MATH 373

Quiz 4

Fall 2019
November 12, 2019

1. The preferred stock of Wiser Corporation pays quarterly dividends of 1.25 with the next dividend to be paid in 1 month.

Using an interest rate of 12% compounded quarterly and the dividend discount method, determine the price of the preferred stock.

Solution:

We need $\frac{i^{(4)}}{4}$. We are given $i^{(4)}=0.12$, so $\frac{i^{(4)}}{4}=\frac{0.12}{4}=0.03$.
Price $=P V=\left(\frac{1.25}{0.03}\right)(1.03)^{2 / 3}=42.496$
We multiply by $(1.03)^{2 / 3}$ because the first dividend is paid at the end of 1 month.
2. The common stock of Beckley Corporation pays quarterly dividends. The next dividend of 2 will be paid in 3 months. Future dividends are expected to increase with a dividend of 2(1.01) being paid in 6 months. The dividend to be paid in 9 months will be $2(1.01)^{2}$. Dividends will continue to increase in the same pattern.

Using the dividend discount method with an annual effective interest rate of 12%, determine the price of the common stock of Beckley Corporation.

Solution:

We need $\frac{i^{(4)}}{4}$. We are given $i=0.12$, so $\frac{i^{(4)}}{4}=(1.12)^{\frac{1}{4}}-1=0.028737345$.
Price $=P V=2(1.028737345)^{-1}+2(1.01)(1.028737345)^{-2}+2(1.01)^{2}(1.028737345)^{-3}+\cdots$

$$
=\frac{2(1.028737345)^{-1}-0}{1-(1.01)(1.028737345)^{-1}}=106.74
$$

3. The common stock of Mills Company pays a quarterly dividend. The next dividend of 3 is payable in 3 months. Subsequent dividends are expected to each be 0.15 greater than the prior dividend. In other words, the second dividend will be 3.15 , the third dividend will be 3.30 , etc.

Using the dividend discount method with an annual effective interest rate of i, the stock price is 360.

Determine i.

Solution:

$$
\text { Price }=P V=360=\frac{3.00}{\frac{i^{(4)}}{4}}+\frac{0.15}{\left(\frac{i^{(4)}}{4}\right)^{2}} \Rightarrow 360\left(\frac{i^{(4)}}{4}\right)^{2}-3.00 \frac{i^{(4)}}{4}-0.15=0
$$

Solve for $\frac{i^{(4)}}{4}$:

$$
\frac{i^{(4)}}{4}=\frac{3.00+\sqrt{(-3.00)^{2}-4(-0.15)(360)}}{2(360)}=0.025
$$

Solve for i :

$$
i=\left(1+\frac{i^{(4)}}{4}\right)^{4}-1=(1.025)^{4}-1=0.103812891
$$

