MATH 373
 Quiz 4
 Spring 2018
 March 8, 2018

1. Caroline has the option of the following two continuous annuities:
a. An annuity that pays continuously at an annual rate of 1000 for 20 years.
b. An annuity that pays continuously at a rate of $X t$ at time t for 20 years.

Both annuities have the same present value at a force of interest of 8%.

Determine X.

Solution:

Option $a=$ Option b
$1000 \bar{a}_{20}=X\left[(\bar{I} \bar{a})_{20}\right]$
$1000\left(\frac{1-e^{-0.08(20)}}{0.08}\right)=X\left[\frac{\frac{1-e^{-0.08(20)}}{0.08}-20 e^{-0.08(20)}}{0.08}\right]$
$9976.29=X(74.2295) \Longrightarrow X=134.40$
2. Kevin is receiving an annuity due with quarterly payments for the next 30 years. Each payment in the first year is P. Each payment in the second year is $2 P$. Each payment in the third year is $3 P$. The payments continue to increase by P each year until each payment in the $30^{\text {th }}$ year is $30 P$.

The present value of this annuity at an interest rate of 8% compounded quarterly is 200,000.
Determine P.

Solution:

Since this the formula that does not follow the rules, we need both $\frac{i^{(4)}}{4}$ and i.
We are given that $i^{(4)}=0.08 \Longrightarrow \frac{i^{(4)}}{4}=0.02$ and $i=(1.02)^{4}-1=0.08243216$.
$200,000=P\left[\frac{\ddot{a}_{300.08243216}-30(1.08243216)^{-30}}{0.02}\right](1.02)=$

$$
P\left[\frac{\left(\frac{1-(1.08243216)^{-30}}{0.08243216}\right)(1.08243216)-30(1.08243216)^{-30}}{0.02}\right](1.02)=
$$

$P\left[\frac{11.91140233-2.786866898}{0.02}\right](1.02)=P(465.356407)$
$P=\frac{200,000}{465.356407}=429.78$

The multiplication by (1.02) at the end of the formula is because this is "an annuity due".
3. I would like to receive 10 points for having written my name on the front cover. Circle the correct answer.

True or False

