see Section 3.2). As a result of this continuous analysis, the discretized
scheme will have a convergence rate that is independent of the grid size.
The back-and-forth method is summarized in Algorithm 1, where H is the
aforementioned weighted Sobolev space.
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Algorithm 1: The back-and-forth scheme for solving (1.4)

Given ρ(n) and φ0, iterate:
φk+ 1

2
= φk +∇HJ(φk)

ψk+ 1
2

= (φk+ 1
2
)c

ψk+1 = ψk+ 1
2

+∇HI(ψk+ 1
2
)

φk+1 = (ψk+1)c̄

Once we have solved the dual problem, we can recover the solution to the
original problem (1.2). If U is convex, then the optimal dual variable φ∗ is
related to ρ(n+1) through the duality relation ρ(n+1) = δU∗(φ∗) (see Theo-
rem 2.7 in Section 2.2). When U is not convex, the connection between (1.2)
and the dual problem becomes more tenuous. Luckily, we can circumvent
this difficulty using a convexity splitting scheme [Eyr98]. Indeed, if we write
U = U1 +U0 where U1 is convex and U0 is concave, then we can replace the
JKO scheme (1.2) with the modified scheme
(1.9)

ρ(n+1) = argmin
ρ

U1(ρ) + U0(ρ(n)) + (δU0(ρ(n)), ρ− ρ(n)) +
1

2τ
W 2

2 (ρ, ρ(n)).

It is well-known that convexity splitting retains the energy stability of a fully
implicit scheme. Crucially, the energy term U1(ρ)+U0(ρ(n))+(δU0(ρ(n)), ρ−
ρ(n)) in (1.9) is a convex function of the variable ρ, and thus, we can apply
the duality approach. All together, our method gives an extremely rapid
way to simulate the PDE (1.1) even when U is non-convex or irregular.

The remainder of the paper is organized as follows. In Section 2, we review
important background information on optimal transport, convex analysis,
and optimization. In Section 3, we present the back-and-forth algorithm and
explain how to guarantee stability and choose step sizes. Lastly, in Section 4,
we demonstrate the accuracy, speed, and versatility of the algorithm through
a wide suite of numerical experiments. In particular, our experiments include
many cases that are well-known to be numerically challenging.

2. Background

In this section, we will rigorously establish the connection between the pri-
mal and dual formulations of the JKO scheme. Furthermore, we will review
key concepts from optimal transport and convex analysis that are needed
to compute the gradients ∇HJ,∇HI and establish stability of Algorithm 1.
Note that throughout the paper we shall assume that Ω ⊂ Rd is a bounded
open set.

2.1. The c-transform and optimal transport. Throughout this section
the space of continuous functions over Ω will be denoted by C(Ω).
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Definition 2.1. Given φ ∈ C(Ω) its backward c-transform is

(2.1) φc(x) := inf
y∈Ω

φ(y) +
1

2τ
|x− y|2.

Given ψ ∈ C(Ω) its forward c-transform is

(2.2) ψc̄(y) := sup
x∈Ω

ψ(x)− 1

2τ
|x− y|2.

Lemma 2.1 ([San15]). Given φ, ψ ∈ C(Ω), we have

φcc̄ ≤ φ, ψ ≤ ψc̄c,

and
φcc̄c = φc, ψc̄cc̄ = ψc̄.

Definition 2.2. Given φ, ψ ∈ C(Ω), we say that φ is c-convex if φcc̄ = φ and
we say that ψ is c-concave if ψc̄c = ψ. Furthermore, if φc = ψ and ψc̄ = φ,
then we say the pair (φ, ψ) is c-conjugate.

The following two propositions establish the fundamental relationship be-
tween optimal transport and the c-transform.

Proposition 2.2 ([Gan94, Gan95b, GM96]). If φ : Ω → R is c-convex and
ψ : Ω→ R is c-concave, then the maps

(2.3) Tφ(x) := argmin
y∈Ω

φ(y) +
1

2τ
|x− y|2

and

(2.4) Sψ(y) := argmax
x∈Ω

ψ(x)− 1

2τ
|x− y|2

are well-defined and unique almost everywhere. Furthermore, if u ∈ C(Ω),
then for almost every x, y ∈ Ω we have the following perturbation formulas
for the c-transform

(2.5) lim
t→0+

(φ+ tu)c(x)− φc(x)

t
= u(Tφ(x)),

(2.6) lim
t→0+

(ψ + tu)c̄(y)− ψc̄(y)

t
= u(Sψ(y)).

Finally, if φ and ψ are c-conjugate, then

Sψ(y) = y + τ∇φ(y),

Tφ(x) = x− τ∇ψ(x),

and Tφ
(
Sψ(y)

)
= y, Sψ

(
Tφ(x)

)
= x almost everywhere.
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Proposition 2.3 ([San15]). If µ, ν ∈ L1(Ω) are nonnegative densities with
the same mass, then

1

2τ
W 2

2 (µ, ν) = sup
φ∈C(Ω)

∫
Ω
φc(x)µ(x)dx−

∫
Ω
φ(y) ν(y)dy,

1

2τ
W 2

2 (µ, ν) = sup
ψ∈C(Ω)

∫
Ω
ψ(x)µ(x)dx−

∫
Ω
ψc̄(y) ν(y)dy.

Now we can state the fundamental result that guarantees the existence
and uniqueness of the optimal transport maps.

Theorem 2.4 ([Bre91, Gan95a, GM96]). If µ, ν ∈ L1(Ω) are nonnegative
densities with the same mass, then there exists a c-conjugate pair (φ∗, ψ∗)
such that

φ∗ ∈ argmax
φ∈C(Ω)

∫
Ω
φc(x)µ(x)dx−

∫
Ω
φ(y) ν(y)dy,

ψ∗ ∈ argmax
ψ∈C(Ω)

∫
Ω
ψ(x)µ(x)dx−

∫
Ω
ψc̄(y) ν(y)dy,

1

2τ
W 2

2 (µ, ν) =

∫
Ω
ψ∗(x)µ(x)dx−

∫
Ω
φ∗(y) ν(y)dy,

and Tφ∗ , Sψ∗ are the unique optimal transport maps sending µ to ν and ν to
µ respectively, i.e. Tφ∗#µ = ν and Sψ∗#ν = µ.

2.2. Convex duality. Now that we have developed the basics of optimal
transport, we are ready to return to the JKO scheme. To iterate the JKO
scheme, one must be able to solve generalized optimal transport (GOT)
problems of the form

(2.7) ρ∗ = argmin
ρ∈L1(Ω)

U(ρ) +
1

2τ
W 2

2 (ρ, µ),

where µ ∈ L1(Ω) is a given nonnegative density. Our method solves the GOT
problem by appealing to its dual formulation. In the rest of this subsection,
we shall derive the dual problem and develop its basic properties. To obtain
a well-behaved dual problem, we shall need the following assumptions on the
energy U .

Assumption 1. The internal energy is given by a proper, convex, and lower
semicontinuous functional U : L1(Ω)→ R ∪ {+∞} such that U(ρ) =∞ if ρ
is negative on a set of positive measure.

Assumption 2. There exists a function s : R→ R∪{+∞} with superlinear
growth such that

U(ρ) ≥
∫

Ω
s(ρ(y)) dy.

Remark 2.1. Assumption 1 encodes the fact that ρ must be a nonnegative
density, while Assumption 2 guarantees that for each B ∈ R the sets {ρ ∈
L1(Ω) : U(ρ) < B} are weakly compact.
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Remark 2.2. Except for the convexity requirement, Assumptions 1 and 2 are
very natural in the context of Wasserstein gradient flows. Note that we will
eventually consider non-convex U in Section 3.3.

At the heart of duality is the notion of convex conjugation.

Definition 2.3. Given a functional U : L1(Ω) → R its convex conjugate
U∗ : L∞(Ω)→ R is defined by

U∗(φ) := sup
ρ∈L1(Ω)

∫
Ω
φ(x)ρ(x) dx− U(ρ),

Thanks to Assumption 1, U∗ possess an important monotonicity property.

Lemma 2.5. U∗ is monotonically increasing, i.e. if φ0, φ1 : Ω → R are
functions such that φ0 ≤ φ1 pointwise everywhere, then

U∗(φ0) ≤ U∗(φ1).

Proof. By Assumption 1 the internal energy is finite only over nonnegative
densities, thus,

U∗(φ) = sup
ρ≥0

∫
Ω
φ(x) ρ(x)dx− U(ρ).

If we take some ρ ∈ L1(Ω), with ρ(x) ≥ 0 a.e., then we have∫
Ω
φ0(x) ρ(x)dx− U(ρ) ≤

∫
Ω
φ1(x) ρ(x)dx− U(ρ).

Taking a supremum over ρ ≥ 0 finishes the proof. �

Now we are ready to reintroduce the twin dual functionals I and J .

Proposition 2.6. Fix a nonnegative density µ ∈ L1(Ω). The functionals
I, J given by

J(φ) :=

∫
Ω
φc(x)µ(x)dx− U∗(φ)

I(ψ) :=

∫
Ω
ψ(x)µ(x)dx− U∗(ψc̄),

are proper, weakly upper semicontinuous, concave and supφ∈C(Ω) J(φ) =

supψ∈C(Ω) I(ψ). Furthermore, if φ is c-convex and ψ is c-concave, then J
and I have first variations

δJ(φ) = Tφ#µ− δU∗(φ),

δI(ψ) = µ− Sψ#δU
∗(ψc̄),

where δU∗ is the first variation of U∗.

Proof. Following the logic in the proof of Lemma 2.5, we may write

U∗(ψc̄) = sup
ρ≥0

∫
Ω
ψc̄(y) ρ(y)dy − U(ρ).
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Next, let M(Ω × Ω) denote the space of nonnegative measures on Ω × Ω,
and for any given density ρ ≥ 0 define

Π(ρ) :=

{
π ∈M(Ω× Ω) :

∫∫
Ω×Ω

f(y) dπ(x, y) =

∫
Ω
f(y) ρ(y)dy for all f ∈ C(Ω)

}
.

Using the definition of the c-transform, we can then write∫
Ω
ψc̄(y) ρ(y)dy = sup

π∈Π(ρ)

∫∫
Ω×Ω

(
ψ(x)− 1

2τ
|x− y|2

)
dπ(x, y).

Therefore, we have

−U∗(ψc̄) = inf
ρ≥0

inf
π∈Π(ρ)

U(ρ)−
∫∫

Ω×Ω

(
ψ(x)− 1

2τ
|x− y|2

)
dπ(x, y).

Now it is clear that I can be written as the infimum over a family of lin-
ear functionals of ψ. Hence, I must be proper, concave and weakly upper
semicontinuous. An essentially identical argument applies to J .

Since U∗ is monotonically increasing, Lemma 2.5 implies that for any
φ, ψ ∈ C(Ω)

J(φ) ≤ I(φc), I(ψ) ≤ J(ψc̄).

Therefore, we must have

sup
ψ∈C(Ω)

I(ψ) = sup
φ∈C(Ω)

J(φ).

When φ and ψ are c-convex/concave respectively, the formulas for the first
variations follow directly from Proposition 2.2. �

Finally, we conclude this subsection by stating the essential result linking
the primal and dual generalized optimal transport problems. Crucially, this
shows how to recover the solution to (2.7) from the maximizers of I and J .

Theorem 2.7 ([JKT20]). If µ ∈ L1(Ω), U satisfies Assumptions 1, 2, and
δU(µ) is not a constant function, then there exists a unique density ρ∗ and
a pair of c-conjugate functions (φ∗, ψ∗) such that

ρ∗ = argmin
ρ∈L1(Ω)

U(ρ) +
1

2τ
W 2

2 (ρ, µ), φ∗ ∈ argmax
φ∈C(Ω)

J(φ), ψ∗ ∈ argmax
ψ∈C(Ω)

I(ψ),

U(ρ∗) +
1

2τ
W 2

2 (ρ∗, µ) = J(φ∗) = I(ψ∗),

ρ∗ ∈ δU∗(φ∗), φ∗ ∈ δU(ρ∗), ρ∗ = Tφ∗#µ.

Remark 2.3. Note that if δU(µ) is constant, then µ = argminρ∈L1(Ω) U(ρ) +
1
2τW

2
2 (ρ, µ). Thus, the excluded case is trivial.
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2.3. Concave gradient ascent. Now that we see how to link the JKO
scheme to the dual functionals I and J , it remains to develop a method
to find the maximizers of I and J . To that end, in this subsection, we
review classical unconstrained gradient ascent. Let us first recall the notion
of gradient. This will require the structure of a real Hilbert space H with
inner product 〈·, ·〉H and norm ‖·‖H.

Definition 2.4. Given a point ϕ ∈ H, we say that a bounded linear map
δF (ϕ) : H → R is the first variation (Fréchet derivative) of F at ϕ if

lim
‖h‖H→0

‖F (ϕ+ h)− F (ϕ)− δF (ϕ)(h)‖H
‖h‖H

= 0.

Definition 2.5. We say that a map ∇HF : H → H is the H-gradient of F
(or simply gradient if there is no ambiguity about the space H) if

〈∇HF (ϕ), h〉H = δF (ϕ)(h)

for all (ϕ, h) ∈ H ×H.

The above identity highlights that gradients are intimately linked to the
inner product of the Hilbert space, in contrast to first variations. Indeed,
note that one can define the notion of a first variation over any normed vector
space, while the notion of a gradient requires an inner product.

Gradient ascent method. Given a concave functional J over H, consider the
gradient ascent iterations

(2.8) φk+1 = φk +∇HJ(φk).

The gradient ascent scheme (2.8) can equivalently be written in the varia-
tional form

(2.9) φk+1 = argmax
φ

J(φk) + δJ(φk)(φ− φk)−
1

2
‖φ− φk‖2H.

Note that equations (2.8) and (2.9) typically include a step size parameter
that controls how far one travels in the gradient direction. For reasons that
will become clear shortly (see equation (2.13) and the subsequent discussion),
we prefer to incorporate any parameters into the norm ‖·‖H itself.

In order to obtain convergence of the scheme

J(φk) −−−→
k→∞

sup
φ
J(φ),

with an efficient rate, it is essential to choose the norm ‖·‖H properly. If
the norm is too weak, then the algorithm may become unstable and fail to
converge. On the other hand, if the norm is too strong, then very little change
happens at each step and the algorithm converges slowly. The following
theorem, one of the cornerstones of optimization, explains how to balance
these competing considerations.
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Theorem 2.8 ([Nes13]). Let J : H → R be a twice Fréchet-differentiable
concave functional with maximizer φ∗. If

(2.10) − δ2J(φ)(h, h) ≤ ‖h‖2H,

for all φ, h ∈ H (J is said to be “1-smooth”), then the gradient ascent scheme

φk+1 = φk +∇HJ(φk)

starting at a point φ0 satisfies the ascent property

(2.11) J(φk+1) ≥ J(φk) +
1

2
‖∇HJ(φk)‖2H,

and has the convergence rate

(2.12) J(φ∗)− J(φk) ≤
‖φ∗ − φ0‖2H

2k
.

From Theorem 2.8, we can again see the competing interests of weakening
or strengthening the norm ‖·‖H. A stronger norm makes it easier to satisfy
equation (2.10), while a weaker norm gives a better convergence rate in
(2.12). Putting these considerations together, we see that it is optimal to
choose the weakest possible norm such that (2.10) holds.

Sobolev norm. Let Ω be an open bounded convex subset of Rd. Our gradient
ascent schemes use a norm H based on the Sobolev space H1(Ω). For two
constants Θ1 > 0 and Θ2 > 0 we define

(2.13) ‖h‖2H =

∫
Ω

Θ2|∇h(x)|2 + Θ1|h(x)|2 dx.

The precise value of Θ1 and Θ2 will depend on the functional being max-
imized (see for instance Theorem 3.3 in Section 3). In many instances, it
will be optimal to choose Θ1 and Θ2 to have rather different values. For
this reason, we do not wish to reduce these parameters to a single step size
value. The next lemma describes how to compute gradients with respect to
this inner product.

Lemma 2.9. Suppose that F = F (φ) is a Fréchet-differentiable functional
such that for any φ the first variation δF (φ) evaluated at any point h can be
written as integration against a function fφ, i.e.

δF (φ)(h) =

∫
Ω
h(x)fφ(x) dx.

Define ‖·‖H by (2.13). Then the H-gradient of F can be written

∇HF (φ) = (Θ1 Id−Θ2∆)−1fφ,

where Id is the identity operator and ∆ is the Laplacian operator, taken
together with zero Neumann boundary conditions.
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Proof. Fix φ and consider the unique solution to the elliptic equation{
(Θ1 Id−Θ2∆)g = fφ in Ω,

n · ∇g = 0 on ∂Ω.

Then we have the chain of equalities

δF (φ)(h) =

∫
Ω
h(x)fφ(x) dx

=

∫
Ω
h(x)(Θ1 Id−Θ2∆)g(x) dx

=

∫
Ω

Θ1h(x)g(x) + Θ2∇h(x) · ∇g(x) dx

= 〈h, g〉H .
This shows that g is the H-gradient of F . �

The above result can be restated as follows: the H-gradient of F is ob-
tained by “preconditioning” δF with the inverse operator (Θ1 Id−Θ2∆)−1.

3. The back-and-forth method

Our goal is to develop an efficient algorithm for solving the JKO scheme
for a large class of interesting energies U . We begin in Section 3.1 with the
case where U is convex with respect to ρ. In this case, the JKO scheme has
an equivalent dual problem that we solve using an adaptation of the back-
and-forth method from [JL20]. In Section 3.2, we show that the algorithm
is gradient stable in a properly weighted H1 space for convex energies of the
form

U(ρ) =

∫
Ω
um(ρ(x)) + V (x)ρ(x) dx,

where V : Ω→ [0,+∞] is a fixed function, and

(3.1) um(ρ) =

{
γ

m−1(ρm − ρ) if ρ ≥ 0,

+∞ otherwise,

for some constants γ > 0 and m > 1. We shall also consider the two limiting
cases m → 1 and m → ∞. Let us note that our analysis can easily be
extended to more general functionals, however, we focus on the (important)
special case above for clarity of exposition. After we have developed the
method for convex energy functionals U , in Section 3.3 we show how to
generalize the algorithm for non-convex U .

3.1. The back-and-forth method for convex U . To iterate the JKO
scheme, we must be able to solve the generalized optimal transport (GOT)
problem

(3.2) ρ∗ = argmin
ρ∈L1(Ω)

U(ρ) +
1

2τ
W 2

2 (ρ, µ),
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for any fixed nonnegative density µ ∈ L1(Ω). As we saw in Section 2 (see
Theorem 2.7), when U is convex, the generalized optimal transport problem
is in duality with the twin functionals I and J , i.e.

inf
ρ∈L1(Ω)

U(ρ) +
1

2τ
W 2

2 (ρ, µ) = sup
φ
J(φ) = sup

ψ
I(ψ).

Recall I and J are given by

(3.3) J(φ) =

∫
Ω
φc(x)µ(x)dx− U∗(φ),

(3.4) I(ψ) =

∫
Ω
ψ(x)µ(x)dx− U∗(ψc̄).

Furthermore, the minimizer ρ∗ of problem (3.2) is related to the maximizers
φ∗, ψ∗ through the relations

(3.5) ρ∗ = Tφ∗#µ, ρ∗ ∈ δU∗(φ∗), φc∗ = ψ∗.

Both I and J are unconstrained concave functionals (see Proposition 2.6),
therefore, it is now clear that one can find the maximizer of either functional
via standard gradient ascent methods. On the other hand, choosing to work
with solely I or solely J breaks the symmetry of the problem. Thus, rather
than focusing on only one of the functionals, the back-and-forth method
performs alternating gradient ascent steps on I and J . Although I and J use
different variables, we can switch between φ and ψ by using the c-transform.
As noted in [JL20], the alternating steps on I and J substantially accelerate
the convergence rate of the method beyond standard gradient ascent.

We are now ready to introduce our approach to find the twin dual max-
imizers (φ∗, ψ∗) to problem (3.2). The method is outlined in Algorithm 2
and is based on two main ideas:

1. A back-and-forth update scheme, alternating between gradient as-
cent steps on I and J .

2. Gradient ascent steps in an H1-type norm H, with

∇HJ(φ) = (Θ1 Id−Θ2 ∆)−1
[
Tφ#µ− δU∗(φ)

]
,

∇HI(ψ) = (Θ1 Id−Θ2 ∆)−1
[
µ− Sψ#(δU∗(ψc̄))

]
.

Algorithm 2: The back-and-forth scheme for solving (3.3) and (3.4)
Given µ and φ0, iterate:

φk+ 1
2

= φk +∇HJ(φk)

ψk+ 1
2

= (φk+ 1
2
)c

ψk+1 = ψk+ 1
2

+∇HI(ψk+ 1
2
)

φk+1 = (ψk+1)c̄
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Our ultimate goal is to show that each step of Algorithm 2 increases the
value of the functionals J and I. Thanks to Lemmas 2.1 and 2.5 it is easy
to check that

J(φk+ 1
2
) ≤ I((φk+ 1

2
)c), I(ψk+1) ≤ J((ψk+1)c̄).

Thus, we see that the alternating steps where we switch between the φ and
ψ variables can only increase the values of the dual problems. To show that
the gradient steps φk+ 1

2
= φk + ∇HJ(φk) and ψk+1 = ψk+ 1

2
+ ∇HI(ψk+ 1

2
)

increase the values of J and I respectively requires a more detailed analysis,
which will be the main focus of Section 3.2. As we shall see, the enhanced
stability provided by the H1 preconditioner (Θ1 Id−Θ2∆)−1 will be essential
to ensure that the gradient steps have the ascent property.

Once the dual problems I and J have been solved to sufficient accuracy,
one can recover the optimal density ρ∗ in (3.2) through the duality relations
in (3.5). In certain examples, such as incompressible flows, the subdifferential
δU∗ may be multivalued. When this happens, the relation ρ∗ ∈ δU∗(φ∗)
does not uniquely define ρ∗. In practice, however, δU∗ is typically only
multivalued on a single level set of φ∗ which has zero measure. As a result,
for numerical purposes, we can simply identify ρ∗ = δU∗(φ∗). Note that it is
advantageous to recover ρ∗ in this way as opposed to the pushforward relation
ρ∗ = Tφ∗#µ. Indeed, the formula ρ∗ = Tφ∗#µ requires the computation
of numerical derivatives of φ∗, while the duality relation ρ∗ ∈ δU∗(φ∗) is
derivative free.

Combining our work, we obtain an algorithm for evolving the JKO scheme.

Algorithm 3: Running the JKO scheme
Given initial data ρ(0), initialize φ(0) = δU(ρ(0)).
for n = 0, . . . , N do

φ(n+1) ←Run Algorithm 2 with µ = ρ(n) and φ0 = φ(n).
ρ(n+1) = δU∗(φ(n+1)).

end

3.2. H1 gradient ascent. In order to ensure stability of the gradient ascent
steps, the gradients of I and J are computed in a metric based on the H1

Sobolev norm. Given two constants Θ1 > 0, Θ2 > 0, we define the Hilbert
norm H by

(3.6) ‖h‖2H =

∫
Ω

Θ2|∇h(x)|2 + Θ1|h(x)|2 dx.

The main steps of the back-and-forth scheme are the gradient ascent steps
in the in the H norm

φk+ 1
2

= φk +∇HJ(φk)
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and
ψk+1 = ψk+ 1

2
+∇HI(ψk+ 1

2
).

In order to obtain convergence of our method, we want these steps to increase
the values of the concave functionals J and I respectively. The so-called
gradient ascent property

J(φk+ 1
2
)− J(φk) ≥

1

2
‖∇HJ(φk)‖2H ,

I(ψk+1)− I(ψk+ 1
2
) ≥ 1

2
‖∇HI(ψk+ 1

2
)‖2H ,

can be obtained when the Hessian bounds

(3.7)
−δ2J(φ)(h, h) ≤ ‖h‖2H ,
−δ2I(ψ)(h, h) ≤ ‖h‖2H

are satisfied (c.f. Theorem 2.8 in Section 2.3). When (3.7) holds, I and J
are said to be “1-smooth” with respect to H.

We shall devote the rest of this subsection to obtaining inequalities of the
form (3.7). Specifically, we shall show how to choose the constants Θ1 and
Θ2 in equation (3.6) to ensure that I and J are 1-smooth (under regularity
assumptions on φ and ψ) when U has the form

(3.8) U(ρ) =

∫
Ω
um(ρ(x)) dx+

∫
Ω
V (x)ρ(x) dx,

where um is defined in (3.1) and V : Ω→ [0,+∞] is some given function.
Crucially, we will give upper bounds on Θ1 and Θ2 that can be efficiently

computed from the data. Obtaining tight bounds for Θ1 and Θ2 is important
as they essentially control the step size of the algorithm (note that small
values of Θ1 and Θ2 correspond to large gradient steps). As we explained in
Section 2.3, it is optimal to choose the smallest values of Θ1 and Θ2 such that
(3.7) holds. This analysis is actually practical, as our numerical experiments
confirm that the convergence of BFM can be substantially accelerated by
making good choices for Θ1 and Θ2.

Those who are interested in the analysis of these bounds can continue
reading this section, otherwise, one can immediately jump to the statements
of Theorems 3.3 and 3.4, which give approximately optimal values of Θ1 and
Θ2 for the functionals I and J .

3.2.1. Hessian bound analysis. It turns out that the Hessian bound analysis
is nearly identical for I and J . Therefore, we will primarily focus on the
analysis for J , and we will later explain how to deal with I in a similar
fashion. To obtain Hessian bounds on J(φ) =

∫
Ω φ

cµ−U∗(φ), we first derive
bounds on the c-transform term

(3.9) F (φ) :=

∫
Ω
φc(x)µ(x)dx,

and then on the internal energy term U∗(φ). Let us begin by providing an
expression for δ2F (φ), the Hessian of F at a point φ that is c-convex.
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Lemma 3.1 (Hessian bounds on the c-transform). Let F be the functional
defined in (3.9). If φ is a c-convex function, then the Hessian of F at φ can
be written as

δ2F (φ)(h, h) = −τ
∫

Ω
∇h(y) · cof(Id×d + τD2φ(y))∇h(y)µ(y + τ∇φ(y)) dy,

where cof(Id×d + τD2φ(y)) denotes the cofactor matrix of Id×d + τD2φ(y).
Furthermore, if the eigenvalues of Id×d+τD2φ(y) are bounded above by some
constant Λ for every y ∈ Ω, then we have the bound

(3.10) − δ2F (φ)(h, h) ≤ τ‖µ‖L∞Λd−1‖∇h‖2L2 .

The proof of Lemma 3.1 can be found in the appendix. To gain some
insight into the bound (3.10), note that given a positive definite symmetric
matrix M ∈ Rd×d with eigenvalues {λ1, . . . , λd}, the eigenvalues of cof(M)

are {det(M)
λ1

, . . . , det(M)
λd
}. This produces the d − 1 degree scaling of Λd−1.

To understand the meaning of Λ itself better, recall that the optimal primal
variable ρ∗ is given by Tφ∗#µ = µ(y+τ∇φ∗(y)) det(Id×d+τD2φ(y)). Hence,
the eigenvalues of Id×d + τD2φ roughly measure how concentrated the mass
of ρ∗ is compared to µ. Since one expects the difference between ρ∗ and µ
to be on the order of τ , it is reasonable to expect that Λ will be close to 1.

We now turn our attention to bounding the Hessian of the internal energy
term U∗(φ). When U takes the form (3.8), its convex conjugate can be
written as

U∗(φ) =

∫
Ω
u∗m(φ(x)− V (x)) dx,

where
u∗m(p) = γ−

1
m−1

((m− 1)p+ γ

m

) m
m−1

+

and (·)+ = max(·, 0). Now it is clear that the Hessian of U∗ is given by

(3.11) δ2U∗(φ)(h, h) =

∫
Ω

(u∗m)′′
(
φ(x)− V (x)

)
|h(x)|2 dx.

When 1 ≤ m ≤ 2, the bounds are straightforward as (u∗m)′′(p) is increasing
with respect to p. Hence, in this case, we have

δ2U∗(φ)(h, h) =

∫
Ω

(u∗m)′′(φ(x)− V (x))|h(x)|2 dx ≤ B‖h‖2L2(Ω),

where B = supx∈Ω(u∗m)′′(φ(x) − V (x)). It was shown in [JKT20] that the
maximizer φ∗ of J obeys a maximum type principle in the sense that

φ∗(x) ≤M := sup
x∈Ω

δU(µ)(x).

It is therefore natural to assume that φ will be bounded above byM through-
out the algorithm (the gradient steps tend to diffuse pressure in the regions
of highest concentration). Assuming V (x) ≥ 0 everywhere, it now follows
that

δ2U∗(φ)(h, h) ≤ (u∗m)′′(M)‖h‖2L2(Ω).
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The aforementioned maximum principle on the pressure, φ(x) ≤ M , can
be used again to write the upper bound in terms of density instead of pres-
sure. Indeed note that

ρ(x) = (u∗m)′(φ(x)− V (x)) ≤ (u∗m)′(φ(x)) ≤ (u∗m)′(M).

Therefore the quantity

(3.12) ρmax := (u∗m)′(M)

acts a natural upper bound on the densities. Furthermore writing (u∗m)′′(M) =
(u∗m)′′

(
u′m(ρmax)

)
= u′′m(ρmax)−1, we obtain

δ2U∗(φ)(h, h) ≤ u′′m(ρmax)−1‖h‖2L2(Ω).

The case m > 2 is substantially more complicated. When m > 2, (u∗m)′′

is singular at zero. Hence, the integrand may be unbounded near points
where φ(x) = V (x). In this case, it may not be possible to bound (3.11)
in terms of the L2 norm of h. To understand this better, let us focus on
the most difficult model we consider in this paper: the incompressible limit
m → ∞. When m → ∞, the energy um encodes a hard ceiling constraint
on the density values, i.e.

u∞(ρ) =

{
0 if 0 ≤ ρ ≤ 1,

+∞ otherwise.

Hence, the dual energy u∗∞ is given by

u∗∞(p) =

{
0 if p < 0

p if p ≥ 0.

We pause here to point out that u∗∞ has much better regularity than u∞,
for instance u∗∞ is continuous over R while u∞ is discontinuous at 0 and 1.
This illustrates once more the advantage of working with dual quantities.
Nevertheless, u∗∞ is clearly not smooth in the convex sense, as there is a
jump of derivative at 0. In fact, we have (u∗∞)′′ = δ0, where δ0 denotes the
Dirac delta function at 0.

Luckily, even though U∗ is built from u∗∞ which is not smooth, it is possible
to bound the Hessian of U∗ as long as the singularity only occurs on a small
set. Indeed, if we make the assumption that |∇φ(x) − ∇V (x)| stays away
from zero on the surface {φ = V }, i.e. there exists a constant Γ0 > 0 such
that

sup
{x∈Ω:φ(x)=V (x)}

1

|∇φ(x)−∇V (x)|
≤ Γ0
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(note this is a quantitative way of saying that {φ = V } is a lower dimensional
set), then we can use the coarea formula to rewrite equation (3.11) as

(3.13)
δ2U∗(φ)(h, h) =

∫
{φ=V }

|h(x)|2

|∇φ(x)−∇V (x)|
ds(x)

≤ Γ0

∫
{φ=V }

|h(x)|2 ds(x),

where ds is the usual surface measure. Due to the fact that the integration
occurs over a surface, we cannot bound the right hand side of (3.13) in terms
of ‖h‖L2 . However, we can use trace inequalities from PDE theory to bound
surface integrals by volume integrals involving a higher derivative [Eva10]
(this can be essentially viewed as an inequality version of Stokes’ Theorem).
More precisely, there exist constants C1, C2 depending on the surface {φ =
V }, but independent of h such that∫

{φ=V }
|h(x)|2 ds(x) ≤ C2‖∇h‖2L2(Ω) + C1‖h‖2L2(Ω).

From there we can immediately deduce that U∗ is H-smooth, since

Γ0

∫
{φ=V }

|h(x)|2 ds(x) ≤ ‖h‖2H

as long as we choose Θi ≥ CiΓ0, i = 1, 2.
Now that we have seen how to obtain Hessian bounds in the most singular

case m → ∞, we are ready to return to the case 2 < m < ∞. Note that
in this case, (u∗m)′′(p) is zero if p < 0, singular at zero, and decreasing for
p > 0. Hence, if we choose some value λ > 0 and let

Aλ = {x ∈ Ω : 0 ≤ φ(x)− V (x) ≤ λ},
then we immediately have the bound

δ2U∗(φ)(h, h) ≤ (u∗m)′′(λ)‖h‖2L2(Ω) +

∫
Aλ

(u∗m)′′(φ(x)− V (x))|h(x)|2 dx.

To estimate the second term, we proceed along the same lines as the case
m = ∞. Let {φ − V = λ} = {x ∈ Ω : φ(x)− V (x) = λ }. As long as we
have a constant Γλ and trace inequality constants C1(α), C2(α) such that

(3.14) sup
x∈Aλ

1

|∇φ(x)−∇V (x)|
≤ Γλ

and

(3.15)
∫
{φ−V=α}

|h(x)|2 ds(x) ≤ C2(α)‖∇h‖2L2(Ω) + C1(α)‖h‖2L2(Ω),

then we can replicate the argument from above. Combining the coarea for-
mula and trace inequality, we get the following string of inequalities∫

Aλ

(u∗m)′′(φ(x)− V (x))|h(x)|2 dx
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≤ Γλ

∫ λ

0
(u∗m)′′(α)

∫
{φ−V=α}

|h(x)|2 ds(x) dα

≤ (u∗m)′(λ)Γλ

(
C2,λ‖∇h‖2L2(Ω) + C1,λ‖h‖2L2(Ω)

)
,

where

(3.16) Ci,λ = max
0≤α≤λ

Ci(α).

Thus, −δ2U∗(h, h) is bounded by ‖h‖2H as long as we choose

Θ1 ≥ (u∗m)′′(λ) + (u∗m)′(λ) ΓλC1,λ

and
Θ2 ≥ (u∗m)′(λ) ΓλC2,λ

where we have the freedom to choose the precise value of λ.
Our above computations are now summarized in the following lemma.

Lemma 3.2 (Hessian bound on the internal energy). Define ρmax, Γλ and
Ci,λ by (3.12), (3.14) and (3.16).

1. Case 1 ≤ m ≤ 2. We have

δ2U∗(φ)(h, h) ≤ 1

γm
(ρmax)2−m‖h‖2L2 .

2. Case 2 < m <∞. For any λ > 0,

δ2U∗(φ)(h, h) ≤ (γm′)1−m′C2,λ Γλ ‖∇h‖22+

(γm′)1−m′
(
C1,λ Γλλ

m′−1 + (m′ − 1)λm
′−2
)
‖h‖22,

where m′ = m
m−1 .

3. Case m =∞. We have

δ2U∗(φ)(h, h) ≤ C2,0 Γ0‖∇h‖22 + C1,0 Γ0‖h‖22.

Combining Lemma 3.1 and 3.2 we directly obtain the main theorem of
this section.

Theorem 3.3 (1-smoothness of J). Let 1 ≤ m ≤ ∞, γ > 0 and U(ρ) =∫
Ω um(ρ(x)) + V (x)ρ(x) dx, where um is defined by (3.1). Then J(φ) :=∫
Ω φ

c(x)µ(x)dx− U∗(φ) satisfies the Hessian bound

−δ2J(φ)(h, h) ≤ Θ2‖∇h‖2L2 + Θ1‖h‖2L2 ,

where Θ1 and Θ2 > 0 are given by the table below. As in Lemma 3.1, Λ
is an upper bound on the eigenvalues of Id×d + τD2φ(y) uniformly in y.
Additionally λ > 0 is a parameter to choose and ρmax, Γλ and Ci,λ are
defined by (3.12), (3.14) and (3.16).
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m Θ1 Θ2

m = 1
ρmax

γ
τΛd−1‖µ‖L∞

1 < m < 2
ρ 2−m

max

γm
τΛd−1‖µ‖L∞

m = 2
1

2γ
τΛd−1‖µ‖L∞

m > 2 (γm′)1−m′
(
λm
′−1C1,λ Γλ +

m′ − 1

λ2−m′

)
(γm′)1−m′C2,λ Γλ + τΛd−1‖µ‖L∞

m =∞ C1,0 Γ0 C2,0 Γ0 + τΛd−1‖µ‖L∞

In order to use Theorem 3.3 in the case m > 2, we need to be able to
compute Γλ and Ci,λ and we need to choose a value for λ when m ∈ (2,∞).
On a discrete grid with n points, one can easily compute Γλ for all λ in
O(n) operations. On the other hand, it requires O(n) operations to com-
pute C1(α) and C2(α) for a single value of α (c.f. Section 4.1). Thus, for
the case m = ∞, we can compute the constants explicitly in O(n) opera-
tions. The case 2 < m < ∞ is harder, since we cannot efficiently compute
Ci,λ = max0≤α≤λCi(α). To overcome this difficulty, we typically choose λ
by minimizing

λ∗ = argmin
λ≥0

(γm′)1−m′
(
λm
′−1ΓλC1(0) +

m′ − 1

λ2−m′

)
,

which gives a reasonable estimate for the optimal choice of λ to make Θ1 as
small as possible. We then estimate max0≤α≤λ∗ Ci(α) by simply taking the
max over Ci(0) and Ci(λ∗), which appears to work well in practice.

To conclude this discussion we turn our attention to the other functional
I for which a similar analysis can be made. Define first

p(x) = (ψc̄ − V )(Tψc̄(x)).

Then for λ > 0 we consider

(3.17) Γ̃λ = sup
x:0≤p(x)≤λ

1

|∇p(x)|
.

The trace constants C̃i,λ are such that

(3.18)
∫
{p=α}

|h(x)|2 ds(x) ≤ C̃2,λ‖∇h‖2L2 + C̃1,λ‖h‖2L2 ,

uniformly over α ∈ (0, λ).

Theorem 3.4. Let I(ψ) =
∫

Ω ψ(x)µ(x)dx−U∗(ψc̄), with U(ρ) =
∫

Ω um(ρ(x))+
V (x)ρ(x) dx, um is defined by (3.1) and 1 ≤ m ≤ ∞. The Hessian of I can
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be written

− δ2I(ψ)(h, h) = δ2U∗(ψc)(h ◦ Sψ, h ◦ Sψ)+

τ

∫
Ω
∇h(x) · cof(Id×d − τD2ψ(x))∇h(x)δU∗(ψc)(x− τ∇ψ(x)) dx.

It satisfies the bound

−δ2I(ψ)(h, h) ≤ Θ2‖∇h‖2L2 + Θ1‖h‖2L2 ,

where Θ1 and Θ2 > 0 are given by the table below. Here Λ is an upper bound
on the eigenvalues of Id×d − τD2ψ(x) uniformly in x. Additionally λ > 0 is
a parameter to choose and ρmax is defined by (3.12), Γ̃λ by (3.17) and C̃i,λ
by (3.18).

m Θ1 Θ2

m = 1
Λdρmax

γ
τΛd−1ρmax

1 < m < 2
Λd(ρmax)2−m

γm
τΛd−1ρmax

m = 2
Λd

2γ
τΛd−1ρmax

m > 2 Λd(γm′)1−m′
(
C̃1,λ Γ̃λλ

m′−1 +
m′ − 1

λ2−m′

)
Λd(γm′)1−m′C̃2,λ Γ̃λ + τΛd−1ρmax

m =∞ ΛdC̃1,0 Γ̃0 ΛdC̃2,0 Γ̃0 + τΛd−1ρmax

3.3. Back-and-forth for non-convex U . In this section, we will discuss
how to extend our method when U is not convex with respect to ρ. The
trick is to appeal to convexity splitting [Eyr98], a well-known technique for
simulating gradient flows with non-convex energies. The idea behind con-
vexity splitting is to write U as a sum of a convex function and a concave
function, i.e.

U(ρ) = U1(ρ) + U0(ρ),

where U1 is convex and U0 is concave. Thanks to the concavity of U0, given
any fixed density ρ̄, we have the inequality

(3.19) U(ρ) ≤ U1(ρ) + U0(ρ̄) + (δU0(ρ̄), ρ− ρ̄).

Crucially, the right-hand-side of equation (3.19) is a convex function. As
such, if we replace the JKO scheme with the relaxed scheme
(3.20)

ρ(n+1) = argmin
ρ

U1(ρ) + U0(ρ(n)) + (δU0(ρ(n)), ρ− ρ(n)) +
1

2τ
W 2

2 (ρ, ρ(n)),
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then we obtain a convex variational problem. The beauty of convexity split-
ting is that the relaxed scheme is still unconditionally energy stable. Com-
bining (3.19) and (3.20) we have the string of inequalities

U(ρ(n+1)) +
1

2τ
W 2

2 (ρ(n+1), ρ(n)) ≤

U1(ρ(n+1)) + U0(ρ(n)) + (δU0(ρ(n)), ρ(n+1) − ρ(n)) +
1

2τ
W 2

2 (ρ(n+1), ρ(n)) ≤

inf
ρ
U1(ρ) + U0(ρ(n)) + (δU0(ρ(n)), ρ− ρ(n)) +

1

2τ
W 2

2 (ρ, ρ(n)).

By choosing ρ = ρ(n) in the last line, we can conclude that

U(ρ(n+1)) +
1

2τ
W 2

2 (ρ(n+1), ρ(n)) ≤ U(ρ(n)).

Thus, we see that the energy is still decreasing along the iterates of the
relaxed scheme.

Now let us turn to solving the relaxed problem (3.20). Since the energy
term in (3.20) is convex, we can solve the problem using the dual approach
outlined above. The twin dual problems associated to (3.20), which we shall
denote as J̃ and Ĩ, are given by

(3.21) J̃(φ) :=

∫
Ω
φc(x) ρ(n)(x)dx− Ũ∗(φ),

(3.22) Ĩ(ψ) :=

∫
Ω
ψ(x) ρ(n)(x)dx− Ũ∗(ψc̄),

where

Ũ∗(φ) := U∗1
(
φ− δU0(ρ(n))

)
+ (δU0(ρ(n)), ρ(n))− U0(ρ(n))

is the convex conjugate of U1(ρ) + U0(ρ(n)) + (δU0(ρ(n)), ρ − ρ(n)). We can
then find the dual maximizers (φ(n+1), ψ(n+1)) of (3.21) and (3.22) using
Algorithm 2 along with the Hessian bounds developed in the previous sub-
section. As before, one can recover the solution ρ(n+1) of (3.20) through the
duality relation ρ(n+1) = δŨ∗(φ(n+1)).

4. Numerical implementation and experiments

4.1. Implementation details. In this section, we use the back-and-forth
method to numerically simulate equation (1.1) for a wide variety of internal
energies U . Throughout this section we will assume that the domain Ω =
[−1/2, 1/2]2 is the unit square in R2, discretized using a regular rectangular
grid. The numerical simulations in this section were coded in C++ and ran
on 2019 MacBook Pro with 2.6 GHz 6-core and 16 GB RAM.

Following the approach in [JL20], we will compute the forward and back-
ward c-transforms using the fast Legendre transform (FLT) algorithm [Luc97].
On a regular rectangular grid with n points, the FLT algorithm can be used
to compute either the forward or backward c-transform in O(n) operations.
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See [JL20] for more detail on the equivalence of the c-transform and the
Legendre transform.

When computing gradients with respect to the weighted norm (2.13), we
will need to solve a Poisson equation with zero Neumann boundary condition.
We will solve this equation numerically via the fast Fourier transform (FFT).
All FFTs were calculated using the free FFTW C++ library.

To compute the gradients of I and J , we will also need to compute push-
forwards. Given a density µ and an invertible map Z : Ω → Ω we can
compute the pushforward Z#µ via the Jacobian formula

Z#µ(x) =
µ
(
Z−1(x)

)
| det

(
DZ(Z−1(x))

)
|

= µ
(
Z−1(x)

)
| det

(
D(Z−1)(x)

)
|.

In our case, we will only need to compute pushforwards with respect to the
maps Tφ and Sψ that are induced by the forward and backward c-transforms
respectively. Thanks to the structure of BFM, we only need to compute
Tφ#ρ

(n) and Sψ#δU
∗(ψc̄) when φ and ψ are c-convex and c-concave respec-

tively. As a result, we have the simple formulas T−1
φ (y) = y + τ∇φ(y) and

S−1
ψ (x) = x− τ∇ψ(x). Therefore,

Tφ#ρ
(n)(y) = ρ(n)

(
y + τ∇φ(y)

)
det
(
Id×d + τD2φ(y)

)
,

and

Sψ#δU
∗(ψc̄)(x) =

(
δU∗

(
ψc̄
)
◦
(
x− τ∇ψ(x)

))
det
(
Id×d − τD2ψ(x)

)
.

When implementing our algorithm, we compute these quantities using a
simple centered difference scheme.

Finally, let us briefly explain how to compute the trace inequality con-
stants Ci(α) defined in equation (3.15). From Lemma A.1 and Corollary A.2
in the Appendix, we see that Ci(α) can be computed from the solution u to
the Eikonal equation

|∇u(x)| = 1 if φ(x)− V (x) 6= α,

u(x) > 0 if φ(x)− V (x) < α,

u(x) < 0 if φ(x)− V (x) > α.

Note that
|u(x)|2 = min

{y:φ(y)−V (y)=α}
|x− y|2,

which is nothing but a c-transform of the indicator function

χα(y) =

{
0 if φ(y)− V (y) = α,

+∞ else.

Therefore, |u|2 can be computed in O(n) operations using the Fast Legendre
transform, and from there one can recover u. Once one has u, it is straight-
forward to compute the constants in Corollary A.2 in O(n) operations.
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4.2. Experiments. We present four sets of numerical experiments. In
the first set of experiments, we demonstrate the speed and accuracy of our
method by comparing to the so-called Barrenblat solutions, a special case
of equation (1.1) where closed-form solutions are available. In the next set
of experiments, we simulate the porous media equation ∂tρ = ∆(ρm) +∇ ·
(ρ∇V ) for various interesting functions V : Ω → R ∪ {+∞} and values of
m. Note that if V takes the value +∞ on some closed set E ⊂ Ω, then ρ
can never enter E. Hence, this is equivalent to solving (1.1) on the more
complicated domain Ω \ E. In the third set of experiments, we use the
splitting scheme from Section 3.3 to simulate (1.1) when U is nonconvex. In
this case, the non-convexity will come from an interaction energy of the form
W(ρ) =

∫
Ω

∫
ΩW (x−y)ρ(x)ρ(y) dy dx. Finally, in the last set of experiments,

we study incompressible flows where U encodes the hard constraint ρ ≤ 1
everywhere. In this case, the dual energy U∗ will have a very singular Hessian
at the boundary of the support of ρ. Nonetheless, we are still able to simulate
the evolution even on very fine grids.

4.2.1. Accuracy: Barenblatt solutions. In this experiment, we use our back-
and-forth algorithm to solve the PME,

(4.1) ∂tρ = γ∆(ρm),

with the initial data
ρ(0, x) = Mδ0(x).

Here, γ > 0 is a constant that controls the speed of the diffusion, M > 0
is the total initial mass and δ0 is the standard Dirac distribution centered
at zero. When m > 1, this equation is the Wasserstein gradient flow of the
energy U(ρ) =

∫
Ω

γ
m−1ρ(x)m dx. Thanks to the simplicity of the initial data,

on the domain R2 the equation has a closed form solution, known as the
Barenblatt solution [Bar96, Bar03],

(4.2) ρ(t, x) =

((
M

4πmtγ

)m−1
m

− (m− 1)

4m2tγ
|x|2
) 1

m−1

+

,

where (·)+ = max(·, 0). The Barenblatt solution is compactly supported,
therefore, it agrees with the solution on the square [−1/2, 1/2]2 up until the
time tc = m−1

16m2γ
(π(m−1)

4mM )m−1 when the mass hits the boundary of the square.
Using the Barenblatt solution as a benchmark, we can test the accuracy

and efficiency of our scheme. We will simulate the equation for the exponents
m = 2, 4, 6. Since the Dirac delta function is challenging to work with
numerically, we shall instead fix a height h0 > 0 and start the flow at a time
t0 > 0, where t0 is chosen so that ‖ρ(t0, ·)‖L∞ = h0. Note that the value of
t0 will depend on the exponent m, and can be found explicitly from equation
(4.2). In addition, we will only consider the flow within in the time interval
[t0, tc], since the Barenblatt solution is only valid on the unit square up to
time tc.
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In all of our benchmark experiments, we shall set M = 0.5 h0 = 15
and γ = 10−3. Note that the small value of γ is just a time rescaling to
ensure that the flow occurs on a macroscopic time interval. We will compute
the evolution between the times t0 ≤ t ≤ 2 + t0 with different step sizes
τ = 0.4, 0.2, 0.1, 0.05, 0.025 (one can check that with our parameter choices
t0 + 2 < tc for m = 2, 4, 6). Running the experiments with various time step
sizes allows us to verify that the scheme becomes more accurate as the time
step is decreased. We shall measure the accuracy of the solution using the
L1 norm, which is very natural in the context of Wasserstein gradient flows
(see for instance [JKT20]). The precise formula for our error estimate is

(4.3) error =
1

Nτ

Nτ∑
n=0

∫
Ω
|ρ(nτ + t0, x)− ρ(n)(x)| dx,

where Nτ = b 2
τ c, ρ(nτ + t0, x) is the Barenblatt solution and ρ(n) is the nth

JKO iterate starting from the initial data ρ(0)(x) = ρ(t0, x). When solving
for φ(n+1), we will run Algorithm 2 until the residual ‖Tφ − δU∗(φ)‖L1(Ω) is
less than ε = 10−3.

The results of these experiments are displayed in Table 1 and Figure 1.
Table 1 displays the error (4.3) and the total computation time for all of
the aforementioned experiments. In Figure 1, we plot a cross section of our
solutions and the exact solution at various time snapshots. The cross section
is taken along the horizontal line {(x1, 0) : x1 ∈ [−1/2, 1/2]}. One can see
that as the time step is decreased, our solution is in excellent agreement with
the exact solution for all exponents m = 2, 4, 6. Figure 1 also shows that
our method correctly captures the discontinuity of ∇ρ at the boundary of
the support of ρ. This is notable as most other numerical methods smooth
out the discontinuity. The reason that we are able to correctly capture the
discontinuity is due to the fact that we recover the density through the

duality relation ρ(n+1) = δU∗(φ(n+1)) =
(
m−1
mγ max(φ, 0)

) 1
m−1 . The function

s(x) = max(x, 0)
1

m−1 has discontinuous derivatives at zero, therefore even
when φ(n+1) is smooth, ∇ρ will still have a discontinuity at the boundary of
its support.

4.2.2. Slow diffusion with drifts and obstacles. In our next set of experi-
ments, we add spatially varying potentials to the energy functional. The
resulting equations are a type of drift-diffusion equations. The energy takes
the specific form

U(ρ) =

∫
Ω

γ

m− 1
ρm(x) + V (x)ρ(x)dx,

where V is a given function.
In the first set of experiments, we consider an example where the initial

density is the characteristic function of a star shaped region normalized to
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Table 1. Barenblatt solution test case

τ Nτ
m = 2 m = 4 m = 6

Error Time (s) Error Time (s) Error Time (s)

0.4 5 6.35× 10−2 14.54 1.19× 10−1 23.11 1.13× 10−1 22.02
0.2 10 3.72× 10−2 22.16 7.95× 10−2 30.34 7.48× 10−1 30.41
0.1 20 2.08× 10−2 36.57 5.03× 10−2 48.41 4.74× 10−2 43.95
0.05 40 1.18× 10−2 55.64 3.06× 10−2 77.03 2.90× 10−2 80.10
0.025 80 8.26× 10−3 77.67 1.89× 10−2 140.38 1.79× 10−2 164.89
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Figure 1. Cross sections of our computed solutions and the exact
Barenblatt solution at times t = t0, t0 + 0.4, t0 + 0.8, t0 + 2 along the
horizontal line {(x1, 0) : x1 ∈ [−1/2, 1/2]}. Row 1: m = 2, Row 2:
m = 4, Row 3: m = 6.

have mass 1, and we use the fixed potential function

(4.4) V1(x) = 1− sin(5πx1) sin(3πx2).

The initial data and the potential V1 are shown in Figure 2.
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Initial density A sine potential

Figure 2. Higher values are depicted with brighter pixels.

Using this setup, we run two different experiments, one where m = 2 and
another where m = 4. In both cases, we set γ = 0.1 and use the time step
τ = 0.001. We run the equations until we reach a state that is essentially
stationary. The flow for m = 2 is run from time t = 0 to time t = 5, and the
flow for m = 4 is run from time t = 0 to time t = 2. The flow for the m = 2
case is shown in Figure 3 and the m = 4 case is shown in Figure 4. The
solutions show the density is drawn to regions where the potential is small,
while avoiding concentration due to the ρm term. Notice that the steady
state for m = 4 is much more diffuse than the steady state for m = 2, this
is because ρ4 penalizes concentration much more than ρ2.

Figure 3. PME with exponent m = 2 and potential given by (4.4).
The images show the evolution from time t = 0 to t = 5 (top left to
bottom right). The final image is the approximate steady state. Images
are 512× 512 pixels. Brighter pixels indicate larger density values.

Next, we consider a different potential function:

(4.5) V2(x) = 10
(
(x1 − 0.4)2 + (x2 − 0.4)2

)
+ ιΩ\E(x)
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Figure 4. PME with exponent m = 4 and potential given by (4.4).
The images show the evolution from time t = 0 to t = 2 (top left to
bottom right). The final image is the approximate steady state. Images
are 512× 512 pixels. Brighter pixels indicate larger density values.

where E is a given subset of Ω and ιΩ\E : Ω → R ∪ {+∞} is the indicator
function

ιΩ\E(x) =

{
0 if x ∈ Ω\E
+∞ if x ∈ E.

With this setup, the set E represents an obstacle that the density is not
allowed to penetrate. During the flow, the density diffuses and drifts towards
the lower level sets of V2, all while avoiding the set E.

In Figure 5 and Figure 6, we display two different experiments with dif-
ferent obstacles E, but the same diffusion exponent m = 4. In both experi-
ments, the starting density is the characteristic function of a square centered
at (−0.3,−0.3) with side length 0.2 renormalized to have unit mass. In
Figure 5, the obstacle is a disc with radius 0.2 centered at the origin, and
in Figure 6, the obstacle is a star shaped region centered at the origin. In
both experiments, we set τ = 0.001, γ = 0.0075 and we run the flow until
time t = 2. An interesting difference between the two flows is that the non-
convexity of the star shaped obstacle results in some mass being trapped
between the arms of the star. It is not entirely clear if the mass eventu-
ally escapes as time goes to infinity. This is because the PME allows for
compactly supported solutions (in contrast to say the behavior of the heat
equation).

4.2.3. Non-convex U (aggregation-diffusion). In this experiment, we simu-
late (1.1) with an energy functional U that is not a convex with respect to
ρ. Specifically, we consider the energy

(4.6) U(ρ) =W(ρ) +

∫
Ω

1

60
ρ3(x) dx,
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Figure 5. PME with exponent m = 4, γ = .0075 and potential given
by (4.5). The obstacle E is represented by the white region. The images
show the evolution from time t = 0 to t = 2 (top left to bottom right).
Images are 512×512 pixels. With the exception of the obstacle, brighter
pixels indicate larger density values.

Figure 6. PME with exponent m = 4, γ = .0075 and potential given
by (4.5). The obstacle E is represented by the white region. The images
show the evolution from time t = 0 to t = 2 (top left to bottom right).
Images are 512×512 pixels. With the exception of the obstacle, brighter
pixels indicate larger density values.

where
W(ρ) :=

1

2

∫
Ω

∫
Ω
|x− y|2ρ(x)ρ(y) dy dx.

By separating out the square, one can check W is concave with respect to ρ.
While convex energies U encourage mass diffusion, non-convex energies

allow for both aggregation and diffusion phenomena. Indeed, one can see that
W(ρ) encourages the density to concentrate while the ρ3 term encourages
the density to diffuse. Due to the convolution, W can be viewed as a “lower
order” term as compared to ρ3. However, since the coefficients in front of the
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convolution is much larger than the coefficient in front of the ρ3 term, the
aggregation effect will dominate until the density reaches a certain saturation
level.

Here we run a single experiment starting with an initial density that is
the sum of the characteristic function of four squares with side lengths 0.2
centered at each combination of (±0.3,±0.3) and renormalized to have total
mass equal to one. We set τ = .005 and run the flow from time t = 0 to
t = 10, at which time the evolution appears to have reached a steady state.

The results of the experiment are displayed in Figures 7 and 8. Figure 7
displays a heat map of the density evolution, while Figure 8 gives a 3 di-
mensional plot showing the height of the density. Throughout the evolution,
one can see the competing effects of aggregation and diffusion. The heights
of the four densities decrease due to diffusion, however aggregation pulls the
four separate components together towards the center of the domain.

Figure 7. Aggregation-diffusion equation with an energy given by
(4.6). The images show the evolution from time t = 0 to t = 10 (top
left to bottom right). The final image is the approximate steady state.
Images are 512 × 512 pixels. Brighter pixels indicate larger density
values.

4.2.4. Incompressible projections and flows. In our last set of experiments,
we consider incompressible flows, which have applications to crowd motion
models and fluid mechanics. Here the energy takes the form

(4.7) U(ρ) = s∞(ρ) +

∫
Ω
V (x)ρ(x) dx,

where

s∞(ρ) =

{
0 if 0 ≤ ρ(x) ≤ 1 for a.e. x ∈ Ω,

∞ otherwise,
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Figure 8. Aggregation-diffusion equation with an energy given by
(4.6). The images show a 3-d surface plot of the evolution from time
t = 0 to t = 10 (top left to bottom right). The final image is the
approximate steady state. Images are 512× 512 pixels.

and V is a fixed potential function. Note that s∞(ρ) can be seen as the limit
of the energy

sm(ρ) =
1

m− 1

∫
Ω
ρm(x) dx

as m→∞.
We will run our experiments, using the potential energy

(4.8) V (x) =
1

2

(
(x1 −

3

10
)2 + (x2 −

3

10
)2
)

+ ιΩ\E(x)

where E is a closed set that represents an impenetrable obstacle. We run
two simulations using two different obstacles

E1 = B 1
4
(
1

5
,−1

5
) ∪B 1

4
(−1

5
,
1

5
)

and
E2 = B 1

10
(0,

1

5
) ∪B 1

10
(0,−1

5
) ∪B 1

10
(
1

5
, 0) ∪B 1

10
(−1

5
, 0),

where Br(x1, x2) denotes the closed ball of radius r centered at (x1, x2). In
both experiments, we choose an initial density ρ(0), which equals 1 on a ball
of a radius 0.15 centered at (−0.3,−0.3) and is equal to 0 elsewhere.

The results of our experiments are displayed in Figures 9 and 10. Figure 9
uses the obstacle E1, while Figure 10 uses the obstacle E2. In the figures,
the yellow pixels represent the density ρ(n) and white pixels represents the
obstacle. In both experiments we use a time step τ = 0.05 and run the
evolution from time t = 0 to time t = 20. Both experiments are conducted
on 1024× 1024 pixel grids.

Notably, in both of the simulations depicted in Figures 9 and 10, there is
a sharp interface separating the regions ρ = 1 and ρ = 0. This matches the
expected behavior of the flow with our chosen potentials. In general, it is
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difficult for numerical methods to correctly capture sharp interfaces. Again,
the reason that our method is able to do so is because of our dual approach.
By recovering the density through the duality relation ρ(n+1) ∈ δU∗(φ(n+1))

we automatically produce a discontinuity at the level set {y ∈ Ω : φ(n+1)(y)−
V (y) = 0}.

Figure 9. Incompressible flow with the energy (4.7), potential (4.8),
and obstacle E1. The images show the evolution from time t = 0 to
t = 20 (top left to bottom right). The final image is the approximate
steady state. Images are 1024 × 1024 pixels. Yellow pixels represents
the density and white pixels represents the obstacle.

Figure 10. Incompressible flow with the energy (4.7), potential
(4.8), and obstacle E2. The images show the evolution from time t = 0
to t = 20 (top left to bottom right). The final image is the approximate
steady state. Images are 1024 × 1024 pixels. Yellow pixels represents
the density and white pixels represents the obstacle.
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Appendix A. Proofs

Proof of Lemma 3.1.
1. In order to obtain the Hessian of F let us start with its first derivative.

We have

F (φ+ h)− F (φ) =

∫
Ω

[
(φ+ h)c(x)− φc(x)

]
µ(x)dx.

Assume that φ is c-convex. Then Proposition ?? tells us how to
differentiate the c-transform, so that we can write∫

Ω
(φ+ h)c(x)− φc(x)µ(x)dx =

∫
Ω
h(Tφ(x))µ(x)dx+ o(h).

Therefore δF (φ)(h) =
∫

Ω h(Tφ(x))µ(x)dx. To derive the Hessian of
F we similarly compute

δF (φ+ h)(h)− δF (φ)(h) =

∫
Ω

[
h(Tφ+h(x))− h(Tφ(x))

]
µ(x)dx.

We must now differentiate the maps Tφ with respect to φ. By Propo-
sition 2.2 we know that Tφ(x) = x− τ∇φc(x). As a consequence

Tφ+h(x)− Tφ(x) = −τ∇[(φ+ h)c − φc](x)

= −τ∇(h ◦ Tφ)(x) + o(h)

= −τDTφ(x)T∇h(Tφ(x)) + o(h).

Note that DTφ = Id×d − τD2φc is a symmetric matrix. We deduce
from the above computations that

δF (φ+ h)(h)− δF (φ)(h) =∫
Ω
∇h(Tφ(x)) · (−τ)DTφ(x)∇h(Tφ(x))µ(x)dx+ o(h),

from which we conclude that

(A.1) δ2F (φ)(h, h) = −τ
∫

Ω
∇h(Tφ(x)) ·DTφ(x)∇h(Tφ(x))µ(x)dx.

Since our goal is to bound this Hessian by a norm of h we do the
change of variable y = Tφ(x), or equivalently x = Sφc(y) since Sφc is
the inverse of Tφ. Then

δ2F (φ)(h, h) = −τ
∫

Ω
∇h(y) ·DTφ(Sφc(y))∇h(y)µ(Sφc(y)) detDSφc(y)dy.

Note that DS is a positive semi-definite matrix and therefore no ab-
solute value is needed on the determinant term. Moreover we have
DTφ(Sφc(y)) = DSφc(y)−1 and putting this term together with the
determinant we can form the cofactor matrix cof(DS) = det(DS)DS−1.
As a result we obtain the expression

δ2F (φ)(h, h) = −τ
∫

Ω
∇h(y) · cof(DSφc(y))∇h(y)µ(Sφc(y))dy.
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2. Since φ is c-convex, φ = φcc̄ and therefore Sφc(y) = y+τ∇φ(y). The
c-convexity of φ also implies that the symmetric matrix DSφc(y) =
Id×d + τD2φ(y) is positive semi-definite. Assume now that Id×d +
τD2φ(y) ≤ ΛI for all y ∈ Ω. Then Id×d + τD2φ(y) is a symmetric
matrix with eigenvalues between 0 and Λ. By general properties of
the cofactor matrix the eigenvalues of cof(DSφc(y)) lie between 0

and Λd−1 where d is the space dimension. We immediately deduce

−δ2F (φ)(h, h) ≤ τΛd−1‖µ‖L∞
∫

Ω
|∇h(y)|2 dy.

�

Lemma A.1. Suppose that E ⊂ Rd is a bounded set with C2 boundary and
let R := Reach(∂E). Let u0 : Rd → R be a solution to the Eikonal equation
|∇ui| = 1 where u0 < 0 inside E and u0 > 0 outside E and set u1 = −u0.
Let

E0
r = {x ∈ Rd : u0(x) ∈ (0, r)}.

and
E1
r = {x ∈ Rd : u1(x) ∈ (0, r)}.

If g : Rd → R is a smooth function, then for i = 0, 1∫
∂E
|g(x)|ds(x) ≤ inf

0<r<R

(∫
Eir

|∇g(x)| dx+ Ci(E, r)

∫
Eir

|g(x)| dx
)

where
Ci(E, r) = inf

0<r′<r

1

r′
+ sup
x∈Ei

r′

(∆ui(x))+

Remark A.1. The reach of ∂E is the largest number r such that the charac-
teristics of u0 do not cross in E0

r ∪ E1
r . When ∂E is C2, the reach must be

strictly positive and the Laplacian ∆u must be bounded on E0
r ∪ E1

r for all
r smaller than the reach of ∂E.

Remark A.2. If E is a convex set, then C1(E, r) = 1
r .

Proof. Note that if x ∈ ∂E and n(x) is the outward facing normal at x, then
∇u0(x) = n(x). Therefore,∫

∂E
|g(x)| ds(x) =

∫
∂E
|g(x)|∇u0(x) · n(x) ds(x)

For some r ∈ (0, R) let αr : R→ R be a function such that

α′r(t) =


1 if t ≥ 0,

1 + t
r if t ∈ (−r, 0),

0 if t ≤ −r.
We then have∫

∂E
|g(x)|∇u0(x) · n(x) ds(x) =

∫
∂E
|g(x)|∇

(
αr
(
u0(x)

))
· n(x) ds(x) =
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E
∇ ·
(
|g(x)|∇

(
αr
(
u0(x)

)))
dx

where the last equality follows from Stokes Theorem. Expanding out the
derivatives and noting that α′r(t) ∈ [0, 1], α′′r (t) ∈ [0, 1

r ] and α′(u0(x)), α′′(u0(x))

both vanish for x outside of E0
r , we get∫

∂E
|g(x)|ds(x) ≤

∫
E0
r

|∇g(x)| dx+

∫
E0
r

|g(x)|
(
(∆u0(x))+ +

1

r

)
dx ≤∫

E0
r

|∇g(x)| dx+ C0(E, r)

∫
E0
r

|g(x)| dx

Our choice of r was arbitrary, thus we can take an inf over r ∈ (0, R) to
conclude the result when i = 0.

To tackle the case i = 1, we will employ a nearly identical argument,
except we will use Stokes Theorem to convert the boundary integral into an
integral over Rd \ E. Since ∇u1(x) · n(x) = −1 for x ∈ ∂E, we have∫

∂E
|g(x)| ds(x) = −

∫
∂E
|g(x)|∇

(
αr
(
u1(x)

))
· n(x) ds(x) =∫

Rd\E
∇ ·
(
|g(x)|∇

(
αr
(
u1(x)

)))
dx

Now an identical argument to the one above gives the bound for the case
i = 1. �

Corollary A.2. Suppose that E ⊂ Ω is a set with C2 boundary and let R :=
min(Reach(∂E), dist(E, ∂Ω)). Define ui, Eir, and Ci(E, r) as in Lemma A.1,
and let

C(E,Ω) = min
i∈{0,1}

inf
0<r<R

Ci(E, r).

If h : Ω→ R is an H1 function, then∫
∂E
|h(x)|2 dx ≤ 1

C

∫
Ω
|∇h(x)|2 + 2C

∫
Ω
|h(x)|2 dx,

where
C = max(1, C(E,Ω)).

Proof. Suppose first that h : Ω → R is a smooth function. By Lemma A.1,
we have∫
∂E
|h(x)|2 ds(x) ≤ inf

0<r<R

(∫
Eir

2|h(x)∇h(x)| dx+ Ci(E, r)

∫
Eir

|h(x)|2 dx
)

for i = 0, 1. Clearly this is bounded from above by∫
Ω

2|h(x)∇h(x)| dx+ inf
0<r<R

Ci(E, r)

∫
Ω
|h(x)|2 dx

Taking a minimum over i = 0, 1, we can conclude that∫
∂E
|h(x)|2 ds(x) ≤

∫
Ω

2|h(x)∇h(x)| dx+ C

∫
Ω
|h(x)|2 dx.
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We can then use Cauchy-Schwarz to get∫
∂E
|h(x)|2 ds(x) ≤ 1

C

∫
Ω
|∇h(x)| dx+ 2C

∫
Ω
|h(x)|2 dx.

The result extends to H1 functions thanks to the continuity of the trace
operator over H1. �

Proof of Theorem 3.4. Recall that I(ψ) =
∫

Ω ψ(x)µ(x)dx− U∗(ψc̄).
Step 1: formula for the Hessian of I. The derivation of the Hessian of I is

similar to the one of J (see for instance the proof of Lemma 3.1). Using the
formulas for the first variation of the c-transform (see Lemma ??) we can
check that

δI(ψ)h = −δU∗(ψc̄)(h ◦ Sψ),

for any test function h. To obtain the Hessian of I, we need to differentiate
Sψ. As in the proof of Lemma 3.1 we can show that Sψ+h(y) − Sψ(y) =

τDSψ(y)T∇h(Sψ(y)) + o(h). This implies

δ2I(ψ)(h, h) = −δ2U∗(ψc̄)(h ◦ Sψ, h ◦ Sψ)−

τ

∫
Ω
η(y)∇h(Sψ(y)) ·DSψ(y)∇h(Sψ(y)) dy,

where we let η = δU∗(ψc̄). Thus as in the case of J , the Hessian of I
δ2I(ψ)(h, h) = −(I) − (II) contains two terms which we can bound sepa-
rately.

Step 2: Bound on (II). Do the change of variables x = Sψ(y), i.e. y =
Tψc̄(x) in (II). We obtain

(II) = τ

∫
Ω
η(Tψc̄(x))∇h(x) · cof DTψc̄(x)∇h(x) dx,

which can be bounded above by τ‖η‖L∞Λd−1‖∇h‖L2 in the same spirit as
in the proof of Lemma 3.1. Moreover ‖η‖L∞ ≤ ρmax. Indeed, assuming
V (x) ≥ 0 we have for all x ∈ Ω

η(x) = δU∗(ψc̄)(x) = (u∗m)′(ψc̄(x)− V (x)) ≤ (u∗m)′(ψc̄(x)) ≤ ρmax,

by monotonicity of (u∗m)′ and by definition of ρmax. As a consequence

(II) ≤ τρmaxΛd−1‖∇h‖2L2 .

Step 3: Bound on (I). We have

(I) = δU∗(ψc̄)(h ◦ Sψ, h ◦ Sψ) =

∫
Ω

(u∗m)′′(ψc̄(y)− V (y))|h(Sψ)|2 dy.

Do again the change of variables y = Tψc̄(x) to obtain

(I) =

∫
Ω

(u∗m)′′(p(x))|h(x)|2 det(DTψc̄(x)) dx,
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where we recall that p(x) = ψc̄(Tψc̄(x)) − V (Tψc̄(x)). We bound the deter-
minant term by Λd. Then, to go further we must distinguish between the
three cases 1 ≤ m ≤ 2, 2 < m <∞ and m =∞.

When 1 ≤ m ≤ 2, the function (u∗m)′′ is increasing and therefore

(u∗m)′′(p(x)) ≤ (u∗m)′′(M) = u′′m(ρmax)−1,

where M = supx δU(µ)(x) (see the maximum principle and the related dis-
cussion when ρmax is defined in equation (3.12)). To sum up,

(I) ≤ u′′(ρmax)−1Λd‖h‖2L2 .

When 2 < m ≤ ∞, one can follow the same line of proof as in the case
of J , using now the function p(x) instead of φ(x)− V (x) which modifies the
related constants accordingly.

�
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