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1. Introduction. In recent years there has been an explosion of interest ([10,
2, 15, 14, 3] and many more) in solving convex optimization problems using first-
order algorithms. The primary advantage of first-order algorithms (as compared to
say Newton’s method) is that one need only evaluate the proximal operator or the
gradient of the functional at the current position. As a result, the complexity of each
iteration is typically linear in the total number of grid points. This opens the door to
solving extremely large problems, which would be infeasible with other methods.

However, such a viewpoint often sweeps under the rug that the convergence rate
of first-order methods may depend badly on the size of the problem. This dependence
may enter through two competing factors—the distance between the minimizer and
the initial point, and the stability of the descent information. These factors are
easiest to understand in the context of smooth gradient descent. Indeed, given a
smooth convex functional F with a unique global minimum at u∗, gradient descent
using the inner product (·, ·)H has the convergence rate

(1.1) F (un) ≤ F (u∗) + 2LH
‖u∗ − u0‖2H

n+ 4

where un is the nth iterate, u0 is the initial point and LH is the Lipschitz constant of
∇HF in the norm ‖·‖H [16]. Strengthening the inner product (·, ·)H decreases LH at
the expense of increasing ‖u∗−u0‖H (and vice versa). In the continuum setting, if LH
or ‖u∗ − u0‖H is infinite then on a discrete grid the corresponding quantity will grow
as the grid resolution becomes finer. In these cases, each iteration of the first-order
method is extremely efficient, but the number of required iterations depends on the
problem size. This can place a severe restriction on the size of solvable problems.

The situation appears to be particularly dire for pathological problems where at
least one of LH or ‖u∗ − u0‖H is infinite for any choice of inner product. In this
case, equation (1.1) would suggest that it is not possible to obtain a convergence rate
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independent of the grid size. Our goal in this paper is to show that this is in fact not
the case—even for pathological problems the convergence rates of first-order methods
can be made independent of the problem size.

Our approach is inspired by a more powerful convergence rate estimate given by
Nesterov in [16]. A careful examination of his proof of accelerated gradient descent
reveals that for smooth convex F one has

(1.2) F (un) ≤ min
u

[
F (u) + 4LH

‖u− u0‖2H
(n+ 2)2

]
.

This estimate gives far more flexibility, as we can attempt to approximate the mini-
mizer u∗ with a sequence (uk) where each uk satisfies ‖uk − u0‖H = Rk < ∞. If we
then let δk = F (uk)− F (u∗) we see that

(1.3) F (un)− F (u∗) ≤ δk + 4LH
R2
k

(n+ 2)2
.

As long as δk → 0, we can choose k and n so that the right hand side of (1.3) is as
small as desired. This perspective makes it clear that LH <∞ should be prioritized
over ‖u∗−u0‖H <∞ when choosing an inner product. More importantly, we can see
that the convergence rate can be made independent of the problem size.

In this paper, we are interested in L1-type problems where the functional F is not
smooth. As such, we cannot use Nesterov’s method. Instead, we work with a modified
version of Chambolle and Pock’s primal-dual hybrid gradient algorithm (PDHG) [2],
which we call G-prox PDHG (we pause here to note that through various reductions
G-prox PDHG can be shown to be equivalent to the well-known Douglas–Rachford
splitting (DRS) algorithm). Primal-dual algorithms convert minimization problems

(1.4) F (u) = f(Ku) + g(u)

into saddle point problems

(1.5) L(u, p) = (Ku, p)Z + g(u)− f∗(p)

where f and g are convex functions, K : H → Z is a linear map between Hilbert
spaces, and f∗ is the convex dual of f . Morally, the original PDHG algorithm searches
for a saddle-point by following the trajectory of the coupled system of equations{

∂tu ∈ −KT p− ∂g(u)

∂tp ∈ Ku− ∂f∗(p)

where ∂g and ∂f∗ are the subdifferentials of their respective functions. Each step
of the algorithm does the u “gradient descent” of L(u, p) with step size τ and the p
“gradient ascent” of L(u, p) with step size σ. In order for the scheme to be computa-
tionally feasible, the u and p updates are decoupled. As a result, the scheme is stable
if and only if τσ < 1

L2
H

where LH is the operator norm of K.

G-prox PDHG follows the trajectory of the modified system of equations{
∂tu ∈ −(KTK)−1

(
KT p− ∂g(u)

)
∂tp ∈ Ku− ∂f∗(p).

.
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The key difference here is that the u evolution equation is preconditioned by the
operator (KTK)−1. As a result, this scheme has a much more satisfactory stability
condition

τσ < 1.

If K is an unbounded operator, say K = ∇, the step sizes of PDHG must depend on
the grid resolution. On the other hand, the step sizes of G-prox PDHG are clearly
independent of the grid size. As one might expect from our exposition above, we must
pay for the increased stability by increasing the distance between the solution u∗ and
the initial point u0. Indeed this is the case, the convergence rate will now depend
on ‖K(u∗ − u0)‖Z as opposed to ‖u∗ − u0‖H for the original PDHG. However, this
trade-off is worth it. Our main result is a Nesterov-type estimate (in the spirit of
equation (1.2)) for the convergence rate of G-prox PDHG. This estimate shows that
an approximate solution to the optimization problem can be obtained independently
of the grid size even when ‖K(u∗ − u0)‖Z is infinite.

Theorem 1.1. Suppose that F is a functional of the form

F (u) = f(Ku) + g(u)

where for all u ∈ H the maximizer p(u) = arg maxp∈Z(Ku, p)Z − f∗(p) is uniformly
bounded, i.e.

sup
u∈H
‖p(u)‖Z = C <∞.

Let uN = 1
N

∑N
n=1 un and pN = 1

N

∑N
n=1 pn where un and pn are the sequence of

iterates produced by G-prox PDHG starting from u0 and p0. Then there is an optimal
choice of step sizes τ and σ such that after N iterations

F (uN ) ≤ min
R≥0

[
RC

N
+ min
‖K(u−u0)‖Z≤R

F (u)

]
.

Furthermore, if limR→∞min‖K(u−u0)‖Z≤R F (u) = infu∈H F (u) = F̄ , then limN→∞ F (uN ) =
F̄ .

Note that Theorem 1.1 does not explain how to choose the optimal step sizes τ
and σ, nor does it give an explicit convergence rate in terms of N only. As it turns
out, the convergence rate and the optimal choices of τ and σ are highly dependent
on the properties of the functional F and the underlying space H. Furthermore, the
optimal choices of τ and σ may depend on the user’s desired error tolerance. For
example, the optimal step sizes used to find an ε accurate solution may be different
than the optimal step sizes used to find an ε/2 accurate solution!

In the face of such complication, it seems unlikely that there is an elegant or
concise statement which provides the optimal convergence rate and optimal step sizes
for general F . Instead, we focus on two important problems: the Rudin–Osher–Fatemi
(ROF) image denoising model and the earth mover’s distance (EMD) between two
probability measures. Both of these problems can be solved very efficiently with our
method, as the matrix inversion (KTK)−1 can be carried out in log-linear time using
the Fast Fourier Transform (FFT). For both of these problems, we provide a principled
strategy for choosing approximately optimal step sizes τ and σ, and give an explicit
upper bound for the convergence rate in terms of the number of iterations N . To the
best of our knowledge, this paper provides the first proof that these problems can be
solved with a convergence rate independent of the grid discretization. In addition,
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our arguments give a blueprint for extending the convergence rate results to other
functionals of interest.

The rest of the paper is structured as follows. We conclude the introduction with
a summary of our contributions. Next, in Section 2, we provide background on convex
optimization and introduce further notation. In Section 3, we prove the main results
of the paper. In Section 4, we perform various numerical experiments that highlight
the need for our rigorous theoretical analysis. Finally, in Section 5, we conclude the
paper with a brief discussion.

Contributions. The following is a summary of the present paper’s contributions:

• We conclusively demonstrate that the ROF problem and the L1 EMD prob-
lem can be solved with a convergence rate independent of the grid discretiza-
tion. Furthermore, our arguments apply to a general class of L1 functionals.
Surprisingly, these results are non-trivial and require a detailed analysis.

• Crucially, our analysis provides the optimal step sizes for splitting algorithms.
As a result, we are able to solve these problems orders of magnitude faster
than previous works. We can solve problems on grids of size 2048 × 2048
in less than 2 minutes and grids of size 4096 × 4096 in less than 10 minutes
without parallelization.

2. Background and Notation. In this paper we will be interested in convex
functionals F : X → R ∪ {+∞} where X is a convex subset of the space of functions
{u : [0, 1]d :→ R}. In order to minimize F , one typically needs to add additional
structure in the form of a distance. The distance is used to control how far the
scheme is allowed to move using only local information about F . In principle, these
distances can be very general [4]. Here, we will focus on the case where the distance
is induced by an inner product (·, ·)H. Thus, it will be useful for us to assume that F
is defined on some Hilbert space H with the inner product (·, ·)H.

Typically, there is an enormous amount of freedom in choosing the Hilbert space
H ( it is usually easy to extend F to a larger space or restrict it to a smaller space). In
the introduction, we alluded to the fact that there may not be a single space Hilbert
space H which is the “natural” or “correct” choice. Ideally, one should choose a
Hilbert space where F is both Lipschitz continuous and coercive in the norm ‖·‖H.
This is enough to imply that F has a minimizer u∗ ∈ H [6], and that F behaves stably
in local neighborhoods. However, for many interesting functionals, no such “natural”
Hilbert space exists. For example, there is no Hilbert space where the total variation
functional is both Lipschitz continuous and coercive. Thus, when choosing an inner
product we must be aware of the trade-offs that such a choice entails.

For non-smooth functionals, we cannot use gradient descent to search for a min-
imizer. Instead, we turn to the proximal operator of F

(2.1) proxτ (F, u) = arg min
u′∈H

F (u′) +
1

2τ
‖u′ − u‖2H ,

which is well-defined when F is merely lower-semicontinuous and bounded below on
H [6]. Roughly speaking, the proximal operator searches for the smallest value of
F in a neighborhood of the current point u. When F is smooth, we know that
proxτ (F, u) ≈ u− τ∇HF (u) for small τ . Thus, the proximal operator generalizes the
notion of gradient descent to non-smooth functionals.

Unfortunately, computing the proximal operator of a non-trivial functional F
is extremely difficult. Indeed, one should expect that computing proxτ (F, u) is as
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difficult as finding a minimizer of F . On the other hand, a large class of non-trivial
functionals F can be written as a sum

(2.2) F (u) = f(Ku) + g(u)

where the proximal operators of f(u) and g(u) can be computed easily. This leads
to a large class of closely related algorithms (Douglas–Rachford splitting, augmented
Lagrangian, alternating direction of multipliers method, split Bregman, PDHG) [5,
13, 9, 8, 10], which minimize F by appropriately combining the proximal operators of
f and g. For the remainder of this paper we shall focus on the PDHG algorithm.

2.1. PDHG. PDHG converts the minimization problem

(2.3) F (u) = f(Ku) + g(u)

into the primal-dual saddle point problem

(2.4) L(u, p) = (Ku, p)Z + g(u)− f∗(p).

f∗ is the convex dual of f , which is defined by the Legendre-Fenchel transform:

(2.5) f∗(p) = sup
v∈Z

(v, p)− f(v).

For convex functions f , the Legendre-Fenchel transform is an involution f∗∗ = f .
Therefore, F can be recovered from L by

F (u) = sup
p∈Z
L(u, p).

If F has a unique minimizer u∗ and L has a saddle point (û, p̂) then û = u∗. Indeed,

F (û) = sup
p∈Z
L(û, p) = L(û, p̂) ≤ L(u∗, p̂) ≤ F (u∗).

Therefore, instead of directly minimizing F , we can achieve the same goal by searching
for a saddle point of L.

To proceed further, we must know what it means for a point (u, p) to be close to
a saddle point. A notion of closeness can be defined through the primal-dual gap:

G(u, p) = sup
p′∈Z

L(u, p′)− inf
u′∈H

L(u′, p).

By definition, G(u, p) ≥ 0 for all (u, p). Furthermore, G(û, p̂) = 0 if and only if (û, p̂)
is a saddle point. Indeed, L is convex in u for fixed p and concave in p for fixed u,
thus the the inequalities

sup
p′∈H

L(û, p′) ≤ L(û, p̂) ≤ inf
u′∈H

L(u′, p̂)

encode the definition of a saddle point. In addition, the primal-dual gap controls how
close one is to the minimizer of F . Namely,

G(u, p) = F (u)− inf
u′∈H

L(u′, p) ≥ F (u)− inf
u′∈H

F (u′).
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Now we are ready to discuss the PDHG algorithm. PDHG searches for a saddle
point of L as follows:

Algorithm 1: PDHG

(2.6) un+1 = arg min
u∈H

g(u) + (u,KT p̄n)H +
1

2τ
‖u− un‖2H

(2.7) pn+1 = arg max
p∈Z

−f∗(p) + (Kun+1, p)Z −
1

2σ
‖(p− pn)‖2Z

(2.8) p̄n+1 = 2pn+1 − pn.

Informally, PDHG can be understood as a discrete in time approximation to the
trajectory of the saddle point flow

{
∂tu ∈ −KT p− ∂g(u)

∂tp ∈ σ
τ

(
Ku− ∂f∗(p)

)
.

The system becomes stationary at a point (û, p̂) satisfying

0 ∈ −KT p̂− ∂g(û) and 0 ∈ Kû− ∂f∗(p̂)

which is precisely the first order condition for (û, p̂) to be a saddle point of L. The
PDHG updates can be written in terms of a semi-implicit scheme for the saddle point
flow (1):

un+1 − un
τ

∈ −KT p̄n − ∂g(un+1)

pn+1 − pn
σ

∈ Kun+1 − ∂f∗(pn+1).

The u update is not fully implicit, as the term −KT p̄n uses the value of p from a
previous iteration (note a fully implicit scheme is not computationally feasible). Thus,
the main source of instability in the PDHG algorithm is the decoupling of the u and
p update steps. The scheme is stable if τσ‖KTK‖H < 1 [2]. However, if K is an
unbounded operator from H to Z, there are no non-zero step sizes which produce
a stable scheme. Thus, we see that the underlying Hilbert spaces H and Z play a
crucial role in the stability of the algorithm.

We conclude the background section with an important result of Chambolle and
Pock which provides a convergence rate for the PDHG algorithm. The convergence
rate is given in terms of a slightly unusual object, the partial primal dual gap

(2.9) GR1,R2
(u, p) = sup

‖p′−p0‖Z≤R1

L(u, p′)− inf
‖u′−u0‖H≤R2

L(u′, p)

where u0 and p0 are the initial iterates of u and p. The partial primal dual gap restricts
the search for maximizers p′ and minimizers u′ to balls of finite radius centered at
the initial iterates. As a result, it is possible for the partial primal dual gap to
vanish at non saddle points. However, if GR1,R2

(û, p̂) vanishes and ‖p̂ − p0‖Z < R1,
‖û− u0‖H < R2 then (û, p̂) is a saddle point [2]
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Theorem 2.1. [2] Suppose that K : H → Z is a bounded operator and the step

sizes τ and σ satisfy τσ‖KTK‖H < 1. Let uN = 1
N

∑N
n=1 un and pN = 1

N

∑N
n=1 pn

where un and pn are the sequence of iterates produced by Algorithm 1. After N
iterations the partial primal dual gap satisfies

(2.10) GR1,R2(uN , pN ) ≤ 1

2N
(
R2

1

τ
+
R2

2

σ
).

Formula (2.10) is very interesting. The radii R1 and R2 play the same role as the
distance term ‖u− u0‖2H in the gradient descent convergence rate formulas (1.1) and
(1.2). Similarly, the step size restriction τσ‖KTK‖H < 1 plays the same role as the
Lipschitz constant LH. Thus, we see that the convergence rate of PDHG depends on
the inner products (·, ·)H and (·, ·)Z in the same way as gradient descent. We shall
see shortly that we will be able to use these features to convert Theorem 2.1 into our
main result.

3. Main Results. Let us recall that our goal in this paper is to solve optimiza-
tion problems with a convergence rate independent of the grid size. If K : H → Z is
an unbounded operator then PDHG is not well-defined in the continuous setting. In
the discrete approximation, K will be bounded but the operator norm of K will grow
with the grid size. This implies that at least one of the step sizes τ or σ must shrink
to zero as the grid resolution approaches the continuous limit. In that case, it is clear
from formula (2.10) that the convergence rate will depend on the grid size. Thus, our
immediate goal is to modify PDHG to ensure that K is always a bounded operator.

Assume that the inner product (·, ·)Z for the variable p has already been chosen.
The simplest way to ensure that K : H → Z will be a bounded operator is to define
the inner product (·, ·)H by (u, v)H = (Ku,Kv)Z (note we can always assume that
K is injective — it is trivial to solve for and eliminate the components of u which are
not coupled to p). This simple modification leads us to Algorithm 2, G-prox PDHG.

We again note that G-prox PDHG is equivalent to the DRS algorithm (c.f. Section
4.2 in [2]). However, we prefer this formulation as it allows us to clearly connect to
PDHG and the convergence result (2.10). G-prox PDHG modifies Algorithm 1 by
choosing a specific inner product for the u update. Thus, G-prox PDHG is a special
case of Algorithm 1 where K is a bounded operator with operator norm ‖KTK‖H = 1.
As long as τσ < 1, the convergence result, Theorem 2.1, applies to G-prox PDHG.

Algorithm 2: G-prox PDHG

(3.1) un+1 = arg min
u∈H

g(u) + (Ku, p̄n)Z +
1

2τ
‖K(u− un)‖2Z

(3.2) pn+1 = arg max
p∈Z

−f∗(p) + (Kun+1, p)Z −
1

2σ
‖(p− pn)‖2Z

(3.3) p̄n+1 = 2pn+1 − pn.

Now we still need to address the choice of the Hilbert space Z for the dual variable
p, and the impact of the distances ‖K(u − u0)‖Z and ‖p − p0‖Z on the convergence
rate. The highest priority is to choose (·, ·)Z so that the updates (3.1) and (3.2) can
be computed efficiently. Indeed, if steps (3.1) and (3.2) cannot be computed in linear
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or log-linear time (in the number of grid points) then the entire purpose of choosing a
first order method is lost. In the remainder of this paper we shall always take (·, ·)Z
to be the usual L2 inner product, however there may be specific problems where a
different choice is more appropriate.

Now we are ready to restate and prove Theorem 1.1 which shows that for certain
problems the convergence rate of G-prox PDHG is independent of the problem size
even when the distance ‖K(u∗ − u0)‖Z is infinite.

Theorem 3.1. Suppose that F is a functional of the form

F (u) = f(Ku) + g(u)

where for all u ∈ H the maximizer p(u) = arg maxp∈Z(Ku, p)Z − f∗(p) is uniformly
bounded i.e.

sup
u∈H
‖p(u)‖Z = C <∞.

Let uN = 1
N

∑N
n=1 un and pN = 1

N

∑N
n=1 pn where un and pn are the sequence of

iterates produced by G-prox PDHG starting from u0 and p0. Then there is an optimal
choice of step sizes τ and σ, satisfying στ < 1 such that after N iterations

F (uN ) ≤ min
R≥0

[
RC

N
+ min
‖K(u−u0)‖Z≤R

F (u)

]
.

Furthermore, if limR→∞min‖K(u−u0)‖Z≤R F (u) = infu∈H F (u) = F̄ then limN→∞ F (uN ) =
F̄ .

Proof. From equation (2.10) and the definition of C we have

GC,R(uN , pN ) = F (uN )− min
‖Ku‖Z≤R

[g(u) + (Ku, pN )− f∗(pN )] ≤ 1

2N
(
R2

τ
+
C2

σ
).

Now we wish to estimate the second term on the left hand side with a quantity related
to F . Immediately we can see that

min
‖K(u−u0)‖Z≤R

[g(u) + (Ku, pN )− f∗(pN )] ≤ min
‖K(u−u0)‖Z≤R

max
p∈Z

[g(u) + (Ku, p)− f∗(p)]

= min
‖K(u−u0)‖Z≤R

F (u).

Putting things together we have

F (uN )− F̄ ≤ 1

2N
(
R2

τ
+
C2

σ
) + min

‖K(u−u0)‖Z≤R
F (u)− F̄ .

For any fixed R the best choice of the step sizes τ and σ is to take τ = R
C and

σ = C
R , which gives

F (uN )− F̄ ≤ RC

N
+ min
‖K(u−u0)‖Z≤R

F (u)− F̄ .

Since R is arbitrary, we can minimize the right hand side over R ≥ 0 to get the first
result. For the second result, it is enough to let R = R(N) grow to infinity with N
such that limN→∞

RC
N = 0.
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By examining the above proof, we see that the rate of convergence is governed by
the gap

δF (R) = min
‖K(u−u0)‖Z≤R

F (u)− F̄ .

Obtaining explicit upper bounds for δF (R) is of great practical importance. The
behavior of this quantity informs our choice of step sizes, and thus directly impacts
the performance of the algorithm. We cannot expect to give a general statement on
the behavior of δF (R), as it is highly dependent on the properties of the functional
F . Instead, we will closely analyze two important problems, total variation denoising
and the earth movers distance. For these two problems we shall provide explicit upper
bounds on convergence rate of G-prox PDHG and we shall show how to choose the
optimal step sizes σ and τ .

3.1. Total Variation Denoising of Images. Image processing is a source of
many important large scale problems. Simple consumer devices, such as cell phone
cameras, have pixel counts in the tens of millions. More importantly, medical images
such as MRI scans may be 3-dimensional images of physical objects. The pixel counts
of 3-dimensional images grow cubically with the resolution, thus even relatively low
resolution 3-d images images have enormous pixel counts.

Digital images are defined on either 2 or 3 dimensional grids. At each grid point,
the image takes a value in [0, 1], which represents the brightness of the image at that
location. In what follows, we shall consider images as discrete approximations to a
function I : R → [0, 1] where R is a rectangle in the plane or a box in 3-space. By
rescaling the side lengths, we shall always assume that I is defined on the unit cube
[0, 1]d.

A fundamental problem in image processing is image denoising. The goal of im-
age denoising is to remove pixel errors, while preserving as much of the original image
information as possible. The most important information is typically contained in the
edges of objects and scenery. Mathematically, edges correspond to sharp discontinu-
ities in the image intensity function. Thus, variational models for image denoising
must be able to produce discontinuous solutions.

A popular model for image denoising is the Rudin–Osher–Fatemi (ROF) model
[18]

(3.4) Fλ(u, I) = ‖u‖TV +
λ

2
‖u− I‖2L2

where I is the original image to be denoised and ‖u‖TV is the total variation of u.
For smooth functions, ‖u‖TV = ‖∇u‖L1 .

We shall consider the saddle point formulation:

(3.5) (∇u, p)L2 +
λ

2
‖u− I‖2L2 − χ∞(p).

Here χ∞(p) is the convex indicator function of the L∞ unit ball, i.e.

χ∞(p) =

{
0 if |p(x)| ≤ 1 for allx ∈ [0, 1]d,

∞ otherwise.

Clearly, p will always have L2 norm bounded by 1, thus the ROF problem satisfies
the hypotheses of Theorem 1.1 with C = 1.
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The G-prox PDHG updates for the ROF problem have the form

(3.6) un+1 =
(
λτ Id−∆)−1

(
λτI + τ∇ · p̄n −∆un

)
(3.7) pn+1(x) =

pn(x) + σ∇un+1(x)

max(1, |pn(x) + σ∇un+1(x)|)

(3.8) p̄n+1 = 2pn+1 − pn

where the identity matrix Id should not be confused with the image to be denoised
I. Note that the u update can be conveniently expressed as a matrix vector product,
whereas it is more convenient to express the p update in a pointwise fashion.

Minimizers of the ROF model are functions of bounded variation (BV). BV func-
tions may have discontinuities along curves, thus the model will preserve the edges of
I for λ sufficiently large but finite. For example, if I is the characteristic function of a
disc of radius r and λ > 2

r then the solution is the still discontinuous function u∗(x) =
(1 − 2

λr )I(x) + 2πr
λ(1−πr2) . As a result, minimizers of the ROF model are not in gen-

eral elements of the Hilbert space H1([0, 1]d) = {u ∈ L2([0, 1]d) : ∇u ∈ L2([0, 1]d)}.
Thus, ROF is not coercive in the H1 norm and we shall have to compute the gap
min‖∇(u−u0)‖L2≤R ROFλ(u, I)−ROFλ(u∗, I) to obtain a convergence rate for G-prox
PDHG.

Proposition 3.2. Given an image I taking values in [0, 1], the decay of the ROF
gap is bounded by

(3.9) min
‖∇u‖L2≤R

ROFλ(u, I)− ROFλ(u∗, I) ≤ 3λd2

2R2
‖u∗‖2TV

when u0 = 0.

Proof. We estimate the gap by constructing approximate minimizers uδ of the
ROF functional such that uδ has finite H1 norm. Our trick is to take the solution u∗

and convolve it with the Gaussian approximation to the identity Gδ(z) = δ−de−π(z/δ)2

(note that convolutions can be appropriately defined on [0, 1]d, see the appendix for
details ).

If we let uδ = Gδ ∗ u∗ then uδ is a C∞ function and thus an element of H1.
Adding and subtracting uδ into the L2 term we get

ROFλ(uδ, I) = ‖uδ‖TV +
λ

2
‖u∗ − I‖2L2 +

λ

2
‖uδ − u∗‖2L2 + λ(u∗ − I, uδ − u∗)L2 .

By applying Jensen’s inequality to ‖uδ‖TV and Holder’s inequality to the last term,
we have

ROFλ(uδ, I) ≤ ROFλ(u∗, I) +
λ

2
‖uδ − u∗‖2L2 + λ‖u∗ − I‖L∞ ‖uδ − u∗‖L1 .

The minimizer of the ROF problem satisfies a maximum principle, therefore we know
that u∗(x) ∈ [0, 1] for all x [1]. It only remains to estimate the decay of ‖uδ − u∗‖qLq

and the growth of ‖∇uδ‖2L2 . See the appendix for the details on these computations.

With Proposition 3.2 in hand, we can now give an upper bound on the convergence
rate of G-prox PDHG applied to the ROF model.
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Theorem 3.3. An ε approximate solution to the ROF model may be obtained in
at most

N =
d
√

3λ ‖u∗‖TV
ε3/2

iterations of G-prox PDHG using the step sizes τ =
d
√

3λ ‖u∗‖TV
ε1/2

, σ = τ−1.

Note that the step size in Theorem 3.3 depends on ‖u∗‖TV , which is unknown until
the problem is solved. We can remedy this by providing a simple estimate for ‖u∗‖TV
in terms of I. Let I0 be the average value of I over the domain. By evaluating the func-
tional at either I or the constant I0, we know that ROFλ(u∗, I) ≤ min

(
‖I‖TV , λ

2 ‖I0−
I‖2L2

)
. This bound immediately implies ‖u∗‖TV ≤ min

(
‖I‖TV , λ

2 ‖I0 − I‖
2
L2

)
. Thus,

we have a strategy for choosing the step sizes using only quantities available at the
start of computation.

Finally, we conclude this section with a convergence result for the infinite dimen-
sional ROF problem.

Corollary 3.4. Let uN = 1
N

∑N
n=1 un where un is the sequence of primal vari-

ables produced by G-prox PDHG. Then uN converges to the minimizer u∗ of the ROF
problem strongly in L2([0, 1]d).

Proof. The ROFλ functional is λ-strongly convex with respect to the L2 distance.
Therefore,

ROFλ(u, I)− ROFλ(u∗, I) ≥ λ

2
‖u− u∗‖2L2 .

The convergence
lim
N→∞

ROFλ(uN , I)− ROFλ(u∗, I) = 0

then gives the result.

3.2. Earth Mover’s Distance. The earth mover’s distance is a statistical dis-
tance on probability measures. Given probability measures ρ1 and ρ0 defined on a
space Ω, the earth mover’s distance measures the minimal cost required to move the
distribution of ρ0 onto the distribution of ρ1. The cost is measured according to
a predetermined function c(x, y), which gives the expense of transporting a unit of
mass at location x ∈ Ω to location y ∈ Ω. Nowadays, the earth mover’s distance
plays important roles in machine learning, image retrieval and image segmentation
[12, 19, 17, 20]. This widespread usage is due to the fact that the earth mover’s
distance incorporates the geometry of the underlying space Ω (via the cost function).

We shall concentrate on the (important) special case where Ω = [0, 1]d and the
cost function is the usual Euclidean norm, c(x, y) = |x− y|. We shall assume that the
probability measures ρ1, ρ0 are elements of the dual space C([0, 1]d)∗. Furthermore
we assume that there exists a compact set K ⊂ (0, 1)d such that ρ1(K) = ρ0(K) =
1. In this setting, the Earth mover’s distance coincides with the following convex
optimization problem

(3.10) EMD(ρ1, ρ0) = min
∇·m=ρ1−ρ0

∫
[0,1]d
|m|

where m is a d-dimensional vector valued measure satisfying m·n = 0 on the boundary
and |·| is the 2 norm on d-dimensional vectors.
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Using the Hodge decomposition we can decompose m = u + ∇ψ, where u is a
divergence free vector field and ∇ψ is a gradient field. Now we see that ∇·m = ∆ψ =
ρ1 − ρ0. If we let ψ solve the Poisson equation ∆ψ = ρ1 − ρ0 (with zero Neumann
boundary conditions) we can rewrite the problem as

(3.11) EMD(ρ1, ρ0) = min
u
F (u, ψ) = min

u

∫
[0,1]d
|u+∇ψ|+ χ∇⊥(u)

where χ∇⊥(u) is the convex indicator function encoding the constraints ∇ · u = 0
and u · n = 0. If ρ1, ρ0 are singular measures then ψ solves the Poisson equation in
a weak sense only. Thus, ψ does not satisfy the usual regularity properties enjoyed
by solutions to the Poisson equation. Nonetheless, the Hardy–Littlewood–Sobolev
Lemma implies that ∇ψ ∈ Lr([0, 1]d) for any r < d

d−1 [11]. Therefore, the right hand
side of (3.11) is well-defined. In general, one can find a vector valued measure u∗

which minimizes F , however the minimizer need not be unique [7].
Let us briefly note that the EMD problem is closely related to the ROF model

when d = 2. In 2-dimensions, divergence free vector fields u can be written in the
form u = ∇⊥h where h is a scalar function and ∇⊥h = (∂yh,−∂xh). In this case, the
EMD distance can be written as the unconstrained minimization problem

(3.12) EMD(ρ1, ρ0) = min
h

∫
[0,1]2
|∇⊥h+∇ψ|.

Now we can see that the EMD problem has the same structure as the ROF model,
where we are minimizing the Euclidean norm of a differential operator applied to a
function.

Returning to equation (3.11), the saddle point formulation of the EMD problem
has the form

(3.13) (u+∇ψ, p)L2 + χ∇⊥(u)− χ∞(p)

where χ∞ is defined as in equation (3.1).
The G-prox PDHG updates for the EMD problem have the form

(3.14) un+1 = un − τP∇⊥(p̄n)

(3.15) pn+1(x) =
pn(x) + σ

(
un+1 +∇ψ(x)

)
max

(
1, | pn(x) + σ

(
un+1 +∇ψ(x)

)
|
)

(3.16) p̄n+1 = 2pn+1 − pn

where P∇⊥ is the Leray projection onto divergence free vector fields

(3.17) P∇⊥(p) = p−∇∆−1∇ · p

Again, the u update can be conveniently expressed as a matrix vector product, whereas
it is more convenient to express the p update in a pointwise fashion.

It is clear from the saddle point formulation that the EMD problem satisfies the
hypotheses of Theorem 1.1 with C = 1. Since minimizers of the EMD functional

12



are measures, we should not expect the minimizers to have finite L2 norm. Thus, to
obtain a convergence rate for the EMD problem we shall need to estimate the gap

min
‖u‖L2≤R

F (u, ψ)− F (u∗, ψ).

Estimating the gap is more difficult than the ROF problem. The regularity of u∗ is
dependent on the regularity of the measures ρ1 and ρ0, but also on more complicated
geometric properties of ρ1 and ρ0. We shall estimate the gap assuming only that∫

[0,1]d
|ρ1−ρ0| ≤ 2. As a result, we will have an upper bound on the gap which is valid

for any probability measures, but may be too pessimistic when ρ1 and ρ0 are “nice”.
Once again, we shall turn to convolutions. Given a minimizer u∗, we construct

approximate minimizers via convolution with the Gaussian kernel uδ = Gδ ∗ u∗. The
convolution takes vector valued measures to smooth functions, thus we have uδ ∈
L2([0, 1]d). Here convolutions are an especially important tool as they preserve the
divergence free constraint.

Proposition 3.5. For any probability measures ρ1 and ρ0 the EMD gap satisfies

min
‖u‖L2≤R

F (u, ψ)− F (u∗, ψ) ≤ Cd
(EMD(ρ1, ρ0)

R2

) 1
d−1

log

(
R2

EMD(ρ1, ρ0)

)
where Cd is a constant that depends on the dimension only.

Proof. Let u∗ be a minimizer of F (u, ψ). Let uδ = Gδ ∗ u∗ and ψδ = Gδ ∗ ψ. By
the triangle inequality, we have

F (uδ, ψ) ≤ F (uδ, ψδ) + ‖∇ψδ −∇ψ‖L1 .

Applying Jensen’s inequality to F (uδ, ψδ) we have

F (uδ, ψ) ≤ F (u∗, ψ) + ‖∇ψδ −∇ψ‖L1 .

Thus, we only need to estimate the decay of ‖∇ψδ−∇ψ‖L1 and the growth of ‖uδ‖L2 .
In the appendix we show that

‖∇ψδ −∇ψ‖L1 ≤ δ
(
|log(δ)|+ 1

)
C ′d

∫
[0,1]d
|ρ1 − ρ0|.

and

‖uδ‖L2 ≤
(

(2δ)1−dEMD(ρ1, ρ0)
)1/2

where C ′d is a constant which depends on the dimension only. By using
∫

[0,1]d
|ρ1−ρ0| ≤

2, and assuming δ < 1/2 we can simplify the bound for ‖∇ψδ −∇ψ‖L1 to

δ|log(δ)|Cd

Putting everything together we get the result.

Now we can give an upper bound on the convergence rate of G-prox PDHG applied
to the EMD problem.

Theorem 3.6. Suppose that ρ1 and ρ0 are probability measures on [0, 1]d. Then
EMD(ρ1, ρ0) can be computed with error at most ε in

N =
Cd
ε

(EMD(ρ1, ρ0)1/2

ε log(1/ε)

)(d−1)/2
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iterations of G-prox PDHG with the step sizes τ = Cd

(
EMD(ρ1,ρ0)1/2

ε log(1/ε)

)(d−1)/2

and

σ = τ−1where Cd is a constant depending on the dimension only.

Note that we do not know the value of EMD(ρ1, ρ0) until the problem is solved.
This is easily dealt with, as we have the estimate EMD(ρ1, ρ0) ≤

∫
[0,1]d
|ρ1 − ρ0|.

We conclude this section with a convergence result.

Corollary 3.7. Let uN = 1
N

∑N
n=1 un where un is the sequence of primal vari-

ables produced by G-prox PDHG. Then there exists a subsequence that weakly converges
to a measure u∗ which is a minimizer of the EMD functional.

Proof. The sequence uN has uniformly bounded total variation. By Banach–
Alaoglu, the sequence has a weak cluster point u∗. We have established the conver-
gence limN→∞ F (uN , ψ)− infu∈L2 F (u, ψ) = 0. The EMD functional is weakly lower
semi-continuous thus,

F (u∗, ψ) ≤ inf
u∈L2

F (u, ψ).

4. Numerical experiments. All numerical algorithms were coded in C and
executed on a single 1.6 GHz core with 8GB RAM. Inversion of the Laplace operator
was performed using the fast Fourier transform (FFT). All FFTs were calculated
using the free FFTW C library. The code used in this paper is available on GitHub
https://github.com/majacomajaco/G prox pdhg.

In this work we do not consider parallelization, however our approach is still
amenable to parallelization. The only step of our method which is non-trivial to
parallelize is the computation of the FFT. This is not an insurmountable hurdle,
as many modern parallel computing platforms, such as CUDA, have built in FFT
subroutines.

For all of our experiments, given an error tolerance ε, we run the algorithms until
the condition F (un) − infu∈H F (u) < ε is satisfied for the nth iterate un. If we do
not know infu∈H F (u) in advance, we precompute it by running G-prox PDHG for an
extremely large number of iterations to obtain a “ground truth” value. To ensure that
this ground truth is sufficiently accurate, we use the primal dual gap to check that we
are within ε

10 of the exact value. Note that the ground truth value may depend on
the grid discretization. As a result, we must compute a ground truth value for each
grid size that we test.

We will run G-Prox PDHG using a constant multiple of the step sizes from our
analysis with one caveat. On a discrete grid withM points, all Lp norms are equivalent
up to a factor depending upon M . Clearly, ‖u‖L∞ ≤M‖u‖L1and it then follows that
‖u‖Lp ≤M1−1/p‖u‖L1 . For the ROF problem we have ‖∇Mu‖L2 ≤M1/2‖u‖TV , and
for the EMD problem we have ‖u‖L2 ≤M1/2‖u‖L1 . This means that the gap δF (R)
will vanish at a finite value RM , even though one must take R→∞ in the continuum.
Let Rε be the optimal choice of R for solving the continuum problem with error at
most ε. Then in the discrete case, we will choose the step size τ = min(RM , Rε)/C
(as opposed to the choice τ = Rε/C). Calculating RM exactly is difficult, however we
shall give some simple upper bounds in what follows below.

4.1. Total Variation Denoising. For the total variation denoising problem,
we will consider a simple 2-dimensional example where the image I : [0, 1]2 → [0, 1]
is the characteristic function of a disc of radius 1/4 centered at (1/2, 1/2). This
allows us to easily create a test image with any desired resolution. For λ > 8 the
continuous solution is given by u∗(x) = (1− 8

λ )I(x)+ 8π
λ(16−π) . On a discrete grid with
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Table 4.1: G-Prox PDHG λ = 10

Error 10−2 Error 10−3

Grid size Iterations Time (s) Iterations Time (s)
512× 512 33 1.1 61 1.80

1024× 1024 34 5.0 89 10.3
2048× 2048 34 21.2 124 58.4
4096× 4096 34 86.7 168 348.4

Table 4.2: G-Prox PDHG λ = 20

Error 10−2 Error 10−3

Grid size Iterations Time (s) Iterations Time (s)
512× 512 51 1.5 209 4.5

1024× 1024 66 8.2 232 24.1
2048× 2048 83 42.4 265 112.6
4096× 4096 87 186.8 308 586.3

M points, the minimizer u∗M is different (and needs to be calculated) but approaches
the continuum solution u∗ as the grid size grows [24]. For our experiments, we take
λ = 10 and 20 and ε = 10−2 and 10−3 as error cutoffs.

For our step sizes we will choose τ = min
(√λ‖I‖TV

ε1/2
, ‖∇I‖L2

)
. This choice

depends only on quantities that are easily estimated at the start of computation.
Note that ‖∇I‖L2 gives a reasonable upper bound for the discrete grid quantity
RM = ‖∇u∗M‖L2 , and we have dropped the dimensionality constants from Theo-
rem 3.3.

In Tables 4.1 and 4.2, we present the results of G-prox PDHG when λ = 10 and
λ = 20 respectively. The algorithm converges faster for λ = 10, since less fidelity
to the original image is required. This behavior is predicted in our convergence rate
analysis, Theorem 3.3, where the rate depends on

√
λ. When λ = 10 and ε = 10−2,

the value of
√
λ‖I‖TV

ε1/2
is smaller than ‖∇I‖L2 , for every grid size. As a result, the

iteration count is the same for all grid sizes. In the other experiments,
√
λ‖I‖TV

ε1/2
is

larger than ‖∇I‖L2 on the smaller grids, thus the algorithm converges faster on the
smaller grids.

In Table 4.3, we re-run the λ = 20 experiment where we do not allow the step

sizes τ to depend on the grid discretization. In other words we take τ =
√
λ‖I‖TV

ε1/2

for every grid size. In this experiment, the iteration count stays relatively uniform as
the grid size changes. This demonstrates that the algorithm has a convergence rate
which is truly independent of the grid size, but when ε is small one can get faster
convergence by taking into account the grid discretization.

Next, we compare G-prox PDHG to an accelerated version of PDHG (Algorithm
2 from [2]), which we will refer to as CP2. CP2 has two advantages over G-prox
PDHG. CP2 has extremely simple updates which do not require solving any linear
systems. As a result, each iteration of CP2 is faster than G-prox PDHG, which needs
to compute an FFT to invert (λτ Id −∆). Secondly, the primal dual formulation of
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Table 4.3: G-Prox PDHG λ = 20 discretization-independent step sizes

Error 10−2 Error 10−3

Grid size Iterations Time (s) Iterations Time (s)
512× 512 79 2.0 505 10.3

1024× 1024 81 9.5 412 44.1
2048× 2048 83 41.2 396 172.2
4096× 4096 86 176.9 401 794.5

Table 4.4: CP2 (from [2]) ROF disc λ = 10

Error 10−2 Error 10−3

Grid size Iterations Time (s) Iterations Time (s)
512× 512 2196 15.6 4473 31.8

1024× 1024 4415 156.2 8471 296.2
2048× 2048 8855 1305.2 17724 2576.3
4096× 4096 — — — —

the ROF problem

L(u, p) = (∇u, p)L2 +
λ

2
‖u− I‖2L2 − χ∞(p)

is L2 strongly convex in u. CP2 computes the u update in the L2 norm, thus the L2

strong convexity can be exploited to accelerate the algorithm. As a result, CP2 has
quadratic convergence rate (i.e. the restricted primal dual gap after N iterations has
decayO(1/N2)). However, these advantages are offset by the fact that the convergence
rate of CP2 depends heavily on the grid size.

In Tables 4.4 and 4.5 we present the results of CP2 on the same experimental
setup. CP2 accelerates PDHG by changing the step sizes τ = τn and σ = σn at each
iteration n according to a special update rule. One only needs to choose initial values
τ0 and σ0 satisfying τ0σ0‖∆M‖L2 ≤ 1 where ‖∆M‖L2 is the L2 norm of the discrete
Laplace operator ∆M . In [2], it is suggested to take τ0 extremely large. We seemed
to obtain the best results by choosing τ0 = σ0 = 1√

‖∆M‖L2
, thus we report results

with this choice. Comparing Tables 4.4 and 4.5 to Tables 4.1 and 4.2, we see that
CP2 is slower in both time and iterations in every case. In some of the cases, CP2
was unable to complete the computation in the alloted time (2 hours).

4.2. EMD. For the earth mover’s distance, we will consider two different 2-
dimensional problems. In the first problem, ρ1 and ρ0 are both measures supported
on a disc of radius 1/4 where ρ1 is centered at (5/8, 5/8) and ρ0 is centered at
(3/8, 3/8). In the second problem, ρ1 and ρ0 are delta measures at the points (5/8, 5/8)
and (3/8, 3/8) respectively. In both cases, ρ1 is the translation of ρ0 by the vector
(1/4, 1/4).

When two measures differ by a translation, it is possible to determine a minimizer
m∗ = u∗+∇ψ explicitly [22]. Suppose that ρ1 is given by translating ρ0 by the vector
v. Then given a continuous, vector-valued test function p on [0, 1]d, there exists a
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Table 4.5: CP2 (from [2]) ROF disc λ = 20

Error 10−2 Error 10−3

Grid size Iterations Time (s) Iterations Time (s)
512× 512 1252 8.7 2439 17.4

1024× 1024 2497 80.4 4063 132.4
2048× 2048 5005 711.0 8044 1133.8
4096× 4096 10103 6980.2 — —

Table 4.6: EMD discs

Error 10−3 Error 10−4

Grid size Iterations Time (s) Iterations Time (s)
512× 512 64 1.7 163 3.6

1024× 1024 64 7.5 167 16.0
2048× 2048 64 30.6 168 67.4
4096× 4096 65 126.4 168 294.6

minimizer m∗ such that

(4.1) (m∗, p) =

∫ 1

0

∫
[0,1]d

v · p(x− tv) dρ0(x) dt.

It then follows that the EMD distance must be equal to |v|. Thus, the EMD distance
for both experiments is 1√

8
. Due to grid anisotropy, the solution on a discrete grid

will be different, but it will approach 1√
8

as the grid becomes finer.

In the case of the two discs, the densities ρ1 and ρ0 are L∞ functions. From
formula (4.1) we can deduce that u∗ must have bounded L2 norm. In fact, ‖m∗‖2L2 =

‖u∗‖2L2 + ‖∇ψ‖2L2 , and thus ‖u∗‖L2 ≤ ‖m∗‖L2 = 8−1/4. Thus, we do not need to

estimate the gap δF (R) — it is already zero when R > 8−1/4. This suggests that we
can simply choose step sizes τ = σ = 1. The performance of G-prox PDHG on the
disc experiment is presented in Table 4.6. The convergence rate is clearly independent
of the grid size for both error tolerances 10−3 and 10−4.

The case of two delta measures is different. From formula (4.1) we see that m∗ is
a singular measure which concentrates on a one-dimensional line segment. We know
that ∇ψ ∈ Lq for q < 2. Therefore, u∗ = m∗−∇ψ is also a singular measure and does
not have finite L2 norm. As such, we will need to use Theorem 3.6 to help choose the

step sizes. On a grid with M points, we will take τ = min
(√

1
ε|log ε| , 2M1/4

)
, which

again consists only of quantities that are easily calculated at the start of computation.
Note that here we have dropped the dimensionality constant in Theorem 3.6, and used

the trivial estimate EMD(ρ1, ρ0) ≤ 1 to get
√

1
ε|log ε| . To get the second term 2M1/4 we

first use the inequality ‖u∗M‖L2 ≤ ‖m∗M‖L2 . Then we note that m∗M is approximately
supported on a 1-dimensional line segment and thus,

‖m∗M‖L2 ≤ 2M1/4‖m∗M‖L1 ≤ 2M1/4.

In Table 4.7 we present the results of G-prox PDHG on the delta measure exper-

iment. When ε = 10−2,
√

1
ε|log ε| is smaller than 2M1/4 for every grid size. Therefore,
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Table 4.7: EMD delta measures

Error 10−2 Error 10−3 Error 10−4

Grid size Iterations Time (s) Iterations Time (s) Iterations Time (s)
512× 512 30 1.2 56 1.6 121 2.8

1024× 1024 30 5.5 81 9.1 149 14.6
2048× 2048 30 22.8 98 45.6 185 75.3
4096× 4096 30 83.3 101 201.9 236 417.8

Table 4.8: EMD delta measures non-optimal step sizes

Error 10−2 Error 10−3 Error 10−4

Grid size Iterations Time (s) Iterations Time (s) Iterations Time (s)
512× 512 93 2.4 611 12.0 1864 35.3

1024× 1024 112 11.9 1055 90.7 3835 322.9
2048× 2048 128 58.2 1747 675.6 8413 2985.2
4096× 4096 137 253.3 2530 4149.5 – –

the optimal step size τ is the same for every grid, and the number of iterations needed

to reach the error cutoff is always 30. When ε = 10−3,
√

1
ε|log ε| is larger than 2M1/4

on the 512 × 512 grid, approximately equal on the 1024 × 1024 grid and smaller on
the 2048× 2048 and 4096× 4096 grids. As a result, the 2048× 2048 and 4096× 4096
grids have nearly identical iteration counts while the algorithm converges faster on

the 512× 512 and 1024× 1024 grids. When ε = 10−4, 2M1/4 is smaller than
√

1
ε|log ε|

on every tested grid size. Therefore, the algorithm converges faster on the smaller
grids. Once again, if we did not allow τ to depend on the grid discretization we would
get nearly identical iteration counts for each grid, but with slower convergence.

In [20] the authors solve the L1 EMD problem with a completely equivalent
ADMM method. However, [20] does not consider how to choose optimal step sizes.
For singular measures this can lead to a significant slowdown. In Table 4.8 we repeat
the delta measure experiment with non-optimal step sizes τ = σ = 1 . Comparing
Tables 4.7 and 4.8 we see that the non-optimal step sizes lead to runtimes that are
up to fifty times slower. These results highlight the need for our careful theoretical
analysis.

Finally, let us note that the EMD functional is not strongly convex in L2. Without
strong convexity, it is not possible to use the accelerated algorithms from [2]. As a
result, G-prox PDHG will be orders of magnitude faster than PDHG type algorithms
which do not use preconditioning. We can verify this by comparing our algorithm
to the state-of-the-art results for the EMD problem presented in [19]. In [19], the
authors approach the EMD minimization problem

min
∇·m=ρ1−ρ0

∫
[0,1]d
|m|

by converting it into a different unconstrained saddle point problem

min
m

max
p

∫
[0,1]d
|m|+ (∇ ·m+ ρ0 − ρ1, p)
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and searching for the saddle point using PDHG. Since the divergence operator ∇· is
not preconditioned by PDHG, the convergence rate of the algorithm depends on the
grid size. Due to this dependence, [19] only considers grids of size 256× 256 and less,
and requires parallelization for efficient computation. Notably, our serial algorithm
on grids of size 512× 512 appears to be faster than their parallel algorithm on grids
of size 256× 256.

5. Conclusion. In this paper we have shown that G-prox PDHG, a variant of
the PDHG algorithm, can be used to solve large scale optimization problems with
a convergence rate independent of the grid size. We have demonstrated our results
both theoretically and numerically for two important optimization problems, the ROF
denoising model and the earth mover’s distance between probability measures. Our
method is able to solve these problems on grids as large as 4096 × 4096 in a few
minutes —a benchmark which seems to be out of reach for previous approaches.

In future works we hope to further extend our analysis and numerical results to
other large scale problems of interest. Furthermore, we hope to use our approach to
more efficiently simulate the dynamics of stiff differential equations involving total
variation.

6. Acknowledgements. The authors are grateful to Wilfrid Gangbo for helpful
discussions.

Appendix A. The domain [0, 1]d. Functions u : [0, 1]d → R have a natural
extension ũ to the larger domain [−1, 1]d via even reflections. We can define ũ explic-
itly by taking ũ(x1, . . . , xd) = u(|x1|, . . . , |xd|). u takes the same value on opposite
boundaries, thus we can glue opposite boundaries together and identify [−1, 1]d with
the torus Td. This allows us to perform Fourier analysis on [0, 1]d, as we can manipu-
late the Fourier series of ũ and then restrict the result back to [0, 1]d. Therefore, any
Fourier multiplier type operator, such as convolution, can be defined on [0, 1]d (these
operators can also be defined in physical space through the translation invariance of
[−1, 1]d).

Other extensions to [−1, 1]d are possible, however even reflections are most natural
for our purposes. Since ũ is even on [−1, 1]d, its Fourier series expansion is a cosine
series. Assuming ∇ũ exists, it should have a sine series expansion. As a result,
∇ũ · n = 0 on the boundary of [0, 1]d. Thus, we see that the extension by even
reflections can be used to automatically solve the Poisson equation on [0, 1]d with
zero Neumann boundary conditions.

Appendix B. ROF proofs.

Lemma B.1. Suppose that u : [0, 1]d → [a, b] is a function of bounded variation.

Let Gδ(z) = δ−de−π(z/δ)2 be the Gaussian kernel and let u = Gδ ∗ u. Then we have
the following inequalities:

(B.1) ‖uδ − u‖qLq ≤ δ
(
d

2π

) 1
2

(b− a)q−1‖u‖TV

and

‖∇uδ‖2L2 ≤
1

δ

√
2πd3

(
b− a

)
‖u‖TV .
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Proof.

‖uδ − u‖qLq =

∫
[0,1]d

∣∣∣∣ ∫
Rd

G(z)
(
u(x+ δz)− u(x)

)
dz

∣∣∣∣qdx.
Using Jensen’s inequality and the fact that u maps to the bounded interval [a, b], we
bound the above by

≤ (b− a)q−1

∫
Rd

G(z)

∫
[0,1]d
|u(x+ δz)− u(x)|dxdz.

Next we use the fact that BV functions satisfy a global Lipschitz property to get

≤ δ‖u‖TV
∫
Rd

|z|G(z) = δ‖u‖TV Ad−1

∫ ∞
0

rde−πr
2

dr

where Ad−1 is the surface area of the sphere Sd−1. The first result follows from the
inequality

Ad−1

∫ ∞
0

rde−πr
2

≤
√

d

2π
.

Now we turn to estimating the H1 norm of uδ. We have

‖∇uδ‖2L2 =

∫
[0,1]d

∣∣∣∣ ∫
Rd

∇Gδ(z)u(x+z)dz

∣∣∣∣2dx =
1

δ2

∫
[0,1]d

∣∣∣∣ ∫
Rd

∇G(z)u(x+δz)dz

∣∣∣∣2dx.
Since

∫
Rd ∇G(z)dz = 0, we may replace the above with

1

δ2

∫
[0,1]d

∣∣∣∣ ∫
Rd

∇G(z)
(
u(x+ δz)− u(x)

)
dz

∣∣∣∣2dx.
We have the estimate ‖∇G‖L1 ≤

√
2πd, thus the above is

≤
√

2πd

δ2
(b− a)

∫
Rd

|∇G(z)|
∫

[0,1]d
|u(x+ δz)− u(x)|dxdz

Again applying the global Lipschitz property of BV functions we get

≤
√

2πd

δ
(b− a)‖u‖TV

∫
Rd

|z||∇G(z)|

Finally,
∫
Rd |z||∇G(z)| = d.

Appendix C. EMD proofs.

Lemma C.1. Let ρ1, ρ0 be probability measures and suppose that ψ solves the Pois-
son equation ∆ψ = ρ1 − ρ0 on [0, 1]d with zero Neumann boundary conditions. Let
Gδ be the Gaussian kernel with width δ > 0 and ∇ψδ = ∇ψ ∗Gδ. Then

‖∇ψδ −∇ψ‖L1 ≤ Cd δ
(
|log(δ)|+ 1

) ∫
[0,1]d
|ρ1 − ρ0|

where Cd is a constant which depends on the dimension only.
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Proof. Let us define a linear operator Tδ

Tδh = ∇∆−1
(
Gδ ∗ h− h

)
.

The current proposition is equivalent to

‖Tδ(ρ1 − ρ0)‖L1 ≤ Cdδ
(
|log(δ)|+ 1

) ∫
[0,1]d
|ρ1 − ρ0|.

Let ρik = G1/k ∗ ρi. Then ρik is a smooth L1 function. If we assume that Tδ is a
bounded operator on L1, we can use lower semi-continuity to obtain

‖Tδ(ρ1 − ρ0)‖L1 ≤ lim inf
k→∞

‖Tδ(ρ1
k − ρ0

k)‖L1 ≤ ‖Tδ‖L1 lim inf
k→∞

‖ρ1
k − ρ0

k‖L1 .

Applying Jensen’s inequality to the last term we have

lim inf
k→∞

‖ρ1
k − ρ0

k‖L1 ≤
∫

[0,1]d
|ρ1 − ρ0|

Thus, it is enough to show that for smooth functions h the operator Tδ satisfies

‖Tδh‖L1 ≤ Cd δ
(
|log(δ)|+ 1

)
‖h‖L1 .

For smooth h we have

Tδh(x) =

∫
Rd

G(z) ∆−1
(
∇h(x+δz)−∇h(x)

)
dz =

∫
Rd

G(z)∆−1

∫ δ

0

zTD2h(x+tz) dt dz

All of the operators applied to h commute, so we have

‖Tδh‖L1 ≤
∫ δ

0

‖D2∆−1h ∗ G̃t‖L1dt

where G̃(z) = zTG(z). Suppose that q(t) ∈ (1, 2] for each t ∈ (0, δ]. Then∫ δ

0

‖D2∆−1h ∗ G̃t‖L1 dt ≤
∫ δ

0

‖D2∆−1h ∗ G̃t‖Lq(t) dt.

Now we use the fact that D2∆−1 is a bounded operator on Lq for q ∈ (1,∞). More-
over, for q ∈ (1, 2], we have the operator norm bound

‖D2∆−1‖Lq→Lq ≤ C ′′d
q − 1

where C ′′d is a constant depending on the dimension only [21]. Using the above bound
and then Young’s convolution inequality we get∫ δ

0

‖D2∆−1h ∗ G̃t‖Lq(t) dt ≤
∫ δ

0

C ′′d
q(t)− 1

‖h ∗ G̃t‖Lq(t) dt ≤ ‖h‖L1

∫ δ

0

C ′′d ‖G̃t‖Lq(t)

q(t)− 1
dt.

The Lq norm of G̃t satisfies

‖G̃t‖Lq ≤ C ′dtd(1−q)/q
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for some new constant C ′d. Now we shall make the choice q(t) = 1 + 1
d|log(t)| . This

gives us

‖h‖L1

∫ δ

0

C ′′d ‖G̃t‖Lq(t)

q(t)− 1
dt ≤ Cd‖h‖L1

∫ δ

0

|log(t)| dt

where Cd is again a new constant. The inequality
∫ δ

0
|log(t)| dt ≤ δ |log(δ)|+ δ finishes

the proof.

Lemma C.2. Let Gδ(z) = δ−de−π(z/δ)2 be the Gaussian kernel. Then there exists
a minimizer u∗ of the EMD functional such that uδ = Gδ ∗ u∗ has finite L2 norm
bounded by

‖uδ‖2 ≤
(

(2δ)(1−d)EMD(ρ1, ρ0)

)1/2

Proof. Young’s convolution inequality automatically gives ‖uδ‖L2 ≤ ‖Gδ‖L2‖u∗‖1 =
δ−d/2‖u∗‖L1 . However, this does not take into account the structure of the EMD prob-
lem, and better results are possible.

Consider first the case where ρ1 and ρ0 are delta measures at locations x1, x0 ∈
(0, 1)d respectively. It is then known ([22]) that the solution m∗ = u∗ +∇ψ is given
by

(p,m∗) = (x1 − x0) ·
∫ 1

0

p
(
t(x1 − x0) + x0

)
dt

The simplicity of the solution allows us to express ‖Gδ ∗m∗‖22 explicitly in the Fourier
domain. This will allow us to bound ‖Gδ ∗ u∗‖22 since m∗ = u∗ +∇ψ and u∗ and ∇ψ
are orthogonal in the L2 inner product.

‖Gδ ∗m∗‖22 =
‖x1 − x0‖22

2d−1π2

∑
n∈Zd

|sin
(
π(n, x1)

)
− sin

(
π(n, x0)

)
|2

|(n, x1 − x0)|2
e−πδ

2|n|2 .

The inner sum can be bounded by

1 +

∫
Rd

|sin(π(ξ, x1))− sin(π(ξ, x0))|2

|(ξ, x1 − x0)|2
e−πδ

2‖ξ‖22

Using the inequality

|sin(π(ξ, x1))− sin(π(ξ, x0))| ≤ |sin
(
π(ξ, x1 − x0)

)
|

we may bound the integral by

∫
Rd

sin
(
π(ξ, x1 − x0)

)2
|(ξ, x1 − x0)|2

e−πδ
2‖ξ‖22 .

By rotating, we may assume that x1− x0 is parallel to the first standard basis vector
e1. Thus, the integral simplifies to

∫
Rd

sin
(
πξ1‖x1 − x0‖2

)2
ξ2
1‖x1 − x0‖22

e−πδ
2‖ξ‖22 ≤ δ1−d

∫
R

sin(πξ1‖x1 − x0‖2)2

ξ2
1‖x1 − x0‖22

dξ1.
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The integral on the right hand side can be computed explicitly, and has value
π2

2‖x1−x0‖2 . Thus, we may conclude that

‖Gδ ∗ u∗‖22 ≤ ‖Gδ ∗m∗‖22 ≤ (2δ)1−d‖x1 − x0‖2.

Next we extend our result to sums of delta measures. Suppose that ρ1 = 1
k

∑k
j=1 δxj

and ρ0 = 1
k

∑k
j=1 δyj for some (potentially repeated) points x1, . . . , xk, y1, . . . , yk ∈

(0, 1)d. Then there exists a minimizer m∗ with the form

(p,m∗) =
1

k

k∑
j=1

(
xj − yπ(j)

)
·
∫ 1

0

p
(
yπ(j) + t(xj − yπ(j))

)
dt

where π is a permutation of {1, . . . , k} which solves the assignment problem

π ∈ arg min
σ∈Sk

1

k

k∑
j=1

‖xj − yσ(j)‖2.

Using the triangle inequality and then Jensen’s inequality, we have

‖Gδ ∗m∗‖2 ≤
1

k

k∑
j=1

(
(2δ)1−d‖xj − yπ(j)‖2

)1/2 ≤ ((2δ)1−dEMD(ρ1, ρ0)

)1/2

.

Finally, we wish to extend this result to general probability measures ρ1, ρ0. Let
Pk be the set of all probability measures of the form µ = 1

k

∑k
j=1 δxj for any list of

(potentially repeated) points x1, . . . , xk ∈ (0, 1)d. Sums of delta measures are dense
in the space of probability measures with the EMD topology [23], therefore there exist
sequences ρ1

k and ρ0
k such that ρ1

k, ρ
0
k ∈ Pk, EMD(ρ1

k, ρ
1)→ 0 and EMD(ρ0

k, ρ
0)→ 0.

Using these sequences, we can choose for each k

uk ∈ arg min
∇·u=0

∫
[0,1]d
|u+∇ψk|

where ψkis the solution of the Poisson equation ∆ψk = ρ1
k − ρ0

k, with zero Neumann
boundary conditions.

The solutions uk have finite total variation bounded by

2‖∇ψk‖1 ≤ 2Cd

∫
[0,1]d
|ρ1
k − ρ0

k| ≤ 2Cd

where Cd is the operator norm of ‖∇∆−1‖
L1→L

d
d−1

,w . Thus, by the Banach–Alaoglu

theorem, there exists a subsequence ukn and a vector-valued measure ũ such that for
every bounded continuous test function p we have

lim
n→∞

(ukn − ũ, p) = 0.

Without loss of generality, we shall assume that this property holds for the full se-
quence uk. Lower semi-continuity gives ‖Gδ ∗ ũ‖2 ≤ lim infk→∞‖Gδ ∗ uk‖2. Thus, if
we can show ũ ∈ arg min∇·u=0

∫
[0,1]d
|u+∇ψ| we will be done.
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To that end, we note that

lim inf
k→∞

EMD(ρ1
k, ρ

0
k) = lim inf

k→∞

∫
[0,1]d
|uk +∇ψk|

≥ sup
‖ϕ‖∞=1

lim inf
k→∞

(uk +∇ψk, ϕ) =

∫
[0,1]d
|ũ+∇ψ|.

Next by the triangle inequality, we have

EMD(ρ1
k, ρ

0
k) ≤ EMD(ρ1, ρ1

k) + EMD(ρ0, ρ0
k) + EMD(ρ1, ρ0)

thus lim supk→∞ EMD(ρ1
k, ρ

0
k) ≤ EMD(ρ1, ρ0) = inf∇·u=0

∫
[0,1]d
|u + ∇ψ|. Putting

everything together, we get the chain of inequalities

lim sup
k→∞

EMD(ρ1
k, ρ

0
k) ≤ inf

∇·u=0

∫
[0,1]d
|u+∇ψ| ≤

∫
[0,1]d
|ũ+∇ψ| ≤ lim inf

k→∞
EMD(ρ1

k, ρ
0
k)

which completes the proof.
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