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Abstract

We show how to construct a convolution kernel that has a desired
anisotropic surface tension and desired anisotropic mobility to be used
in threshold dynamics schemes for simulating weighted motion by mean
curvature of interfaces, including networks of them, in both two and
three dimensions. Moreover, we discuss necessary and sufficient con-
ditions for the positivity of the kernel which, in the case of two-phase
flow, ensures that the resulting scheme respects a comparison principle
and implies convergence to the viscosity solution of the level set formu-
lation of the flow. In particular, we show, in a barrier-type statement,
that the kernel cannot possibly be positive unless both the mobility
and the surface tension satisfy necessary conditions in three dimen-
sions, and give a complete characterization. Among other results is
a threshold dynamics scheme that is guaranteed to dissipate a non-
local approximation to the interfacial energy in the fully anisotropic,
multiphase setting, using the new kernel construction.

Keywords: Multi-phase flow, curvature motion, threshold dynamics

1 Introduction

Originally proposed by Merriman, Bence, and Osher (MBO) in [29, 28],
threshold dynamics – also known as diffusion or convolution generated
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motion – is a very efficient algorithm for approximating the motion by
mean curvature of an interface. The algorithm generates a discrete in
time approximation to mean curvature motion by alternating two very
simple steps: convolution with a kernel, and pointwise thresholding.
In its simplest form (for isotropic, two-phase mean curvature flow), it
generates the approximate solutions Σk at time t = kδt from an initial
condition Σ0 ⊂ Rd as follows:

Algorithm:(MBO’92): Given a time step size δt > 0, alternate
the following steps:

1. Convolution:

ψk =
1

(δt)
d
2

K

(
x√
δt

)
∗ 1Σk (1)

2. Thresholding:

Σk+1 =

{
x : ψk(x) ≥ 1

2

}
. (2)

The convolution kernel K : Rd → R was chosen in [29] to be the
Gaussian

K(x) =
1

(4π)
d
2

exp

(
−|x|

2

4

)
. (3)

but the possibility of choosing other kernels is also mentioned in [28].
With K given by 3), the boundary of the set ∂Σk can be shown to
evolve, to leading order, by mean curvature motion; see e.g. [35] for a
truncation error analysis, and e.g. [15], [23] for proofs of convergence.
Among the benefits of Algorithm (1) & (2) are are 1. implicit rep-
resentation of the interface as in the phase field or level set methods,
allowing for graceful handling of topological changes, 2. unconditional
stability, where the time step size is restricted only by accuracy con-
siderations, and 3. very low per time step cost when implemented on
uniform grids.

Motion by mean curvature arises as L2 gradient descent, in an
appropriate sense, for perimeter of sets, which in turn appears in vari-
ational models for a great variety of applications. These range from
image processing and computer vision (e.g. the Mumford-Shah model
[32] for image segmentation) to materials science (e.g. Mullins’ model
[31] for grain boundary motion in polycrystals). More recently, such
variational models and their minimization via gradient descent have
also been applied in the context of machine learning and artificial in-
telligence (e.g. graph partitioning models for supervised clustering of
data [16]). The MBO scheme, its variants, and its extensions have
attracted sustained interest in the context of each one of these ap-
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plications. In this paper, we will focus on applications in materials
science, where anisotropic and multiphase versions of mean curvature
motion play a central role.

The question of whether threshold dynamics algorithm (1) & (2)
can be extended to anisotropic curvature flows has been the topic of
numerous investigations in the literature; a summary is given in Section
3. This paper is devoted to giving a decisive, constructive answer to
this question.

2 Preliminaries and Notation

We will be concerned with possibly anisotropic interfacial energies de-
fined on partitions of a domainD. D will typically be the d-dimensional
annulus, i.e. a cube in Rd with periodic boundary conditions. By a
partition of D, we mean a prescribed number N of sets Σ1, . . . ,ΣN ⊆ D
that satisfy

N⋃
i=1

Σi = D and Σi ∩ Σj = (∂Σi) ∩ (∂Σj) for i 6= j (4)

Let Hs denote the s-dimensional Hausdorff measure on D. Given a
non-negative, continuous, even function σ : Sd−1 → R+ with σ(x) > 0
for x 6= 0, we first consider the two-phase surface energy

E(Σ, σ) =

∫
∂Σ

σ(n(x)) dHd−1 (5)

where n(x) denotes the outward unit normal to ∂Σ. We will also con-
sider the multiphase extension of energy (5) to partitions. Let N ∈ N+

denote the number of phases, and define the set of distinct pairs of in-
dices:

IN = {(i, j) ∈ {1, . . . , N} × {1, . . . , N} : i 6= j}. (6)

Our multiphase energy is:

E(Σ, σ) =
∑

(i,j)∈IN

∫
(∂Σi)∩(∂Σj)

σi,j(n(x)) dHd−1(x) (7)

where we write Σ = (Σ1, . . . ,ΣN ) . It will be convenient to assume
that σ has been extended to σ : Rd → R+ as

σ(x) = |x|σ
(
x

|x|

)
for x 6= 0 (8)

so that it is positively 1-homogeneous. We will assume that σ is then
a convex function on Rd; this condition will ensure well-posedness of
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the two-phase energy (5). Define the unit ball (i.e. the Frank diagram)
Bσ of σ as

Bσ = {x : σ(x) ≤ 1}
which is thus a closed, convex, centrally symmetric set. We will further
require Bσ to be smooth and strictly convex; this implies that we
stay clear of the crystalline cases (where Bσ is a polytope) except via
approximation. In two dimensions, we will also write σ = σ(θ), where
θ is the angle that the unit normal makes with the positive x1-axis. In
that case, strict convexity of Bσ is equivalent to the condition

σ′′(θ) + σ(θ) > 0.

Given a set Ω ⊂ Rd, its support function hΩ is defined to be

hΩ(x) = sup
y∈Ω

x · y. (9)

Note the simple but useful fact

hΩ1+Ω2
= hΩ1

+ hΩ2
(10)

where Ω1 + Ω2 denotes the Minkowski sum of the sets Ω1 and Ω2:

Ω1 + Ω2 = {x : x = x1 + x2 with x1 ∈ Ω1 and x2 ∈ Ω2} (11)

i.e. it is just the dilation of Ω1 by Ω2. The Wulff shape Wσ associated
with the anisotropy σ is defined as

Wσ =

{
y : sup

x∈Bσ
x · y ≤ 1

}
.

i.e. it is the unit ball of the support function hBσ of Bσ; in yet other
words, it is the unit ball of the dual norm to σ. The sets Bσ can
therefore in turn be obtained from Wσ by the formula

Bσ =

{
x : sup

y∈Wσ

x · y ≤ 1

}
,

exhibiting the well known duality between Bσ and Wσ. Our assump-
tions on Bσ imply that Wσ is also strictly convex and has smooth
boundary.

We will denote the spherical Radon transform of an even function
f : Sd−1 → R by

Jsf(n) =

∫
Sd−1∩n⊥

f(x) dHd−1(x). (12)

Closely connected with the spherical Radon transform Js is the cosine
transform T , also defined on even functions on the sphere, as follows:

T f(n) =

∫
Sd−1

f(x) |x · n| dHd−1(x). (13)
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The relation between Js and T is given by

2T = T 2 = Js (14)

where 2 = ∆Sd−1 − (d− 1)I and ∆Sd−1 denotes the surface Laplacian
(i.e. the Laplace-Beltrami operator) on Sd−1. The operators Js, T ,
and of course 2 are symmetric, in the sense that∫

Sd−1

φLψ dHd−1 =

∫
Sd−1

ψLφdHd−1 (15)

for L ∈ {Js , T , 2}, where φ and ψ are any two smooth functions on
Sd−1. They also commute with one another. For a given anisotropy
σ with a strictly convex Bσ and smooth ∂Bσ, its generating function
ω : Sd−1 → R is defined to be the following even function:

ω := T −1σ = 2J−1
s σ = J−1

s 2σ. (16)

For d = 2, the expression (16) for the generating function of an
anisotropy simplifies to

ω(θ) =
1

4

{
σ′′
(
θ − π

2

)
+ σ

(
θ − π

2

)}
(17)

where θ denotes the polar angle of an x ∈ S1; see e.g. [12]. We will
use the following definition of the Fourier transform on Rd:

f̂(ξ) =

∫
Rd
f(x)e−ix·ξ dξ so that f(x) =

1

(2π)d

∫
Rd
f̂(ξ)eiξ·x dξ

for e.g. f in Schwartz class.
For d = 2 or 3, we will study approximations for L2 gradient flow

of energies (5) and (7), which are known as weighted mean curvature
flow (of an interface and a network). The normal speed of an interface
in three dimensions under this flow is given by

v⊥(x) = µ(n(x))
( (
∂2
s1σ(n(x)) + σ(n(x))

)
κ1(x)

+
(
∂2
s2σ(n(x)) + σ(n(x))

)
κ2(x)

)
(18)

where κ1 and κ2 are the two principal curvatures, and ∂si denotes
differentiation along the great circle on S2 that passes through n(x)
and has as its tangent the i-th principal curvature direction. In two
dimensions, the expression simplifies to

v⊥(x) = µ(n(x))
(
σ′′(n(x)) + σ(n(x))

)
κ(x). (19)

While materials science literature e.g. [11, 21] appears to allow
the mobility factor µ : Sd−1 → R+ in (18) or (19) to be any positive
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function of the normal, a natural and important subclass of mobilities
are those µ that have a convex one-homogeneous extension (as in (8))
to Rd. Indeed, as explained in [5], motion law (18) arises as gradient
descent for energy (5) with respect to a norm µ : Rd → R on normal
vector fields on ∂Σ e.g. via the well-known discrete-in-time minimiz-
ing movements [10] procedure of Almgren, Taylor & Wang [2], and
independently, Luckhaus & Sturzenhecker [25]:

Σk+1 = arg min
Σ

{
E(Σ, σ) +

1

δt

∫
ΣMΣk

dµ
∗

Σk
(x) dx

}
(20)

where dµ
∗

Σk
denotes the distance function to the interface ∂Σk at the

k-th time step, with respect to the dual norm µ∗ of the norm µ:

µ∗(x) = sup
y :µ(y)≤1

x · y.

It is the unique viscosity solution of the Hamilton-Jacobi equation

µ2 (∇u) = 1 for x ∈ (∂Σk)c,

u = 0 for x ∈ ∂Σk
(21)

which can be used to verify consistency of scheme (20). The set of
convex mobilities µ thus constitute a distinguished subclass and will
be the subject of particular attention in Section 4.1.2.

In addition to (18), a condition known as the Herring angle condi-
tion [20] holds along triple junctions: For d = 3, at a junction formed
by the meeting of the three phases Σi, Σj , and Σk , this condition
reads

(`× ni,j)σi,j(ni,j) + (`× nj,k)σj,k(nj,k) + (`× nk,i)σk,i(nk,i)
+ nj,iσ

′
i,j(ni,j) + nk,jσ

′
j,k(nj,k) + ni,kσ

′
k,i(nk,i) = 0 (22)

where ni,j is the unit normal vector to the interface (∂Σi) ∩ (∂Σj)
pointing in the Σi to Σj direction, ` = nj,k × ni,j is a unit vector
tangent to the triple junction, and σ′i,j(ni,j) denotes derivative of σi,j
taken on S2 in the direction of the vector ` × ni,j . In the isotropic
setting, (22) simplifies to the following more familiar form, known as
Young’s law:

σi,jni,j + σj,knj,k + σk,ink,i = 0. (23)

Finally, we note that well-posedness (lower semi-continuity) of the
multiphase energy (7) in its full generality is a complicated matter [3].
At the very least, the surface tensions σi,j : Rd → R+ need to be
convex and satisfy a pointwise triangle inequality

σi,j(n) + σj,k(n) ≥ σi,k(n) (24)
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for all distinct i, j, and k, and all n ∈ Sd−1. In case the σi,j are positive
constants, (24) is known to be also sufficient for well-posedness of model
(7).

3 Previous Work

Generalizations of Merriman, Bence, and Osher’s Algorithm (1) & (2)
to anisotropic surface energies have been considered in a number of
works in the existing literature. The basic idea is to take the con-
volution kernel K to be a more general kernel (than the Gaussian)
satisfying the properties

K(x) ∈ L1(Rd) , xK(x) ∈ L1(Rd), and K(x) = K(−x) (25)

together with ∫
Rd
K(x) dx = 1. (26)

For convenience, from now on we will write

Kε(x) =
1

εd
K
(x
ε

)
for the rescaled versions of a given convolution kernel K.

One of the first contributions to the study of Algorithm (1) & (2)
with general convolution kernels is by Ishii, Pires, and Souganidis [23],
who establish the convergence of the algorithm to the viscosity solution
of the equation

ut = F (D2u,Du) (27)

where

F (M,p) =

(∫
p⊥
K(x) dHd−1(x)

)−1(
1

2

∫
p⊥
〈Mx , x〉K(x)dHd−1(x)

)
(28)

for p ∈ Rd and M a d × d symmetric matrix, provided that K is a
positive convolution kernel with certain additional decay and continu-
ity properties. Positivity of the kernel is required for the scheme to
preserve the comparison principle that applies to underlying interfa-
cial motion, and is essential for the viscosity solutions approach taken
in [23]. On the other hand, the consistency calculation given in the
paper applies to more general (e.g. sign changing) kernels (and also
appears in [35] for the special case of a Gaussian). This study extends
to the case of anisotropic curvature motions earlier proofs of conver-
gence appearing in [15] and [4] for the isotropic version of the scheme
that uses the Gaussian as the convolution kernel.

The paper by Ishii et. al. does not address the inverse problem
of constructing a convolution kernel for a given surface tension (and
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possibly a mobility), which is perhaps the more practical problem from
a numerical methods perspective. The first contribution in this direc-
tion is by Ruuth & Merriman in [36], who propose a construction in
2D. Given an anisotropy f : [0, 2π] → R+, the focus of the authors
is to construct a kernel (characteristic function of a judiciously chosen
star shaped domain) that, when used in threshold dynamics, would
generate a normal speed of the form

v⊥(x) = (f ′′(θ) + f(θ))κ(x) (29)

where θ is the angle that the unit outer normal n(x) at x makes with
the positive x-axis. This approach conflates the contributions to v⊥
in (19) from mobility and surface tension factors. Indeed, there are
infinitely many surface tension & mobility pairs (σ, µ) that correspond
to the same f and hence the same normal speed in (29); the discussion
in [36] does not elucidate the two factors. This is a particularly impor-
tant matter in multiphase flows, since surface tensions determine the
equilibrium condition at junctions according to (22). And in fact, it
turns out that for Ruuth & Merriman’s construction, the correspond-
ing surface tension is not given by f in (29); see [12] for a detailed
discussion. On the plus side, these kernels are positive (being charac-
teristic functions) and thus preserve the comparison principle.

More recently, Bonnetier et. al. [7] have proposed a construction
that works in both 2D and 3D. The Fourier transform of their kernels
is explicit in terms of the surface tension:

K̂(ξ) = exp
(
−σ2(ξ)

)
. (30)

It turns out that the corresponding mobility satisfies µ := σ identically,
see [12]. This construction often yields non-positive kernels, even in
two dimensions, preventing the authors from giving a rigorous proof of
convergence. Moreover, as soon as the anisotropy σ does not have an
ellipsoid as its unit ball, (30) has a singularity at the origin, leading to
slow decay of K. We will revisit this construction in Section 4.2 and
remedy some of its shortcomings.

In [14], a variational formulation for the original MBO scheme (1) &
(2) was given. In particular, it was shown that the following functional
defined on sets, with kernel K chosen to be the Gaussian G, which had
previously been established [1, 30] to be a non-local approximation to
(isotropic) perimeter, is dissipated by the MBO scheme at every step,
regardless of time step size:

E√δt(Σ,K
√
δt) =

1√
δt

∫
Σc
K√δt ∗ 1Σ dx. (31)

Thus, (31) is a Lyapunov functional for algorithm (1) & (2), establish-
ing its unconditional gradient stability. Moreover, the following min-
imizing movements [2, 25] interpretation involving (31) for algorithm
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(1) & (2) was given in [14]:

Σk+1 = arg min
Σ

E√δt(Σ,K
√
δt)+

1√
δt

∫
(1Σ−1Σk)K√δt∗(1Σ−1Σk)dx

(32)
where the kernel K was again taken to be G. In [14], variational
formulation (31) & (32) was also extended to the multiphase setting.

Let us recall the following fact from [14] that ensures (31) is a
Lyapunov functional for scheme (1) & (2), establishing the connection
between the variational problem (31) and threshold dynamics, and

underlining the significance of K̂:

Proposition 1 (from [14]) Let K satisfy (25) and (26). If K̂ ≥ 0,
threshold dynamics algorithm (1) & (2) decreases energy (31) at every
time step, regardless of the time step size.

In [14], the variational formulation (32) was then extended to the mul-
tiphase energy (7) in case the surface tensions σi,j are constant but
possibly distinct:

E(Σ, σ) =
∑

(i,j)∈IN

σi,jH
d−1(∂Σi ∩ ∂Σj) (33)

in which case the Lyapunov functional becomes

E√δt(Σ,K
√
δt) =

1√
δt

∑
(i,j)∈IN

σi,j

∫
Σj

K√δt ∗ 1Σi dx. (34)

We also consider a relaxation of (34):

E√δt(u,K
√
δt) =

1√
δt

∑
(i,j)∈IN

σi,j

∫
D

ujK√δt ∗ ui dx (35)

over the following convex set of functions satisfying a box constraint:

K =

{
u ∈ L1(D, [0, 1]N ) :

N∑
i=1

ui(x) = 1 a.e. x ∈ D

}
. (36)

There is a corresponding minimizing movements scheme that can be
derived from (35) that leads to the following extension of threshold dy-
namics to the constant but possibly unequal surface tension multiphase
energy (33):
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Algorithm: (from [14]): Given a time step size δt > 0, alternate
the following steps:

1. Convolution:
ψki = K√δt ∗

∑
j 6=i

σi,j1Σkj
. (37)

2. Thresholding:

Σk+1
i =

{
x : ψki (x) ≤ min

j 6=i
ψkj (x)

}
. (38)

Various conditions are provided in [14] for ensuring that Algorithm (37)
& (38) is unconditionally gradient stable (decreases energy (34) for any
δt > 0). The question turns out to be interesting, with connections to
isometric embeddability of finite metric spaces into Euclidean spaces.
In particular, the triangle inequality (24) on σi,j appears to be neither
necessary nor sufficient.

It turns out that the minimizing movements interpretation is espe-
cially helpful in the anisotropic setting, as it allows identifying easily
a normal dependent surface tension and a normal dependent mobility
factor associated with a given convolution kernel; moreover, this un-
derstanding can then be extended to the full multiphase, anisotropic
setting. We recall the following facts from [12] in this connection:

Proposition 2 (from [12]) Let Σ be a compact subset of Rd with
smooth boundary. Let K : Rd → R be a kernel satisfying (25). Then:

lim
δt→0+

E√δt(Σ,K
√
δt) =

∫
∂Σ

σK
(
n(x)

)
dHd−1(x)

where the surface tension σK : Rd → R+ is defined as

σK(n) :=
1

2

∫
Rd
|n · x|K(x) dx. (39)

A stronger, Gamma convergence version of Proposition 2 is given in
[13] for a class of kernels that include sign changing ones. In polar
coordinates, the expression for the surface tension σK that corresponds
to a given convolution kernel K is:

σK(n) =
1

2

∫ ∞
0

rd
∫
Sd−1

|n · x|K(rx) dHd−1(x) dr. (40)

We should also note, as is done in [12], that equations (16) & (40) imply
the generating function ωK of the anisotropy σK that corresponds to
a given kernel K is given by:

ωK(n) :=
1

2

∫ ∞
0

K(rn)rd dr. (41)
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In [12], the following expression is obtained for the mobility µK asso-
ciated with a given kernel K:

1

µK(n)
:=

∫
n⊥
K(x) dHd−1(x). (42)

Equation (42) can alternatively be written using the spherical Radon
transform Js:

1

µK
= Js

∫ ∞
0

K(rn)rd−2 dr. (43)

Also in [12], the following alternative expressions for σK and µK in

terms of the Fourier transform K̂ of the convolution kernel K are
provided:

σK(n) = − 1

2π
F. P.

∫
R

K̂(nξ)

ξ2
dξ, and

µK(n) = 2π

(∫
R
K̂(nξ) dξ

)−1

.

(44)

We also need the following Barrier Theorem from [12] that places a
restriction on the positivity of convolution kernels in terms of the Wulff
shape Wσ of the given anisotropy σ.

Theorem 1 (from [12]) Threshold dynamics algorithm (1) & (2) with
a positive kernel K can approximate weighted mean curvature flow (18)
associated with an anisotropic surface tension σ : Sd−1 → R (for some
choice of mobility µ : Sd−1 → R) if and only if the corresponding Wulff
shape Wσ is a zonoid.

Let us briefly recall zonoids – also known as projection bodies. They
are centrally symmetric convex bodies that are limits, in the Hausdorff
topology, of zonotopes, which are defined as (finite) vector sums of
line segments. In Rd, a convex polytope with nonempty interior is a
zonotope if and only if every d−1 dimensional face of it is a zonotope.
Thus, for d = 2, any centrally symmetric, convex body is a zonoid.
For d = 3, this is no longer the case: a convex polytope is a zonotope
only if its faces are centrally symmetric polygons, and the closure of
such polytopes forms a strict subset of centrally symmetric convex
bodies. A simple example of a non-zonoid in R3 is the octahedron.
Moreover, there exists a neighborhood of the octahedron that contains
no zonoids. Theorem 1 implies that there is no monotone threshold
dynamics scheme for an anisotropy σ the Wulff shape Wσ of which
falls into such a neighborhood, even though Wσ may be smooth and
strictly convex. See [19, 6] for these facts and much more information
about zonoids.
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Finally, we recall from [13] that simple modifications to the orig-
inal threshold dynamics algorithm (1) & (2) may allow relaxing the
conditions on the convolution kernel and its Fourier transform with-
out sacrificing some of the desirable properties discussed above. For
example, the following single growth version, introduced in [13], pos-
sesses the energy dissipation property described in Proposition 1 for
the much larger class of convolution kernels that can be expressed as
a sum of a positive kernel and one with a positive Fourier transform:

K = K1 +K2 with K1 ≥ 0 and K̂2 ≥ 0.

It entails two convolutions per time step vs. one for the original scheme:

Algorithm 3: (from [13]): Given a time step size δt > 0, alternate
the following steps:

1. First convolution:

ψk = K√δt ∗ 1Σk . (45)

2. First thresholding:

Σk+ 1
2 =

{
x : ψk(x) ≥ 1

2

}
∪ Σk. (46)

3. Second convolution:

ψk+ 1
2 = K√δt ∗ 1

Σk+
1
2
. (47)

4. Second thresholding:

Σk = Σk+ 1
2 \
{
x : ψk+ 1

2 (x) ≤ 1

2

}
. (48)

In addition to dissipating energy (34) for a much wider variety of con-
volution kernels, Algorithm (45)-(48) is monotone for positive kernels,
and thus can be shown to converge to the viscosity solution of the
corresponding geometric evolution (27) in this case; see [13].

Extensions of the multiphase, isotropic, unequal surface tension Al-
gorithm (37) & (38) of [14] to the fully anisotropic, multiphase setting
of energy (7) are in principle easy to come up with, and have been
described in [12] and [13]. The analogue of the Lyapunov functional
(34) in this setting, i.e. the non-local approximation to (7), is simply

E√δt
(
Σ,K√δt

)
=

1√
δt

∑
(i,j)∈IN

∫
Σi

(
Ki,j

)
√
δt
∗ 1Σj dx (49)

12



where each component Ki,j of the collection of kernels K satisfies

1

2

∫
Rd
|n · x|Ki,j(x) dx = σi,j . (50)

One of the main contributions of this paper, presented in Section 4,
shows how to construct well-behaved kernels K that satisfy (50) while
having prescribed, possibly anisotropic mobilities. The most straight-
forward, immediate extension of algorithm (37) & (38) to energy (49)
is Algorithm (89) & (90) that is recalled from [12] in the Appendix.
It works well in practice, as shown in numerical experiments in [12] as
well as in Section 5.2 of this work. However, verifying rigorously that
it dissipates energy (49) for a wide enough class of surface tensions
to be of interest in applications appears to be difficult. On the other
hand, Algorithm (45)-(48) can also be extended to the fully anisotropic,
multiphase setting of energy (7) while ensuring dissipation of the cor-
responding Lyapunov functional (49) for essentially all surface tensions
of interest in applications. This extension, Algorithm (91)-(95) recalled
in the Appendix from [13], is demonstrated and compared to the sim-
pler Algorithm (89) & (90) on the numerical experiments of Section
5.2 using the new kernels constructed in Section 4 of this paper.

4 The New Convolution Kernels

In this main section of the paper, we present two new constructions of
a convolution kernel K for a given, possibly anisotropic, target surface
tension σ∗ : Sd−1 → R+ and target mobility µ∗ : Sd−1 → R+. Both
two and three dimensions are addressed. Both constructions identify
the mobility and surface tension factors, and are therefore suitable for
use in the multiphase setting.

The first construction, presented in Section 4.1, yields smooth, com-
pactly supported kernels that are positive, so that scheme (1) & (2)
preserves the monotonicity (comparison principle) of the underlying
evolution (18). As already implied by the barrier Theorem 1, there is
necessarily a difference between two and three dimensions in this en-
deavor. Our results give a fairly complete picture of when this goal can
be accomplished, and how to do it. These kernels do not necessarily
have positive Fourier transforms, but the variant (45)-(48) of threshold
dynamics in the two-phase, and (91)-(95) in the multi-phase setting,
ensure dissipation of the corresponding energy (31) and (34).

The second construction, presented in Section 4.2, is a variant of
the construction of [7] and is the more general: It allows any convex
surface tension σ∗ and any positive mobility µ∗, both in two and three
dimensions, and yields a convolution kernel K the Fourier transform
K̂ of which is positive: K̂ ≥ 0. Moreover, unlike in [7], the resulting
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kernel is always Schwartz class. Threshold dynamics scheme (1) & (2)
using such a kernel thus dissipates the non-local interfacial energy (31)
according to Proposition 1. However, as in [7], these kernels may not
be positive, even in two dimensions.

4.1 Positive Kernels

In this section, we present new, positive convolution kernels for possibly
anisotropic, desired surface tension and mobility pairs (σ∗, µ∗), lead-
ing to monotone threshold dynamics schemes. There are significant
differences in two and three dimensions, so these two cases are dis-
cussed separately below. Proposition 3 in Section 4.1.1 yields positive,
compactly supported, and smooth convolution kernels for essentially
any anisotropic surface tension and mobility pair in two dimensions.
In three dimensions, Lemma 1 and Proposition 4 of Section 4.1.2 es-
sentially classify all anisotropic surface tension and mobility pairs for
which such a kernel can be found, and for all such cases exhibit the
desired kernels explicitly. Let us summarize the implication of these
constructions by the following immediate consequence of results from
[23] and [12]:

Corollary 1 In two dimensions, given essentially any anisotropic sur-
face tension and mobility pair, a convolution kernel can be found such
that two-phase threshold dynamics algorithms (1) & (2) and (45)-(48),
when extended to bounded uniformly continuous functions in the stan-
dard manner, converge to the viscosity solution of the corresponding
evolution (18) on any finite time interval. Proposition 3 exhibits these
kernels.

In three dimensions, there are surface tension and mobility pairs for
which a monotone threshold dynamics scheme cannot be constructed.
For essentially all those for which it can, Proposition 4 exhibits ker-
nels with which the extension of algorithms (1) & (2) and (45)-(48)
to uniformly continuous functions will again converge to the viscosity
solution of the corresponding evolution.

Our approach is as follows: Given (σ∗, µ∗), according to (39) and
(42), we will need to solve the following coupled system of integral
equations: 

∫
Rd
K(x)|n · x| dx = σ∗(n), and∫

n⊥
K(x) dHd−1(x) =

1

µ∗(n)

(51)

for the unknown function K. Note that there is in fact vast non-
uniqueness of the solution, so it may be possible to impose additional
conditions (besides positivity).

14



System (51) can be more conveniently expressed using the cosine
and spherical Radon transforms as in formulas (41) & (43):

∫ ∞
0

K(rn)rd dr = ω∗(n) := T −1σ∗(n), and∫ ∞
0

K(rn)rd−2 dr = J−1
s

[
1

µ∗

]
(n).

(52)

For both d = 2 and d = 3, the essential idea is the following: Formulas
(39) & (42) indicate that surface tension and mobility of a kernel vary
differently as the convolution kernel is dilated along radial directions.
We exploit this simple observation. With that in mind, let η : R→ R
be the following compactly supported, smooth, positive bump function:

η(x) =

exp

(
− 1

x2(x− 2)2

)
if x ∈ (0, 2),

0 otherwise.
(53)

For j ∈ N+, let

mj =

∫ 2

0

xjη(x) dx (54)

denote its moments.

4.1.1 Positive Kernels in 2D

In two dimensions, it turns out that a positive, smooth, compactly
supported convolution kernel that is strictly positive at the origin can
be constructed for any given surface tension & mobility pair (σ∗, µ∗)
that satisfies the following minimal assumptions:

(1.1) Bσ∗ is strictly convex and ∂Bσ∗ is smooth,

(1.2) µ∗ : S1 → R+ \ {0} is smooth.

We have

Proposition 3 Under conditions (1.1) & (1.2) on σ∗ and µ∗, there
exists a positive, smooth, compactly supported convolution kernel K :
R2 → R+ such that σK = σ∗ and µK = µ∗.

Proof: To solve the system (51), we look for a kernel K that in polar
coordinates has the form

K(r, θ) = α(θ)η (β(θ)r) (55)

where α, β : R → R+ are π-periodic, smooth functions. Substituting
(55) into (52) gives

α(θ)

β3(θ)
m2 = ω∗(θ), and

α(θ)

β(θ)
m0 = J−1

s

[
1

µ∗

]
(θ).

(56)
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Note that for d = 2,

J−1
s

[
1

µ∗

]
(θ) =

1

µ∗
(
θ − π

2

) (57)

and by (17),

ω∗(θ) =
1

4

{
σ′′∗

(
θ − π

2

)
+ σ∗

(
θ − π

2

)}
. (58)

Note that by our assumption on Bσ∗ above, ω∗(θ) > 0 on θ ∈ [0, 2π].
Solving system (56) for α and β and using (57) & (58) gives

α(θ) =

(
4m2

m3
0µ

3
∗
(
θ − π

2

) [
σ′′∗
(
θ − π

2

)
+ σ∗

(
θ − π

2

)]) 1
2

β(θ) =

(
4m2

m0µ∗
(
θ − π

2

) [
σ′′∗
(
θ − π

2

)
+ σ∗

(
θ − π

2

)]) 1
2

(59)

Formulas (55) & (59) give an explicit prescription for the convolution
kernel in terms of the desired surface tension σ∗ and mobility µ∗. 2

Remark: The kernel can be easily modified to be strictly positive at
the origin: Replace (σ∗, µ∗) in the construction with (σ̃∗, µ̃∗) where

σ̃∗(x) = σ(x)− ε and
1

µ̃∗(x)
=

1

µ∗(x)
− ε

and ε > 0 is chosen small enough so that Bσ̃ is strictly convex and
µ̃∗ > 0. Denote the resulting kernel K̃. Then, the kernel K = K̃ +
exp

(
−ε|x|2

)
satisfies σK = σ∗ and µK = µ∗. 2

4.1.2 Positive Kernels in 3D

The situation is more complicated in three dimensions. The essential
question is positivity of the right hand sides of the system of inte-
gral equations (52) that entail the inverse cosine and inverse spherical
Radon transforms. It turns out that such positivity questions are inti-
mately connected with long studied problems and certain mathemat-
ical objects arising in convex geometry. This connection with convex
geometry literature was already noted and utilized in [12] in formu-
lating its barrier Theorem 1 quoted in Section 3. That theorem says
that a necessary condition for a positive convolution kernel to be found
for the target anisotropy σ∗ : S2 → R+ (regardless of the mobility) is
that the corresponding Wulff shape Wσ∗ be a zonoid (also known as
a projection body), an important class of centrally symmetric convex
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bodies that appear prominently in the convex geometry literature; see
Section 3 for a brief discussion and e.g. [6, 19] for much more.

When we confront the question of simultaneously achieving both
a target zonoidal surface tension σ∗ and a target mobility µ∗ with a
positive convolution kernel, a related class of objects, known as inter-
section bodies [26], and their connections to a widely studied problem
known as the Busemann-Petty problem [9], again from convex geom-
etry, come into play. In what follows, we will need to appeal to the
resolution of this problem in [18] for the case d = 3.

Our first result in this direction is the barrier type Lemma 1 below.
It states that in order to accommodate a wide enough class of mobilities
µ∗ using positive convolution kernels, we need to demand more from
Wσ∗ than just being a zonoid. The issue is that there are strictly
convex and smooth zonoids the generating functions ω∗ of which vanish
somewhere on S2. If ω∗ corresponding to σ∗ vanishes even at a single
point, however, it turns out µ∗ cannot arise from the gradient descent
formulation (20) of the interfacial motion (18):

Lemma 1 Let σ∗ : R3 → R+ be an anisotropy such that Wσ∗ is a
smooth and strictly convex zonoid. If K is a positive convolution kernel
such that σK = σ∗ and its corresponding mobility µK : S2 → R+ \ {0}
is smooth with a convex one-homogeneous extension to R3, then Wσ∗

can be written as the Minkowski sum of a zonoid and a sphere.
In particular, a threshold dynamics scheme that is consistent with

an evolution law (18) arising from the gradient descent formulation
(20) cannot possibly be monotone unless Wσ∗ is the dilation of a zonoid
by a sphere.

Proof: By hypothesis, µK = µ∗ extends as a norm to R3. Therefore,
1
µ∗

is the radial function of a convex body in R3. By Theorem 5.2 and

its Corollary 5.3 in [18], we have

J−1
s

[
1

µ∗

]
> 0 (60)

on S2. (Close inspection of Theorem 5.1 in [18] indicates inequality
(60) is strict under our assumptions on µ). Then, (43) implies that∫ ∞

0

K(rx)r dr > 0 for all x ∈ S2. (61)

But then, we also have

ω∗(x) = ωK(x) =

∫ ∞
0

K(rx)r3 dr > 0 for all x ∈ S2. (62)
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Let ε = 1
2 minx∈S2 ω∗(x) > 0, and define the new anisotropy

σ′∗(n) =

∫
S2

(ω∗(x)− ε) |x · n| dH2(x). (63)

Then, we can write
σ∗(x) = σ′∗(x) + ε|x| (64)

so that by (10),
hWσ∗

= hWσ′∗
+ hWε|x| . (65)

That implies
Wσ∗ = Wσ′∗

+Wε|x|. (66)

Wσ′∗
is a zonoid since its generating function is ω∗ − ε ≥ 0, and Wε|x|

is a sphere. 2

Lemma 1 motivates placing the assumption on σ∗ that Wσ∗ be the
dilation of a zonoid by a sphere, which we will adopt for the rest of this
section. This is a dense subset of zonoids in the Hausdorff metric. As
another difference of three dimensions from two, it turns out that even
with this stronger assumption on σ∗, the mobility factor µ∗ in a given
target surface tension & mobility pair (σ∗, µ∗) needs to satisfy certain
additional necessary conditions in order for there to exist a positive
convolution kernel K with σK = σ∗ and µK = µ∗. Indeed, unlike for
d = 2, not every positive function can arise as the mobility associated
with a convolution kernel via equation (42), even if σ∗ satisfies the
conclusion of Lemma 1. This can be seen with the following example:
Take µ∗ to be

µ∗(θ, φ) =

(
Js
[
1− 2η

(
φ− 1

2

δ

)])−1

(67)

Choosing δ > 0 small enough, we see that µ∗(n) > 0 for all n ∈ S2.
Assume that for some K ≥ 0, we have µK = µ∗. Then, by (43) and
the injectivity of Js, we have∫ ∞

0

K(r, θ, φ)r3 dr = 1− 2η

(
φ− 1

2

δ

)
. (68)

The left hand side is always positive, but the right hand side is negative
for φ ≈ 0, which is a contradiction.

The good news is that for the large and natural class of convex
mobilities, it is possible to construct positive convolution kernels, as
long as the surface tension satisfies the conclusion of Lemma 1. In
d = 3, we are thus led to the following assumptions on the pair (σ∗, µ∗):

(2.1) Bσ∗ is strictly convex and ∂Bσ∗ is smooth,
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(2.2) Wσ∗ is the dilation of a zonoid by a sphere,

(2.3) µ∗ : S2 → R+ \ {0} is smooth, and

(2.4) µ∗ : R3 → R+ defined as µ∗(x) = |x|µ∗
(
x
|x|

)
is convex.

It is worth repeating that condition (2.2) is essentially necessary, as
explained above. It is also quite general, since it allows approximating
any anisotropy that can arise as the continuum limit of a ferromagnetic
Ising model; see e.g. the discussion in [12]. Furthermore, condition
4 is very natural: It merely stipulates that evolution (18) arises as
gradient descent for the variational model (5) with respect to a possibly
anisotropic norm on normal vector fields, as discussed in Section 2. We
can now present our construction:

Proposition 4 Under conditions (2.1)-(2.4) on σ∗ and µ∗, there ex-
ists a positive, smooth, compactly supported convolution kernel K :
R3 → R+ such that σK = σ∗ and µK = µ∗.

Proof: As for d = 2, we look for a kernel K that in spherical coordinates
has the form

K(r, θ, φ) = α(θ, φ)η (β(θ, φ)r) (69)

where α, β : R2 → R+ are 2π-periodic in each variable, smooth, and
invariant under (θ, φ)→ (θ+π, φ+π). Substituting (69) into (52) this
time gives

α(θ, φ)

β4(θ, φ)
m3 = ω∗(θ, φ), and

α(θ, φ)

β2(θ, φ)
m1 = J−1

s

[
1

µ∗

]
(θ, φ).

(70)

Hypothesis on σ∗ ensures that ω∗(θ, φ) > 0. Thanks again (as in
Lemma 1) to Theorem 5.2 of [18],

J−1
s

[
1

µ∗

]
> 0. (71)

since our hypothesis on µ∗ implies that 1
µ∗

is the radial function of a
convex body with smooth boundary.

Solving for α(θ, φ) and β(θ, φ) in (70), we get

α(θ, φ) =
m3

m2
1

(
J−1
s

[
1
µ∗

])2

J−1
s 2σ∗

, and

β(θ, φ) =

m3

m1

J−1
s

[
1
µ∗

]
J−1
s 2σ∗


1
2

(72)
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expressed in terms of standard transforms. Both are positive functions.
Formulas (69) & (72) provide an explicit prescription for the desired
convolution kernel, which is positive. 2

Remark: In fact, in the language of e.g. [17, 18, 26], a mobility µ∗
can arise from a positive convolution kernel in threshold dynamics al-
gorithms if and only if 1

µ∗
is the radial function of an intersection body.

However, this characterization is almost by definition of an intersection
body (which is not as transparent as that of a zonoid), and therefore
does not shed much light on the matter.

4.2 Kernels with Positive Fourier Transform

It turns out that we can construct a smooth, rapidly decaying convo-
lution kernel with positive Fourier transform, in any spatial dimension
d, as long as the target surface tension σ∗ : Sd−1 → R+ and the target
mobility µ∗ : Sd−1 → R+ satisfy the minimal assumptions (1.1) & (1.2)
of Section 4.1.1. Our construction and resulting kernels are similar to
those of [7], but are more general since we accommodate any mobil-
ity, whereas the kernels of [7] are restricted to the (important) special
case µ∗ = σ∗. Moreover, the kernels of [7] are singular in the Fourier
domain for all but ellipsoidal anisotropies, leading to slow decay in the
physical domain. This technical issue is also easily rectified with our
construction.

Recall that according to (44), we can find a kernel K with the
desired target surface tension and mobility by solving the system

F. P.

∫
R

K̂(nξ)

ξ2
dξ = −2πσ∗(n), and∫

R
K̂(nξ) dξ =

1

2πµ∗(n)
.

(73)

This is particularly simple since the equations are pointwise in n ∈ Sd−1

(unlike in the physical space construction of Section 4.1, as we shall
see). We have:

Proposition 5 Under conditions (1.1) & (1.2) on σ∗ and µ∗, there
exists a convolution kernel K : Rd → R in Schwartz class and a con-
stant γ > 0 such that σK = σ∗, µK = γµ∗, and K̂ ≥ 0.

Proof Let ζ : R → R be a smooth function that satisfies the following
conditions:

1. ζ(x) ≥ 0 and ζ(x) = ζ(−x) for all x,

2. ζ(x) = 0 for |x| ≤ 1,

3. ζ(x) = x2 for |x| ≥ 2.
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We want to construct a kernel K such that K̂ will satisfy (73). Let
α, β : Rd → [0,∞] be one homogeneous functions. Then define the
kernel K by:

K̂(ξ) =
1

2
exp

(
− ζ
(
α(ξ)

))
+

1

2
exp

(
− ζ
(
β(ξ))

))
. (74)

Substituting (74) into (73) yields the following equations on α and β
in terms of the targets σ∗ and µ∗:

γµ−1
∗ (n) =

1

4π

∫
R

exp
(
− ζ
(
ξα(n)

))
+ exp

(
− ζ
(
ξβ(n)

))
dξ (75)

and

σ∗(n) =
1

4π

∫
R

1− exp
(
− ζ
(
ξα(n)

))
ξ2

+
1− exp

(
− ζ
(
ξβ(n)

))
ξ2

dξ.

(76)
Note that we have introduced a constant γ to the mobility µ to ensure
that a solution will exist. Let

s0 =
1

4π

∫
R
e−ζ(ξ)dξ and s2 =

1

4π

∫
R

1− e−ζ(ξ)

ξ2
dξ.

Then, with the changes of variables ξ → ξα(n) and ξ → ξβ(n), equa-
tions (75) and (76) become

γµ−1
∗ (n)

s0
=

1

α(n)
+

1

β(n)
, (77)

and
σ∗(n)

s2
= α(n) + β(n). (78)

To simplify notation let a(n) =
γµ−1
∗ (n)
s0

and b(n) = σ∗(n)
s2

. Eliminating
β(n) in (77) & (78) and rearranging leads to the following quadratic
in α(n):

α(n)2 − b(n)α(n) +
b(n)

a(n)
= 0. (79)

Solving for α(n) in (79) and then for β(n) in (78), we get

α(n) =
1

2s2γ
1
2

(
γ

1
2σ∗ +

√
γσ2
∗ − 4s0s2µ∗σ∗

)
(80)

β(n) =
1

2s2γ
1
2

(
γ

1
2σ∗ −

√
γσ2
∗ − 4s0s2µ∗σ∗

)
(81)

In order for both solutions to be real we need b(n) ≥ 4
a(n) . Therefore,

we need to choose γ such that γ ≥ 4s0s2µ∗(n)
σ∗(n) for all n. We also do not
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want the discriminant to vanish, since this may introduce singularities
into α(n), β(n) that are not present in the anisotropy and mobility.
Indeed as long as the discriminant does not vanish α and β will have
the same differentiability properties as µ∗ and σ∗. However, at the
same time, we would like α(n) and β(n) to be as close to each other
as possible so that the kernel is easy to sample. This suggests that a
good choice for γ is

γ = (1 + ε) max
n∈Sd−1

4s0s2µ∗(n)

σ∗(n)
(82)

for some small ε > 0. Formulas (74), (77) & (78) provide an explicit
prescription for the desired kernel K. 2

As explained in [12], equations (51) along with the favorable smooth-
ness and decay properties noted above imply that kernels (74) satisfy
all the conditions for the consistency step of the convergence proof in
[23]; we thus have the following as an immediate consequence:

Corollary 2 For essentially any given anisotropic surface tension and
mobility pair, whether in two or three dimensions, there exists a Schwartz
class convolution kernel using which threshold dynamics algorithm (1)
& (2) is consistent with the evolution law (18).

5 Numerical Evidence

We demonstrate the new kernel constructions of Section 4 on both
two and multi-phase curvature flow problems, and in two dimensional
cases compare against front tracking simulations. In these examples,
to be able to compare with front tracking whenever possible, we focus
on regular behavior (i.e. no topological changes), but of course, as is
well known, threshold dynamics methods shine when it comes to grace-
fully handling topology changes. Other numerical experiments clearly
indicate that this major benefit of threshold dynamics is completely
preserved with the new kernels developed in this paper. Section 5.1 is
devoted to experiments with two-phase anisotropic flows, while Section
5.2 focuses on multi-phase anisotropic flows. We demonstrate the orig-
inal threshold dynamics algorithm (1)-(2), as well as its recent, fully
anisotropic, multiphase extensions Algorithm (89) & (90) and Algo-
rithm (91)-(95) that are recalled in the Appendix, using these kernels.

The front tracking algorithm used for two dimensional comparisons
represents the interfaces via explicit parametrizations. As such, it is
essentially a finite differences discretization for a coupled system of
parabolic PDEs in one space dimension, and can thus yield very accu-
rate benchmark results by choosing a very fine discretization. (Unfor-
tunately, topological changes are a serious difficulty with this approach,
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especially in 3D, and a major motivation for methods that represent
interfaces implicitly, such as that of this paper, or the phase field, or
the level set method). We used explicit (forward Euler) time stepping
to keep matters as simple as possible. In our implementation, triple
junctions are common discretization points for the curves that meet
at them. Their coordinates are updated not directly by the curvature
flow PDE, but by iteratively optimizing the energy of the system with
respect to these coordinates only, at every time step, much as described
in [24]. This is how the Herring condition (22) is imposed at the junc-
tions. As is well known, the parametrization of the curves can drift
very far from an arc-length parametrization, resulting in very non-
uniformly spaced points on the curves, adversely effecting the stability
(CFL) condition [8]. Hence, as is customary in front tracking, we pe-
riodically reparametrize the curves by arc-length, though as seldomly
as possible to prevent accumulation of errors caused by small but in-
evitable perturbation to the curves during the process (an alternative
is the approach of [22]).

A few comments are in order regarding implementation of threshold
dynamics algorithms as well. The consistency calculations (truncation
error analysis) carried out e.g. in [23, 35, 12] reveal that in the two-
phase setting, one would expect an error O(δt) as δt → 0. Similar
calculations in [34] indicate that in the presence of junctions, the error
becomes O(

√
δt), which is easy to understand: the kernels have width√

δt and hence start sensing the junction at any point of comparable
distance on the smooth interfaces. Although these are modest conver-
gence rates, they can be easily improved e.g. by Richardson extrapo-
lation demonstrated in [33], [34] to be effective on threshold dynamics
schemes, with or without junctions. Other important improvements
include implementation on adaptive grids while maintaining the ef-
ficiency of Fourier transform based convolutions, also developed and
demonstrated in [34] to achieve excellent accuracy.

Since our focus in this study is primarily on developing and verify-
ing the requisite theory that enables adapting threshold dynamics to
contexts in which no version of it so far exists due to a lack of funda-
mental understanding, we work with essentially the most basic version
of the algorithms, except for the following well-known and very simple
implementation detail to enhance spatial resolution: The convolution
step arising in each threshold dynamics algorithm considered – such as
(1) of the original MBO scheme (1) & (2) – yields a smooth level set
function that can be used (via interpolation) to estimate what fraction
of each grid cell is occupied by the evolving set at the next time step,
which can then be used in representing the characteristic function of
the set. The more involved improvements mentioned above, which are
very important in practical applications of threshold dynamics, can of
course also be implemented on the new algorithms and using the new
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kernels developed in this paper.
In all the examples, the computational domain is a discretization

of [0, 1]d, with d = 2 or 3.

5.1 Two-phase, anisotropic flows

(a) As an initial, modest test of the proposed kernel constructions,
consider the task of simulating anisotropic, two-phase curvature flow
in 2D given by (19), with the following choice of surface tension and
mobility:

σ(x1, x2) =
√
x2

1 + 4x2
2 and µ(x1, x2) = 1. (83)

Note that the corresponding Wulff shape is an ellipse in this case:

Wσ =

{
(x1, x2) : x2

1 +
1

4
x2

2 ≤ 1

}
. (84)

The construction of Section 4.1 yields the following positive convolution
kernel: K given in polar coordinates by (55) with

α(θ) =
m

1
2
2

4m
3
2
0

(
1 + 3 sin2 θ

) 3
4 and β(θ) =

m
1
2
2

2m
1
2
0

(
1 + 3 sin2 θ

) 3
4 . (85)

When η in the definition (55) of K is given by (53), the relevant mo-
ments (54) appearing in (85) are approximately

m0 ≈ 0.3403 and m2 ≈ 0.3737. (86)

Figure 1 shows the result of computation starting with a circle of
radius 1

4 as the initial condition, and ending at time t = 1
80 . The red

curves are the result of threshold dynamics with the new kernels, with
a spatial discretization of 256 × 256 and using 25 time steps of size
5 ·10−4. Front tracking result, serving as our benchmark and shown in
blue, used 128 points to discretize the curve and required 20480 time
steps.
(b) A more interesting anisotropy for numerical exploration is

σ(x1, x2, x3) = max
{
|x1|, |x2|, |x3|

}
(87)

i.e. the `∞ norm that has as its Wulff shape the octahedron:

Wσ =
{

(x1, x2, x3) : |x1|+ |x2|+ |x3| ≤ 1
}
. (88)

Consider this with e.g. the constant mobility µ = 1. Since Wσ is
not a zonoid, according to Theorem 1, there exists no positive con-
volution kernel using which threshold dynamics scheme (1) & (2) can
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Figure 1: Evolution of an initial circle (black) under motion (19) with surface tension
and mobility given by (83), computed using threshold dynamics algorithm (1) & (2) and
the convolution kernels from Sections 4.2 and 4.1 (red), compared against benchmark
result obtained with front tracking (blue). (a) Using the convolution kernel with positive
Fourier transform of Section 4.2. (b) Using the positive convolution kernel of Section 4.1.

even approximate the corresponding flow. The new, fully general ker-
nel construction of Section 5.1, however, easily yields a Schwartz class
kernel K with positive Fourier transform that is consistent with this
choice of anisotropy and mobility. Figure 2 shows evolution of a cube
under a volume preserving version [37, 27] of Algorithm (1) & (2) as
implemented in [38] or [12] using the kernel construction of Section 5.1
using this anisotropy and mobility pair.

5.2 Multi-phase, anisotropic flows

Consider the initial three phase configuration shown in Figure 4 (a),
subject to the following surface tension and mobility pairs:

σ1,2(x1, x2) =
√
x2

1 + x2
2 µ1,2(x1, x2) = 1,

σ1,3(x1, x2) =

√
1

4
x2

1 + x2
2 +

√
x2

1 +
1

4
x2

2 µ1,3(x1, x2) =
2x2

1 + 3x2
2

4
√
x2

1 + x2
2

σ2,3(x1, x2) =

√
x2

1 +
25

16
x2

2 µ2,3(x1, x2) = 1.

The corresponding Wulff shapes for these anisotropies are shown in
Figure 5.

The positive kernel construction given in Section 4.1 yields convo-
lution kernels of the form

Ki,j(r, θ) = αi,j(θ)η
(
rβi,j(θ)

)
25



Figure 2: Evolution of a cube under volume preserving weighted mean curvature flow
towards its Wulff shape the octahedron, with surface tension given by the `∞ norm and
constant mobility. The corresponding kernel was obtained from the construction of Section
4.2. Compare with a similar experiment in [12] that uses a different convolution kernel
that has the same surface tension but different mobility.

where, for example, α1,3 and β1,3 are given by

α1,3(θ) =
m

1
2
2

2m
3
2
0

(
cos2(θ) + 1

4 sin2(θ)
) 3

4
(

1
4 cos2(θ) + sin2(θ)

) 3
4√(

cos2(θ) + 1
4 sin2(θ)

) 3
4 +

(
1
4 cos2(θ) + sin2(θ)

) 3
4

×
(

1

2
+

1

4
sin2(θ)

)− 3
2
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and

β1,3(θ) =
2m

1
2
2

m
1
2
0

(
cos2(θ) + 1

4 sin2(θ)
) 3

4
(

1
4 cos2(θ) + sin2(θ)

) 3
4√(

cos2(θ) + 1
4 sin2(θ)

) 3
4 +

(
1
4 cos2(θ) + sin2(θ)

) 3
4

×
(

1

2
+

1

4
sin2(θ)

)− 1
2

Figure 3 shows plots of these kernels.

(a) (b)

(c)

Figure 3: The kernels (a) K1,2, (b) K1,3, (c) and K2,3 obtained from the construction
of Section 4.1 for the surface tensions and mobilities used in the triple junction example
of Figure 4.

Figure 4 (b) shows the resulting configuration at t = 0.01 computed
using these kernels in threshold dynamics Algorithm (89) & (90) on a
256× 256 grid with 20 time steps of size δt = 5 · 10−4, and compared
to the benchmark front tracking result computed using 200 grid points
along each one of the three curves and 8000 time steps of size δt =
1.25 · 10−6. There is very good agreement.

Finally, we note that the kernels of Section 4.2 could have also
been used in this example, since positivity of the convolution kernels
or their Fourier transforms is sufficient for Algorithm (89) & (90) to
dissipate the multiphase non-local energy (34). Although numerical
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experiments with these kernels suggest convergence to the correct evo-
lution, the error appears to be dramatically larger than that of using
kernels of Section 4.1. We leave finding a more accurate version of the
construction in Section 4.2 to a future study, and recommend kernels
of Section 4.1 over them in the multiphase setting instead.
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Figure 4: Evolution of a three-phase configuration with a pair of triple junctions under
anisotropic curvature flow; each interface has a distinct prescribed surface tension (two
of them anisotropic), two have constant mobility, and one has a normal dependent pre-
scribed mobility, as described in detail in Section 5.2. (a) The initial condition. (b)
Final configuration computed using threshold dynamics Algorithm (89) & (90) and the
positive kernel construction presented in Section 4.1 (red), compared to the benchmark
result computed using front tracking (blue). (c) The same evolution computed using two
different threshold dynamics algorithms: Algorithm (89) & (90) shown in thin, solid vs.
Algorithm (91)-(95) shown in thick, dashed line. Algorithm (89) & (90) is faster, but
Algorithm (91)-(95) has guaranteed unconditional gradient stability for essentially any
collection of N -choose-2 anisotropic surface tension and mobility pairs.
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Figure 5: The Wulff shapes corresponding to the anisotropies used in the triple junction
example. From left to right: Wσ1,2 , Wσ1,3 , and Wσ2,3 .

6 Appendix

We recall from [12] and [13] extensions of the isotropic but unequal
surface tension, multi-phase version of threshold dynamics Algorithm
(37) & (38) that was originally obtained in [14] to the fully anisotropic,
multi-phase setting. Let the surface tensions σi,j : Sd−1 → R+ and
mobilities µi,j : Sd−1 → R+ be given. Let Ki,j be convolution kernels
that have these surface tensions and mobilities according to formulas
(39) & (42) constructed, for example, by one of the methods presented
in Sections 4.2 and 4.1.

We start with the following completely straight forward generaliza-
tion of Algorithm (37) & (38), from [12]:

Algorithm: (from [12]) Given a time step size δt > 0, alternate
the following steps:

1. Convolution:

ψki =
∑
j 6=i

(
Ki,j

)
√
δt
∗ 1Σkj

. (89)

2. Thresholding:

Σk+1
i =

{
x : ψki (x) ≤ min

j 6=i
ψkj (x)

}
. (90)

Although Algorithm (89) & (90) works well in practice, as shown in
numerical experiments of [12] as well as Section 5.2 of this study, it ap-
pears difficult to establish that it dissipates the corresponding nonlocal
energy (49). In [13], slightly more expensive variants of (89) & (90)
along the lines of Algorithm (45)-(48) are proposed that ensure energy
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dissipation at the expense of a greater number of convolution opera-
tions per time step. The added complexity does not scale with the
number of grid points, but with the number of partitions, and thus re-
mains manageable. We recall one of these, Algorithm (91)-(95), below.
According to Proposition 4.5 in [13], it dissipates energy (49) for a very
wide class of kernels that includes any kernel constructed in Section 4
of this work. Together, the algorithm and the new convolution kernels
thus provide an unconditionally stable numerical scheme for the mul-
tiphase anisotropic energy (7) and its gradient descent dynamics (18)
& (22) at essentially full generality.

Algorithm: Given an initial partition Σ0 = {Σ0
i }Ni=1, the (k +

1)th iteration Σk+1 is obtained from Σk by a series of substeps
indexed by (m,n) ∈ IN For (m,n) 6= (1, 2) let p(m,n) denote the
predecessor of (m,n) in the dictionary ordering of IN and define
Σk,p(1,2) = Σk and Σk,(N,N−1) = Σk+1. Then Σk,(m,n) is obtained
from Σk,p(m,n) as follows:

1. For each (i, j) ∈ IN form the convolutions:

ψ
k,(m,n)
i,j (x) = (Ki,j)√δt ∗ 1

Σ
k,p(m,n)
j

(91)

2. For each i form the sums:

Ψ
k,(m,n)
i (x) =

∑
j 6=i

ψ
k,(m,n)
(i,j) (x) (92)

3. Threshold the mth function:

Gk,(m,n) = {x ∈ D : min
i

Ψ
k,(m,n)
i (x) = Ψk,(m,n)

m (x)} (93)

4. Grow set m into set n only:

Σk,(m,n)
m = Σk,p(m,n)

m ∪ (Gk,(m,n) ∩ Σk,p(m,n)
n ) (94)

5. Update set n:

Σk,(m,n)
n = Σk,(m,n)

n \ (Gk,(m,n) ∩ Σk,p(m,n)
n ) (95)

Let us also quote the following statement from [13] that concerns the
stability of Algorithm (91)-(95):

Proposition 6 (from [13]) Let each convolution kernel Ki,j be of the

form Ki,j = K1
i,j +K2

i,j, with K1
i,j ≥ 0 and K̂2

i,j ≥ 0. Then, Algorithm
(91)-(95) dissipates energy (49) at every time step.
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Finally, note that all the new kernel constructions presented in this
paper satisfy the conditions of Proposition 6.

7 Acknowledgments
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[13] S. Esedoḡlu and M. Jacobs. Convolution kernels and stability
of threshold dynamics methods. Technical report, University of
Michigan, August 2016. Under review.
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