MATH 373
 Quiz 1
 Fall, 2019
 September 10, 2019

1. Deepa borrows 1000 from Ally. Deepa agrees to pay a nominal interest rate of 9% compounded quarterly.

At the end of X years, Deepa repays the loan with a payment of 1427.62.

Calculate X.

Solution:
$i^{(4)}=9 \% \quad \frac{i^{(4)}}{4}=\frac{9 \%}{4}=2.25 \%$
$(1+i)^{X}=\left(1+\frac{i^{(4)}}{4}\right)^{4 X}$
$1000(1.0225)^{4 X}=1427.62 \quad==>\quad(1.0225)^{4 X}=1.42762$
$4 X=\frac{\ln (1.42762)}{\ln (1.0225)}=16 \quad==>\quad X=4$

OR

Using the Calculator:

$$
\begin{aligned}
& I / Y=2.25 \% \\
& P V=1000 \\
& \mid F V=-1427.62 \\
& |C P T| N=16 \\
& N=4 X \Leftrightarrow X=\frac{N}{4} \\
& N=16 \Rightarrow X=4
\end{aligned}
$$

2. You are given that $i=8 \%$.

Let $i^{(4)}$ be the nominal annual interest rate compounded quarterly that is equivalent to i. Let $d^{(12)}$ be the nominal annual discount rate compounded monthly that is equivalent to i. Calculate $(1000)\left(i^{(4)}-d^{(12)}\right)$.

Solution:

$$
\begin{aligned}
& (1+i)=1.08=\left(1+\frac{i^{(4)}}{4}\right)^{4} \Rightarrow i^{(4)}=0.077706188 \\
& (1+i)=1.08=\left(1-\frac{d^{(12)}}{12}\right)^{-12} \Rightarrow d^{(12)}=0.076714776 \\
& \begin{aligned}
1000\left(i^{(4)}-d^{(12)}\right) & =1000(0.077706188-0.076714776) \\
& =0.991412
\end{aligned}
\end{aligned}
$$

3. Britney invests 10,000 in an account earning interest based on an accumulation function of $\alpha+\beta t^{2}$. After 3 years, Britney has 11,800 .

Determine the effective interest rate that Britney earned during the third year. This would be $i_{[2,3]}$ in symbols.

Solution:
$a(t)=\alpha+\beta t^{2}$
$a(0)=1=\alpha+\beta\left(0^{2}\right) \Rightarrow \alpha=1$
$(10,000) a(3)=10,000\left(\alpha+\beta\left(3^{2}\right)\right)=11,800$
$11,800=10,000+90,000 \beta$
$1,800=90,000 \beta \Rightarrow \beta=0.02$
$i_{[2,3]}=\frac{a(3)-a(2)}{a(2)}$
$=\frac{\left(1+0.02\left(3^{2}\right)\right)-\left(1+0.02\left(2^{2}\right)\right)}{\left(1+0.02\left(2^{2}\right)\right)}$
$=0.092592593$

