MATH 373
 Quiz 1

 Spring 2018

 Spring 2018
 January 30, 2018

1. Alisa invests 42,000 in Amir Bank. At the end of 10 years, Alisa has 100,000 .

Amir Bank pays interest based on the following:
a. The first two years, Amir pays an annual effective interest rate of i.
b. During the next three years, Amir pays a nominal discount rate of 8% compounded quarterly.
c. During the last five years, Amir pays a force of interest equal to $\delta_{t}=0.04+0.001 t^{2}$ where t is measured from the date of the original investment of 42,000 .

Determine i.

Solution:

$(42,000)(1+i)^{2}\left(1-\frac{0.08}{4}\right)^{-4(3)} e^{\int_{5}^{10}\left(0.04+0.001 r^{2}\right) d r}=100,000$

$$
\int_{e^{5}}^{10}\left(0.04+0.001 r^{2}\right) d r \quad=e^{\left[0.04 r+\frac{0.001}{3} r^{3}\right]_{5}^{10}}=e^{(0.4+0.333333333-0.2-0.0411666666)}=e^{0.49166666}
$$

$$
(1+i)^{2}=\frac{100,000}{(42,000)\left(1-\frac{0.08}{4}\right)^{-4(3)} e^{0.49166666}}=1.14708605
$$

$$
i=(1.14708605)^{0.5}-1=0.068975493
$$

2. You are given that $v(t)=\left[1+\beta t^{2}\right]^{-1}$.

You are also given that $\delta_{5}=\delta_{10}$.

Determine β.

Solution:

$v(t)=\frac{1}{1+\beta t^{2}}=\frac{1}{a(t)}=>a(t)=1+\beta t^{2}$
$\delta_{t}=\frac{a^{\prime}(t)}{a(t)}=\frac{2 \beta t}{1+\beta t^{2}}$
$\delta_{5}=\delta_{10}=\Rightarrow \frac{2 \beta(5)}{1+\beta(5)^{2}}=\frac{2 \beta(10)}{1+\beta(10)^{2}}=\Rightarrow 10 \beta[1+100 \beta]=20 \beta[1+25 \beta]$
$==>[1+100 \beta]=2[1+25 \beta]==>1+100 \beta=2+50 \beta$
$50 \beta=1=\Rightarrow \beta=0.02$
3. Jordyn invests 1000 in Bank Chen. Bank Chen pays simple interest rate of s. In the $10^{\text {th }}$ year, Jordyn earns an annual effective interest rate of 5\%.

Calculate the amount of money Jordyn will have at the end of the $10^{\text {th }}$ year.

Solution:

By Definition

The effective interest rate in the nth year $=i_{n}=\frac{a(n)-a(n-1)}{a(n-1)}$

Which for simple interest is
$\frac{a(n)-a(n-1)}{a(n-1)}=\frac{(1+(n) s)-(1+(n-1) s)}{1+(n-1) s}=\frac{1+n s-1-n s+s}{1+(n-1) s}=\frac{s}{1+(n-1) s}$
$i_{10}=0.05=\frac{s}{1+(10-1)(s)}=\frac{s}{1+9 s}=>0.05(1+9 s)=s$
$==>0.05+0.45 s=s=>0.05=0.55 s=\Rightarrow s=\frac{1}{11}$
$A(10)=(1000)\left[1+\left(\frac{1}{11}\right)(10)\right]=1909.09$

