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ABSTRACT
We introduce a novel partial differential equations approach
for addressing the problem of partisan gerrymandering. Our
method is based on volume preserving curvature flow, a par-
tial differential equation which we adapt to smooth voting
district boundaries while preserving equal voting popula-
tions. We show that every step of the flow minimizes a
“compactness energy”, allowing us to demonstrate that our
method produces more “compact” and reasonable district
maps. We compute the flow using a variant of “auction dy-
namics” — an efficient MBO type algorithm for computing
volume preserving curvature flows. This “auction dynamics”
approach can be used to generate hundreds of reasonable
maps in a matter of seconds without parallelization. The
compactness energy provides a way of comparing proposed
districtings of a given state. We demonstrate both the map
generation and map comparison features of our approach for
several different states.

1. INTRODUCTION
Partisan gerrymandering occurs when district lines are

drawn to selectively dilute the voting power of minority
groups and political opponents. The practice has a long
history in the United States, with records of politically mo-
tivated district lines dating back to before the election of
the First U.S. Congress in 1789 [21]. In recent years, how-
ever, the problem has taken on much greater urgency [35,
25]. Sophisticated software and data mining techniques have
allowed for the gerrymandering of voting districts with un-
precedented efficacy.

A hallmark of a gerrymandered map is a collection of
bizarrely drawn district boundaries, which serves to either
concentrate or isolate voters of a particular political persua-
sion (“packing and cracking”). As a result, many metrics for
quantifying gerrymandering have focused on detecting un-
natural shapes and boundaries. At least thirty distinct ways
of scoring “district compactness” exist in the literature to-
date, with many focusing on perimeter length and minimum
bounding areas as key indicators of a district’s compactness
([32, 31, 11, 29], among others). These scores have proven
useful in making and bolstering legal arguments concerning
gerrymandering, but leave many things to be desired [3].
Moreover, the question of how to draw better districts is
often left unaddressed, or can only be handled via compu-
tationally expensive random sampling methods [17, 2].
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In this work, we treat the drawing of district lines as a
partitioning problem. This allows us to combat gerryman-
dering by drawing on techniques from the vast mathematical
literature on partitioning. In recent years, partial differen-
tial equations (PDEs) have proven to be an invaluable tool
for solving partitioning problems ranging from image seg-
mentation [8, 16] to abstract partitioning of graphs [5, 9,
27, 18]. PDE-based approaches use a very simple idea: de-
fine an energy which captures the features of a desirable
partition and then compute the gradient flow of the energy.
The gradient flow follows the path of steepest descent for
the energy. Thus, as the flow evolves in time the features
of the partition improve. In the context of gerrymandering,
this approach provides a way to both score existing maps
and generate new maps.

The heart of our method is a well-known geometric PDE:
motion by mean curvature. Motion by mean curvature or
curvature flow acts on sets by evolving their boundaries.
Curvature flow arises as gradient descent for energies mea-
suring the length of the boundary. Thus, the PDE naturally
acts to smooth and shorten boundaries between sets. To pro-
duce valid district maps we must ensure that the districts
maintain approximately equal voting populations through-
out the evolution. By interpreting district population as a
volume constraint for the underlying set, we can maintain
equal populations using volume preserving curvature flow.

Our approach to the districting problem is as follows.
First, we define the districting problem over the structure
of a weighted graph. The nodes of the graph are small com-
munity subunits defined by the U.S. Census Bureau. This
allows us to partition a state into districts, while respecting
local community structure. Next, we define a “compactness
energy” which measures district boundaries and penalizes
district sprawl. Finally, we compute the gradient flow of
our energy using auction dynamics — a highly efficient al-
gorithm introduced in [23] for computing multiphase volume
preserving curvature flows.

Our resulting algorithm is extremely efficient — we can
compute the entire trajectory of the flow in a matter of sec-
onds even for large states. Since the flow is tied to an energy,
we can naturally assign a score (which is provably minimized
at each step) to every districting along the trajectory of the
motion. Our approach allows us to impose very strict pop-
ulation constraints without difficulty, and the graph-based
formulation of districting we employ allows us to enforce
restrictions on the solution space without interrupting the
flow. In what follows, we will describe our algorithm, dis-
cuss how it can be adapted for the problem of scoring and



generating district maps, and provide examples of its output
on several different states.

2. METHODS

2.1 Defining a districting
We consider the district partitioning problem over the

structure of a weighted graph (V,W ). The vertices x ∈ V
of the graph are small community subunits, defined by the
U.S. Census Bureau. The geographical centroid of a subunit
x ∈ V is denoted c(x) which is a vector in R2.

The weight matrix W controls how strongly different sub-
units x, y ∈ V are connected to each other. We build the
weights W (x, y) according some distance relationship d(x, y)
between the centroids c(x) and c(y), such as the L2 distance
or the driving time distance. If x is one of the k nearest
neighbors of y, or y is one of the k nearest neighbors of
x (according to the chosen distance d(x, y)) we choose the
Zelnick-Manor and Perona [36] weights

W (x, y) = exp

(
− d(x, y)2

σ(x)σ(y)

)
(1)

otherwise we set W (x, y) = 0. Here σ(x) is a local distance
rescaling factor. We define σ(x) to be the distance between x
and its k

2
th nearest neighbor. By only connecting k nearest

neighbors, we ensure that W is a sparse matrix. Finally,
we renormalize W by taking W 7→ R−1/2WR−1/2, where
R is the diagonal matrix of row sums of W , i.e. R(x, x) =∑
y∈VW (x, y).
An N -district map is a partition of the vertices x ∈ V into

N pairwise disjoint districts D1, . . . , DN . To uphold the
principle of “one person, one vote,” the populations Pi of
the districts must be approximately equal. We shall enforce
this principle by placing a lower bound P on the population
of each district. A districting D1, . . . , DN is valid if Pi ≥ P
for all districts 1 ≤ i ≤ N . We shall let SN denote the set
of all valid N -district partitions of V.

To determine the population Pi of a district Di we must
sum up the populations of each subunit x ∈ Di. The Census
Bureau provides population data p(x) for each x ∈ V. Thus,
Pi =

∑
x∈Di

p(x). Note that the populations p(x) may vary
wildly across different subunits. For example, urban cen-
sus subunits have much larger populations than rural cen-
sus subunits. To avoid computational difficulties, we shall
assume that each subunit contains at least one person.

In what follows, it will be convenient to represent a dis-
tricting as a function u : V → RN . We can encode the
partition by defining the entries u(x) = (u1(x), . . . , uN (x))
to be

ui(x) =

{
1 if x ∈ Di
0 otherwise.

2.2 The compactness energy
At the heart of our approach is an energy functional mea-

suring the “compactness” of a districting. Our energy con-
sists of two terms. The first approximately measures the
boundary length of the districting, and the second penal-
izes district sprawl by measuring the distance between the
centroids c(x) and a central district cluster point ci. The
relative importance of the two terms is balanced by a non-

negative parameter α. The energy is given by

Eα(u, c) =
1

2

N∑
i=1

∑
x,y∈V

ui(x)A(x, y)
(
1− ui(y)

)
+α

N∑
i=1

∑
x∈V

ui(x)‖ci − c(x)‖2
(2)

where A = WTW . Note that the first term is equivalent to
summing

∑
(x,y)∈Ecut A(x, y) where Ecut is the set of pairs of

vertices (x, y) placed in different districts. Thus, this term
is exactly the graph cut with respect to the matrix A, which
in turn approximates the length of the district boundaries.

2.3 MBO and auction dynamics
To compute the volume preserving gradient flow of (2) we

turn to the auction dynamics algorithm introduced in [23].
Auction dynamics is a variant of the celebrated Merriman,
Bence and Osher (MBO) algorithm [28] for computing mo-
tion by mean curvature.

Auction dynamics computes the gradient flow of (2) using
the variational framework developed by Esedoḡlu and Otto
in [15]. Esedoḡlu and Otto showed that in the continuum
setting, the MBO algorithm has an associated Lyapunov
functional, the heat content energy. From this viewpoint,
each iteration of the MBO algorithm is equivalent to min-
imizing the linearization of the heat content at the current
configuration. Auction dynamics extends the scheme to vol-
ume preserving curvature flow by imposing a volume con-
straint on the minimization problem.

The first term in the compactness energy (2]) is the natu-
ral extension of the heat content energy to the graph setting.
Thus, we can obtain a “graph auction dynamics scheme” by
minimizing linearizations of (2) over the set of admissible
partitions SN . In other words, we compute a gradient flow
of our energy by iterating:

un+1 = arg min
u∈SN

(∇Eα(un, c),u− un). (3)

Note that A = WTW is a positive definite matrix, thus
Eα is a concave function of u. The concavity guarantees that
Eα lies below the tangent plane at any point v. Therefore,

Eα(u, c) ≤ Eα(v, c) + (∇Eα(v, c),u− v) (4)

for any points u and v. This inequality guarantees that Eα
is non-increasing at every step of the scheme.

Equation (3) is a non-trivial combinatorial optimization
problem. Although the objective function is linear, the set of
admissible partitions, SN , is a non-convex set. To overcome
this difficulty, we can instead pose the minimization over the
convex hull of SN . This relaxation transforms problem (3)
into a linear programming problem

un+1 = arg min
u≥0

(∇Eα(un, c),u− un)

s.t.
N∑
i=1

ui(x) = 1,
∑
x∈V

ui(x)p(x) ≥ P.
(5)

When the populations p(x) are uniform, the solution to
the original combinatorial optimization problem (3) coin-
cides with the solution to (5). In our case, p(x) is not uni-
form; thus, the solution to (5) may not be a partition, i.e.



u(x) may have fractional entries for some x ∈ V. If u(x)
has fractional entries, then the vertex x is split between two
(or more) different districts — an undesirable outcome.

In practice, replacing problem (3) with the relaxation (5)
rarely leads to vertex splitting. This is unsurprising given
that both terms in the compactness energy (2) increase if
some u(x) has fractional entries. As a result, whenever an it-
erate un develops fractional entries, the gradient∇Eα(un, c)
will point in a direction which encourages un+1 to have bi-
nary entries. Thus, if a vertex x is split in the course of the
flow, it will be quickly corrected in the next few iterations.

Auction dynamics solves subproblem (5) using the auction
algorithm introduced by Bertsekas in [6] (hence the name
“auction dynamics”). See [23] for an exhaustive discussion
of auction algorithms in the context of multiphase volume
constrained curvature flow.

After each u update step, we update the district centroids
ci to minimize Eα. Eα is quadratic in c, thus the update

cn+1 = arg min
c∈RN×2

Eα(un+1, c) (6)

is easily calculated.
We are now ready to give our auction dynamics algorithm,

Algorithm 1, for redistricting. The algorithm alternates
computing gradient flow of energy (2) with respect to the
partition u and updating the district centroid c (Equations
(5) and (6) respectively).

2.4 Temperature
To prevent the algorithm from computing the same tra-

jectory every time, we can introduce randomness into the
entries of the gradient vector ψn+1

i (x). We interpret this
randomness as fluctuations due to temperature. For some
temperature level T we add independent identical Gaussian
random variables with distribution N (0, T ) to ψn+1

i (x) for
every i and x before running the auction step. Note that
adding temperature can allow the trajectory to escape local
minima and find potentially more compact maps.

Since we want to eventually find low energy maps, it
makes sense to anneal the temperature during the flow.
Once the temperature is functionally zero, the energy is cer-
tain to be decreased at each step. When we include temper-
ature in our simulations, we always anneal it at a fixed rate;
e.g. decreasing it to 95% of its value at the prior step.

2.5 Data
All census tract shapefiles were obtained from the Census

website, as were the Congressional District shapefiles. Popu-
lation data for each tract was taken from the American Com-
munity Survey data available via the American FactFinder
website (https://factfinder.census.gov/). Code and data
for all figures is available on Github (http://github.com/
ojwalch/district_mbo).

3. RESULTS
The modified auction dynamics algorithm is able to rapidly

produce large numbers of compact, contiguous districtings.
Even for large states such as Ohio or Pennsylvania, we are
able to compute the flow in a matter of seconds. The algo-
rithm is robust to initial conditions, producing reasonable
districtings even when starting from a random partition.

Energy decreases with each iteration of the algorithm, ex-
cept in cases when temperature is included. As temperature

Algorithm 1: Auction dynamics

Compute the gradient:

ψn+1
i (x) = α‖cni − c(x)‖2 −

∑
y∈V

W (x, y)uni (y) (7)

Solve the linear program with an auction:

un+1 = arg min
u≥0

N∑
i=1

∑
x∈V

ui(x)ψn+1
i (x)

s.t.

N∑
i=1

ui(x) = 1,
∑
x∈V

ui(x)p(x) ≥ P

(8)

Update the district centroids:

cn+1
i =

∑
x∈V u

n+1
i (x)c(x)∑

x∈V u
n+1
i (x)

(9)

is always annealed in our approach, the energy will decrease
monotonically once temperature is effectively zero. A sam-
ple flow from North Carolina is shown in Figure 1. Energy
trajectories for several states are plotted in Figure 5. For
each state, the trajectories are remarkably similar, despite
different initial conditions and random fluctuations due to
temperature. Thus, we see that the algorithm very reliably
finds low energy configurations. The final maps, while sim-
ilar in energy, can look very dissimilar.

3.1 Choice of parameters
In the absence of temperature, the key parameters to

choose for the algorithm are α, the centroid distance co-
efficient, and k, the number of nearest neighbors.

The parameter α controls the relative importance of the
graph cut term and the centroid penalty term. Without a
centroid penalty term, curvature flow can sometimes sepa-
rate a set into two (or more) connected components. Sepa-
ration leads to a high centroid penalty, thus separation can
be prevented by choosing α sufficiently large.

Figure 2 shows the output of the algorithm with several
different values of α. For small values of α some of the
districts become disconnected. As α is increased, the sepa-
rations disappear and all of the computed districts are con-
tiguous. For values greater than α = 2, the algorithm does
not seem to yield markedly different qualitative results for
different values of α (see Figure 2).

It is important to choose k sufficiently large. The weight
matrix must have enough entries so that each district can
“see” the neighboring vertices it wants to capture. If there
are too few nearest neighbors, the algorithm will be slow or
completely stationary. For values of k ≥ 100 the algorithm
reliably converges (Figure 3).

An additional parameter to consider is the lower bound
for the populations of each district, P . In our simulations,
we set P = 0.999

N

∑
x∈V p(x) i.e. each district must have at

least 99.9% of the total population divided by the number
of districts. Allowing a small amount of flexibility in the
population constraint ensures that the algorithm can find
valid configurations at each step.

3.2 Choice of distance measure

https://factfinder.census.gov/
http://github.com/ojwalch/district_mbo
http://github.com/ojwalch/district_mbo


Figure 1: Sample flow in North Carolina. The initial districting (upper left) is updated in each of the subsequent maps (read
left-to-right) according to motion by mean curvature. In this simulation, the number of nearest neighbors is k = 150, the
centroid distance coefficient α = 1, and there is no temperature.

Figure 2: Effects of varying α on six separate runs of our
algorithm. Output maps for Virginia are shown with in-
creasing centroid distance parameter. Each map is initial-
ized from the 2016 districting and run without temperature.
The only parameter that varies across maps is the centroid
distance coefficient α (values shown in Figure) that penal-
izes dispersed districts, with lower α linked to a higher oc-
currence of non-contiguous districts.

Figure 3: Choice of k on mapping. The number of nearest
neighbors is varied from 5 to 500. Each simulation is run
without temperature, starting from the 2016 districting. If
k is too small, the algorithm will not produce a contiguous
mapping. Above 100, the choice of k appears not to play a
significant role in the outcome.



Figure 4: Choice of weight source affects final map output.
On the left, the result from applying our algorithm to Mary-
land using the L2 distance to construct weights. On the
right, the weights are determined by driving time between
two block centroids, as calculated using the Open Source
Routing Machine (http://project-osrm.org). A bridge
connects the tan-colored district’s noncontiguous compo-
nents in Map B. In general, human-centric measures of dis-
tance produce more natural results.

Figure 5: Change in energy across 100 iterations for 20 runs
of the algorithm on several states, with blocks initially as-
signed to districts at random. (A) Michigan, (B) Pennsyl-
vania, (C) North Carolina, (D) Virginia. Temperature is set
to 0.1 at the beginning for all trials and anneals to 95% its
previous value with every iteration.

In most of our simulations, we choose the usual L2 metric
to define the graph weights, but this is not required. Al-
ternative distances can be used that more accurately reflect
the human geography of the map, yielding more reasonable
and useful mappings.

Maryland is an illuminating case study for alternative
measures of distance, as standard L2 distances make it so
that tracts separated by the Chesapeake Bay are connected
(Figure 4A). This is resolved by using driving time as the
distance measure. With the driving time distance the only
district spanning the water (tan-colored) does so because of
the existence of a nearby bridge (Figure 4B).

The distance between different units x and y can also be
artificially set to zero. Setting d(x, y) = 0 encourages plac-
ing x and y in the same district. This could be desirable
for Voting Rights Act compliance or to preserve historical
communities.

3.3 Comparing the energy of multiple maps
Our energy (2) can be used as a compactness score for

Figure 6: Comparing the energy of proposed districtings to
the final energies resulting from our algorithm. The energy
of Pennsylvania’s 2016 Congressional Districting Plan (red)
is compared to the 2018 Remedial PA Mapping (green), and
the final energies of 30 separate runs of our algorithm start-
ing from random initial districtings in Pennsylvania (blue).
Across all trials the parameters used to compute the energy
(e.g. number of neighbors k and centroid distance coefficient
α) are the same.

a given districting. Auction dynamics computes stationary
points of the energy, which can serve as low-energy bench-
marks. The compactness energy is non-convex (an inherent
feature of any nontrivial partitioning problem), thus auc-
tion dynamics will converge to different stationary points
depending on the initial configuration and random fluctu-
ations due to temperature. Hence, a histogram of many
low-energy districtings provides a more robust benchmark
for the compactness of a given map.

In Figure 6, the energies of the 2016 Pennsylvania map-
ping and the 2018 Remedial PA plan are compared to the
output from 30 trials of our algorithm with random initial-
ization (i.e. each vertex assigned to a random district). The
Remedial plan (green) is significantly closer to the locus of
low-energy solutions than the 2016 mapping (red), and this
holds for all reasonable values of k and α.

For insight into this result, one can look at the difference
between the auction dynamics output when initialized with
the 2016 map versus the 2018 remedial map (Figure 7). The
remedial mapping is much closer to the final solution and
changes much less dramatically over the course of the flow
than the 2016 mapping.

4. CONCLUSION
In this paper, we adapt a partial differential equations

technique for partitioning problems to address the specific
conditions (equal populations, contiguity) required by dis-
tricting. We introduce a compactness score, the compact-
ness energy, and create new district maps by following the
volume preserving gradient flow of the energy. This ap-
proach allows us to both score the compactness of a dis-
tricting and to generate large numbers of compact and con-
tiguous mappings that can be used to provide context to
any proposed districting. Our method is readily adaptable

http://project-osrm.org


Figure 7: Before and after results of running the algorithm
on Pennsylvania districtings. A) Pennsylvania’s 2016 dis-
trict mapping, B) the results of running the auction dynam-
ics algorithm initializing from (A), C) the 2018 Remedial
mapping, D) the results of running the auction dynamics
algorithm initialized from (C). The 2016 mapping changes
much more dramatically than the 2018 mapping.

to real-world constraints: community units that are legally
mandated to be in the same district can be handled by artifi-
cially decreasing the distance between them, and the weights
can be chosen to capture more “human” metrics such as
travel time distance. The code runs quickly, does not re-
quire parallelization, and is open source.

Ultimately, the goal of districting is to produce a map
which fairly represents the will of the populace. The pro-
posed algorithm is not a means of arriving at one “optimal”
districting; rather, it is a tool that can be used to evalu-
ate proposed districtings in the context of the constraints
imposed by geography and population distribution. If the
current districting does a worse job representing the peo-
ple than maps along the trajectory of the flow, it should be
considered highly suspect and very likely gerrymandered.
Future investigations will clarify the role for this technique
in combating real-world partisan gerrymandering.
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